JPH0539974A - Cooling device - Google Patents
Cooling deviceInfo
- Publication number
- JPH0539974A JPH0539974A JP19456891A JP19456891A JPH0539974A JP H0539974 A JPH0539974 A JP H0539974A JP 19456891 A JP19456891 A JP 19456891A JP 19456891 A JP19456891 A JP 19456891A JP H0539974 A JPH0539974 A JP H0539974A
- Authority
- JP
- Japan
- Prior art keywords
- evaporator
- temperature
- blower
- refrigerator
- defrosting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Devices That Are Associated With Refrigeration Equipment (AREA)
- Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は冷蔵庫に用いられる冷
却装置の改良に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a cooling device used in a refrigerator.
【0002】[0002]
【従来の技術】図5は例えば特開昭62-196581号公報に
示された従来の冷却装置の冷媒回路図である。図におい
て、1は圧縮機、2は凝縮器、3は膨張弁、4は蒸発器
用送風機6によって送風される冷蔵庫(図示せず)の庫
内空気と熱交換し庫内空気を冷却する蒸発器で、これら
を順次冷媒配管で接続することで冷凍サイクルが構成さ
れている。7は圧縮機1から吐出された高温、高圧のガ
ス冷媒を蒸発器4へバイパスするバイパス管、7Aはバ
イパス管7の途中に設けられた電磁弁である。2. Description of the Related Art FIG. 5 is a refrigerant circuit diagram of a conventional cooling device disclosed in, for example, Japanese Patent Application Laid-Open No. 62-196581. In the figure, 1 is a compressor, 2 is a condenser, 3 is an expansion valve, and 4 is an evaporator for exchanging heat with the inside air of a refrigerator (not shown) blown by an evaporator blower 6 to cool the inside air. Then, a refrigeration cycle is configured by sequentially connecting these with refrigerant pipes. Reference numeral 7 is a bypass pipe for bypassing the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 to the evaporator 4, and 7 A is a solenoid valve provided in the middle of the bypass pipe 7.
【0003】次に動作について説明する。冷却運転時、
圧縮機1から吐出された高温、高圧のガス冷媒は凝縮器
2で外気等の冷却流体と熱交換し凝縮液化される。そし
て膨張弁3で減圧され低温、低圧の液冷媒となる。その
後、この液冷媒は蒸発器4に入り、蒸発器用送風機6に
よって送風される冷蔵庫の庫内空気と熱交換され庫内空
気が冷却され、これによって冷蔵庫(図示せず)内が冷
却される。以上の冷却運転が続行されると、図6に示さ
れるように蒸発器4に霜11が付着し、蒸発器用送風機
6のファン5にかかる静圧が増加し、ファン5の回転数
の低下を生じ、風量も減少し、蒸発器4の性能は図7の
2点鎖線で示されるように冷却能力がQ2 からQ1 にな
り、能力の低下をきたす。そのため、除霜用タイマ(図
示せず)により定期的に除霜が行われる。除霜用タイマ
(図示せず)が動作すると電磁弁7Aが開放され、圧縮
機1から吐出された高温、高圧のガス冷媒がバイパス管
7、電磁弁7Aを通り蒸発器4に導かれる。しかして蒸
発器4に付着していた霜11は上記高温のガス冷媒で融
解し除霜される。そして冷媒は蒸発器4から圧縮機1へ
戻る。Next, the operation will be described. During cooling operation,
The high-temperature, high-pressure gas refrigerant discharged from the compressor 1 exchanges heat with a cooling fluid such as outside air in the condenser 2 to be condensed and liquefied. Then, the pressure is reduced by the expansion valve 3 to become a low temperature, low pressure liquid refrigerant. Thereafter, the liquid refrigerant enters the evaporator 4, heat-exchanges with the inside air of the refrigerator blown by the blower 6 for the evaporator, and the inside air is cooled, whereby the inside of the refrigerator (not shown) is cooled. When the above cooling operation is continued, frost 11 adheres to the evaporator 4 as shown in FIG. 6, the static pressure applied to the fan 5 of the evaporator blower 6 increases, and the rotation speed of the fan 5 decreases. As a result, the air volume is reduced, and the performance of the evaporator 4 is reduced from Q 2 to Q 1 as shown by the chain double-dashed line in FIG. Therefore, the defrosting timer (not shown) regularly defrosts. When a defrosting timer (not shown) operates, the electromagnetic valve 7A is opened, and the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 is guided to the evaporator 4 through the bypass pipe 7 and the electromagnetic valve 7A. Then, the frost 11 attached to the evaporator 4 is defrosted by being melted by the high temperature gas refrigerant. Then, the refrigerant returns from the evaporator 4 to the compressor 1.
