JPH04301799A - Treating method for radioactive waste fluid - Google Patents

Treating method for radioactive waste fluid

Info

Publication number
JPH04301799A
JPH04301799A JP9169891A JP9169891A JPH04301799A JP H04301799 A JPH04301799 A JP H04301799A JP 9169891 A JP9169891 A JP 9169891A JP 9169891 A JP9169891 A JP 9169891A JP H04301799 A JPH04301799 A JP H04301799A
Authority
JP
Japan
Prior art keywords
water glass
heavy metals
added
waste fluid
radioactive waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9169891A
Other languages
Japanese (ja)
Inventor
Hiroshi Kojima
浩 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP9169891A priority Critical patent/JPH04301799A/en
Publication of JPH04301799A publication Critical patent/JPH04301799A/en
Pending legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)

Abstract

PURPOSE:To remove heavy metals and U from radioactive waste fluids of sulfuric acid or phosphoric acid family without addition of strong acids or ammonia, by dissolving water-soluble magnesium salts in the waste fluid, adding water glass, adding alkali solution to adjust pH, and producing water glass precipitates. CONSTITUTION:Strong acids such as HNO3 or the like are mixed to an used electrolytic waste fluid, and a solvent is added to apply extractive treatment, and after neutralizing the extracted waste fluid with alkali solution such as NaOH or the like, the fluid is filtered to obtain radioactive waste fluid necessary to be treated. Water-soluble magnesium salt of Mg(NO3)2.6H2O is added to and dissolved in the radioactive waste fluid, and then water glass mainly composed of Na2SiO3 is added. Then alkali solution such as NaOH or the like is added to adjust pH to 8-9 and to produce water glass precipitates, then the fluid is filtered to separate water glass precipitates from treated waste fluid. As slight amounts of U and heavy metals such as Fe, Ni, Cr or the like are condenced in the water glass precipitates, so they can be removed.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明はFe、Ni、Crなどの
重金属とUを含む放射性廃液の処理方法に関する。 【0002】 【従来の技術】従来、Uで汚染された炭素鋼およびステ
ンレス鋼などの金属の除染方法のひとつとして、電界研
磨法が知られており、この電界研磨法に用いられる電解
液として、30〜70%濃度のH2SO4やH3PO4
が知られている。前記電界研磨法を実施して金属の除染
を行なうと、処理後の電解液中にはUを始め、Fe、N
i、Crなどの重金属が含まれるようになる。この電解
液は、一定量以上の元素が溶解すると除染効果が低下す
るので、除染効果が低下した時点で交換するようにして
いる。 【0003】通常、このような使用済みの電解液は、金
属イオンの濃度が高く、処理が困難なために、放射性廃
棄物としてそのまま保管されている場合が多く、処理面
で問題になっている。 【0004】従来一般に、溶液中に溶解しているUを抽
出する方法として溶媒抽出法が採用されており、前記の
ようなH2SO4系やH3PO4系の溶液からUを抽出
する際の溶媒としては、トリオクチルアミン(TOA)
を用いることが多く、HNO3系の溶液からUを抽出す
る際の溶媒としては、トリブチル燐酸(TBP)を用い
ることが多い。 【0005】 【発明が解決しようとする課題】しかしながらこの種の
廃液をTOAやTBPで処理してUを回収した後の抽出
廃液の中にも小量のUや重金属が残留している。従来、
この小量のUや重金属を除去するには、これらを溶液か
ら沈殿物とし、これをセメント固化させた後に除去して
いる。ところが、この沈澱物除去後の廃液の中にも微量
のUと重金属が含まれているので、この微量のUと重金
属を除去しなければ廃液を廃棄できない問題がある。 【0006】従来、前記微量のUと重金属の除去を行な
う方法として、廃液中の重金属を凝集沈殿で除去する方
法が知られ、凝集沈殿法の一つに水ガラス法がある。即
ち、水ガラスの主成分であるNa2SiO3は、強酸と
反応して沈殿を生じたり、あるいは、ゲル状態となって
重金属を凝集沈殿することが知られているので、この性
質を利用して沈殿除去を行なうことができるのである。 なお、このような水ガラス殿物は、強酸以外の物質、例
えば、アンモニウム塩の存在によっても生成させ得るこ
とが知られている。 【0007】しかしながら、前記の沈殿物除去後の廃液
は、水ガラスを添加しただけでは沈殿を生じないことが
明らかになっている。従って何等かの補助剤を添加して
水ガラス殿物を生成させる必要があるが、廃棄時の最終
的なpH調整を考慮すると、強酸を添加することは得策
ではなく、また、アンモニアを添加することは排出規制
があるために問題が多い。 【0008】本発明は前記課題を解決するためになされ
たもので、微量のUと重金属を含む硫酸系あるいはリン
酸系の廃液に強酸やアンモニアを加えることなく水ガラ
ス殿物を生じさせてUと重金属の除去ができる放射性廃
液の処理方法を提供することを目的とする。 【0009】 【課題を解決するための手段】請求項1記載の発明は前
記課題を解決するために、Fe、Ni、Crなどの重金
属とUを含む硫酸系あるいはリン酸系の放射性廃液に、
水溶性のマグネシウム塩を溶解した後に水ガラスを添加
し、更にアルカリ溶液を添加してpHを8〜9に調整し
、水ガラス殿物を生成させてFe、