【0004】[0004]
【発明が解決しようとする課題】従来の冷却装置は以上
のように構成されているので、蒸発器に付く霜の影響で
蒸発器用送風機の風量が減少し冷却能力の低下を招くた
め、除霜の回数を多くしなければならず、除霜の回数を
多くすると除霜時に蒸発器に流れ込む高温のガス冷媒の
影響で庫内温度が上昇する回数が多くなるという問題点
があった。Since the conventional cooling device is constructed as described above, defrosting occurs because the amount of air blown by the evaporator blower decreases due to the effect of frost on the evaporator, resulting in a decrease in cooling capacity. Has to be increased, and if the frequency of defrosting is increased, there is a problem in that the temperature inside the refrigerator increases due to the influence of the high-temperature gas refrigerant flowing into the evaporator during defrosting.
【0005】この発明は上記のような問題点を解消する
ためになされたもので、蒸発器への着霜による蒸発器用
送風機の風量の低下による冷却能力の低下が抑制できる
と共に除霜の回数を少なくすることができ、除霜時に蒸
発器に流れる高温のガス冷媒の庫内温度への影響の少な
い冷却装置を得ることを目的とする。The present invention has been made in order to solve the above-mentioned problems, and it is possible to suppress a decrease in the cooling capacity due to a decrease in the air volume of the evaporator blower due to frost formation on the evaporator and to reduce the number of defrosting times. An object of the present invention is to obtain a cooling device that can be reduced in amount and has a small influence on the temperature inside the high-temperature gas refrigerant flowing in the evaporator during defrosting.
【0006】[0006]
【課題を解決するための手段】この発明に係る冷却装置
は蒸発器用送風機によって送風される冷蔵庫の庫内空気
と熱交換し庫内空気を冷却する蒸発器における冷媒の蒸
発温度を検出する第1の温度センサと、上記冷蔵庫の庫
内温度を検出する第2の温度センサとを設け、上記第1
と第2の温度センサの検出温度に応じて上記蒸発器用送
風機の回転数を制御するようにしたものである。A cooling device according to the present invention detects the evaporation temperature of a refrigerant in an evaporator for exchanging heat with the air in a refrigerator blown by an evaporator blower to cool the air in the refrigerator. And a second temperature sensor for detecting the temperature inside the refrigerator, and the first temperature sensor
And the number of revolutions of the evaporator blower is controlled according to the temperature detected by the second temperature sensor.
【0007】[0007]
【作用】この発明における冷却装置は第1と第2の温度
センサで検出された蒸発器の蒸発温度と冷蔵庫内温度と
に応じて蒸発器用送風機の回転数が制御され、蒸発器へ
の着霜による風量低下、冷却能力低下が抑制され、除霜
開始までの冷却運転時間が長くなり、除霜の回数が減少
する。In the cooling device according to the present invention, the number of revolutions of the evaporator blower is controlled according to the evaporation temperature of the evaporator and the internal temperature of the refrigerator detected by the first and second temperature sensors, and the frost is formed on the evaporator. The decrease in the air volume and the decrease in the cooling capacity due to are suppressed, the cooling operation time becomes longer until the defrosting starts, and the number of defrosting decreases.
【0008】[0008]
【実施例】以下、図1に示されるこの発明の一実施例に
よる冷却装置の冷媒回路図について説明する。図1にお
いて図5と異なるところは、蒸発器4における冷媒の蒸
発温度を検出する第1の温度センサ8を蒸発器4の出口
管に設け、かつ、冷蔵庫(図示せず)の貯蔵品の近傍等
の庫内温度を検出する第2の温度センサ9を庫内の貯蔵
品の近傍等に設けると共に、これら第1と第2の温度セ
ンサ8,9の検出温度を定期的に入力し、その都度、そ
の検出温度に応じて蒸発器4へ送風する蒸発器用送風機
6の回転数を制御するコントローラ10を設けた点であ
る。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A refrigerant circuit diagram of a cooling device according to an embodiment of the present invention shown in FIG. 1 will be described below. 1 is different from FIG. 5 in that the first temperature sensor 8 for detecting the evaporation temperature of the refrigerant in the evaporator 4 is provided in the outlet pipe of the evaporator 4 and near a stored product of a refrigerator (not shown). A second temperature sensor 9 for detecting the temperature inside the storage compartment, etc. is provided in the vicinity of the stored goods inside the storage compartment, and the temperatures detected by the first and second temperature sensors 8 and 9 are periodically input. The point is that the controller 10 is provided to control the number of rotations of the evaporator blower 6 that blows air to the evaporator 4 depending on the detected temperature.
【0009】次に動作について、図2〜図3を参照しな
がら説明する。図2は図1に示されるコントローラの動
作を示すフローチャート、図3は蒸発器の冷却能力Qと
温度差TD(TD=庫内温度RT−蒸発温度ETと定義
する)との関係を示す図、図4は蒸発器の冷却能力Qと
時間Tとの関係を示す図である。冷却運転が従来と同様
に行われ蒸発器4との熱交換により庫内空気が冷却さ
れ、冷蔵庫(図示せず)内が冷却される。蒸発器4の無
着霜時の性能は図3に1点鎖線で示されるように冷却能
力Q2 で温度差TD(TD=庫内温度RT−蒸発温度E
Tと定義する)がTD1 となり、着霜すると、その霜付
によって蒸発器4の静圧が増加し蒸発器用送風機6の回
転数の低下を生じ風量も減少し、蒸発器4から吹出す風
量も減少するため、2点鎖線で示されるようになり、冷
却能力QがQ1 に低下し温度差TDがTD2 になる。こ
れらの温度差TD1 ,TD2 はコントローラ10に基準
値として設定される。そしてコントローラ10には第1
と第2の温度センサ8,9によって検出された蒸発器4
における冷媒の蒸発温度ETおよび上記冷蔵庫の庫内温
度RTがステップ10-1で定期的、例えば10秒毎に入力
され、この入力された蒸発温度ET、庫内温度RTに基
づき、その時点における温度差TDがステップ10-2で演
算されると共に、この演算された温度差TDと設定され
た温度差TD2と比較され、温度差TDが温度差TD
2 以上であれば蒸発器用送風機6の回転数を所定回転
数だけ大きくする。回転数が大きくなると蒸発器用送風
機6から蒸発器4へ送風される風量が増加し、冷却能力
が大きくなり、温度差TDもTD1 <TD<TD2 とな
り図3の1点鎖線と2点鎖線間の適正範囲に入る。な
お、この際の風量増加の限界は、庫内貯蔵物に風速の影
響を与えない風量になるよう予めセットされている。ま
た温度差TDが温度差TD2 以下であればステップ10-3
に進み、ステップ10-3で温度差TD1 と比較され、温度
差TD1以下であれば蒸発器用送風機6の回転数を所定
回転数だけ小さくする。これによって蒸発器4へ送風さ
れる風量が減少し冷却能力Q、温度差TD共に適正範囲
となる。また上記温度差TD1 との比較において、温度
差TD1 以上であれば、温度差TD、冷却能力共に適正
範囲内であることになるため、蒸発器用送風機6の回転
数はそのまま維持される。以上の動作が温度センサ8,
9の検出温度の入力の都度、繰り返し行われ、蒸発器用
送風機6の回転数が温度差TDに応じて制御されるの
で、蒸発器4への霜付が原因による風量低下、冷却能力
低下が抑制され、図4に1点鎖線で示されるように蒸発
器用送風機の回転数制御有の場合、実線で示される回転
数制御無の場合に比し除霜開始までの冷却運転時間が長
くなる。しかして除霜用タイマ(図示せず)にこの除霜
開始までの冷却運転時間、例えば6時間が設定され、こ
の設定時間により定期的に従来同様に除霜され除霜の回
数が減少される。Next, the operation will be described with reference to FIGS. 2 is a flowchart showing the operation of the controller shown in FIG. 1, and FIG. 3 is a diagram showing the relationship between the cooling capacity Q of the evaporator and the temperature difference TD (TD = internal temperature RT−evaporation temperature ET), FIG. 4 is a diagram showing the relationship between the cooling capacity Q of the evaporator and the time T. The cooling operation is performed in the same manner as the conventional one, and the inside air is cooled by heat exchange with the evaporator 4, and the inside of the refrigerator (not shown) is cooled. The performance of the evaporator 4 in the non-frosting state is the temperature difference TD (TD = internal temperature RT−evaporation temperature E) with the cooling capacity Q 2 as shown by the one-dot chain line in FIG.
(Defined as T) becomes TD 1 , and when frost forms, the static pressure of the evaporator 4 increases due to the frost, the rotation speed of the evaporator blower 6 decreases, and the air volume also decreases. Since it also decreases, the two-dot chain line shows, the cooling capacity Q decreases to Q 1 , and the temperature difference TD becomes TD 2 . These temperature differences TD 1 and TD 2 are set in the controller 10 as reference values. And the controller 10 has a first
And the evaporator 4 detected by the second temperature sensors 8 and 9.
The evaporation temperature ET of the refrigerant and the internal temperature RT of the refrigerator in step 10-1 are input at step 10-1 periodically, for example, every 10 seconds, and the temperature at that time is based on the input evaporation temperature ET and internal temperature RT. The difference TD is calculated in step 10-2, and the calculated temperature difference TD is compared with the set temperature difference TD 2 to determine the temperature difference TD.
If it is 2 or more, the rotation speed of the evaporator blower 6 is increased by a predetermined rotation speed. As the rotation speed increases, the amount of air blown from the evaporator blower 6 to the evaporator 4 increases, the cooling capacity increases, and the temperature difference TD also becomes TD 1 <TD <TD 2 and the one-dot chain line and the two-dot chain line in FIG. Enter the proper range between. In addition, the limit of the increase in the air volume at this time is set in advance so that the air volume does not affect the stored goods in the refrigerator. If the temperature difference TD is less than or equal to the temperature difference TD 2 , step 10-3
The process proceeds, is compared with the temperature difference TD 1 at step 10-3, as small as a predetermined rotational speed a rotational speed of the evaporator blower 6 if the temperature difference TD 1 or less. As a result, the amount of air blown to the evaporator 4 is reduced, and both the cooling capacity Q and the temperature difference TD are within proper ranges. Also in comparison with the temperature difference TD 1, if the temperature difference TD 1 or more, since that will be the temperature difference TD, cooling capacity both proper range, the rotational speed of the evaporator blower 6 is maintained. The above operation is the temperature sensor 8,
It is repeated every time the detected temperature of 9 is input, and the rotation speed of the evaporator blower 6 is controlled according to the temperature difference TD. Therefore, the decrease in the air volume and the decrease in the cooling capacity due to the frost on the evaporator 4 are suppressed. When the rotation speed control of the blower for the evaporator is performed as indicated by the one-dot chain line in FIG. 4, the cooling operation time up to the start of defrosting becomes longer than when the rotation speed control indicated by the solid line is not performed. Then, a defrosting timer (not shown) is set with a cooling operation time until the defrosting is started, for example, 6 hours, and by this set time, defrosting is regularly performed in the same manner as in the past and the number of defrosting is reduced. .
【0010】[0010]
【発明の効果】以上のように、この発明によれば、蒸発
器における冷媒の蒸発温度と庫内温度との温度差に応じ
て蒸発器用送風機の回転数を制御するように構成したの
で、冷却運転中の霜付が原因による風量低下、冷却能力
低下を抑制でき、除霜開始までの冷却運転時間を延長す
ることが可能となり、霜取回数が減少し、庫内温度上昇
が抑制される等の効果がある。As described above, according to the present invention, the number of revolutions of the evaporator blower is controlled according to the temperature difference between the evaporation temperature of the refrigerant in the evaporator and the internal temperature of the refrigerator. It is possible to suppress the decrease in air volume and cooling capacity due to frost during operation, it is possible to extend the cooling operation time until the start of defrosting, the number of defrosting is reduced, and the temperature rise in the refrigerator is suppressed. Has the effect of.
【図1】この発明の一実施例による冷却装置の冷媒回路
図である。FIG. 1 is a refrigerant circuit diagram of a cooling device according to an embodiment of the present invention.
【図2】図1に示されるコントローラの動作を示すフロ
ーチャートである。FIG. 2 is a flowchart showing an operation of the controller shown in FIG.
【図3】蒸発器の冷却能力Qと温度差TDとの関係を示
す図である。FIG. 3 is a diagram showing a relationship between a cooling capacity Q of an evaporator and a temperature difference TD.
【図4】蒸発器の冷却能力Qと時間との関係を示す図で
ある。FIG. 4 is a diagram showing a relationship between a cooling capacity Q of an evaporator and time.
【図5】従来の冷却装置の冷媒回路図である。FIG. 5 is a refrigerant circuit diagram of a conventional cooling device.
【図6】蒸発器への着霜状態を示す図である。FIG. 6 is a diagram showing a frosted state on the evaporator.
【図7】蒸発器の冷却能力Qと温度差TDとの関係を示
す図である。FIG. 7 is a diagram showing a relationship between a cooling capacity Q of an evaporator and a temperature difference TD.
1 圧縮機 2 凝縮器 3 膨張弁 4 蒸発器 5 ファン 6 蒸発器用送風機 8 第1の温度センサ 9 第2の温度センサ 10 コントローラ 1 Compressor 2 Condenser 3 Expansion valve 4 Evaporator 5 Fan 6 Blower for evaporator 8 1st temperature sensor 9 2nd temperature sensor 10 Controller
Claims (1)
器用送風機によって送風される冷蔵庫の庫内空気と熱交
換し庫内空気を冷却する蒸発器とを冷媒配管にて順次接
続してなる冷凍サイクルを備えた冷却装置において、上
記蒸発器における冷媒の蒸発温度を検出する第1の温度
センサと、上記冷蔵庫の庫内温度を検出する第2の温度
センサと、上記第1と第2の温度センサの検出温度に応
じて上記蒸発器用送風機の回転数を制御するコントロー
ラとを設けたことを特徴とする冷却装置。1. A compressor, a condenser, a decompression device, and an evaporator for exchanging heat with the inside air of a refrigerator blown by a blower for an evaporator to cool the inside air by a refrigerant pipe. In a cooling device including a refrigeration cycle including the above, a first temperature sensor that detects an evaporation temperature of a refrigerant in the evaporator, a second temperature sensor that detects an internal temperature of the refrigerator, and the first and the second temperature sensors. And a controller for controlling the number of revolutions of the evaporator blower according to the temperature detected by the temperature sensor (2).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19456891A JPH0539974A (en) | 1991-08-03 | 1991-08-03 | Cooling device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19456891A JPH0539974A (en) | 1991-08-03 | 1991-08-03 | Cooling device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0539974A true JPH0539974A (en) | 1993-02-19 |
Family
ID=16326699
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19456891A Pending JPH0539974A (en) | 1991-08-03 | 1991-08-03 | Cooling device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0539974A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0814720A (en) * | 1994-06-29 | 1996-01-19 | Sanyo Electric Co Ltd | Open type refrigerating and cold storage display case |
KR20150059858A (en) * | 2013-11-25 | 2015-06-03 | 삼성디스플레이 주식회사 | Apparatus for thin film deposition and methods of the same |
JP2015102315A (en) * | 2013-11-27 | 2015-06-04 | 株式会社東芝 | Refrigerator |
WO2016181529A1 (en) * | 2015-05-13 | 2016-11-17 | 三菱電機株式会社 | Refrigeration cycle device |
JP2021032531A (en) * | 2019-08-28 | 2021-03-01 | 東芝ライフスタイル株式会社 | refrigerator |
-
1991
- 1991-08-03 JP JP19456891A patent/JPH0539974A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0814720A (en) * | 1994-06-29 | 1996-01-19 | Sanyo Electric Co Ltd | Open type refrigerating and cold storage display case |
KR20150059858A (en) * | 2013-11-25 | 2015-06-03 | 삼성디스플레이 주식회사 | Apparatus for thin film deposition and methods of the same |
JP2015102315A (en) * | 2013-11-27 | 2015-06-04 | 株式会社東芝 | Refrigerator |
WO2016181529A1 (en) * | 2015-05-13 | 2016-11-17 | 三菱電機株式会社 | Refrigeration cycle device |
JPWO2016181529A1 (en) * | 2015-05-13 | 2018-01-11 | 三菱電機株式会社 | Refrigeration cycle equipment |
US10247459B2 (en) | 2015-05-13 | 2019-04-02 | Mitsubishi Electric Corporation | Refrigeration cycle apparatus |
JP2021032531A (en) * | 2019-08-28 | 2021-03-01 | 東芝ライフスタイル株式会社 | refrigerator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6931870B2 (en) | Time division multi-cycle type cooling apparatus and method for controlling the same | |
JP4068390B2 (en) | Defrosting operation method of refrigerator equipped with two evaporators | |
US20070130966A1 (en) | Refrigerator and method for controlling the refrigerator | |
JP2003240391A (en) | Air conditioner | |
JP3136644B2 (en) | Off-cycle defrost equipment | |
JPH0539974A (en) | Cooling device | |
JPH10170131A (en) | Defrosting operation control method for refrigerator | |
JP2954259B2 (en) | Air conditioner | |
JP3746753B2 (en) | Refrigeration apparatus for vehicle having two cold storages, and control method thereof | |
JPH09303885A (en) | Refrigerating and air conditioning device | |
JP3021987B2 (en) | Refrigeration equipment | |
JPH02192536A (en) | Heater device | |
JP3036519B2 (en) | Refrigeration equipment | |
JP2667137B2 (en) | Temperature control method of refrigerator using microprocessor | |
JPH06281273A (en) | Air conditioner | |
JPH10288427A (en) | Refrigerating device | |
JP2523534B2 (en) | Air conditioner | |
JPH05306856A (en) | Air-cooled type refrigerating plant | |
JPH03213957A (en) | Air conditioner | |
JP3123469B2 (en) | Backup operation device for refrigeration equipment | |
JP2002115934A (en) | Vaporizer and freezer | |
JP3028555B2 (en) | Refrigerator defrost control device | |
JP3372157B2 (en) | Refrigerator defrost control device | |
JPH0728548Y2 (en) | Defroster for refrigeration equipment | |
JP2541177B2 (en) | Refrigeration system operation controller |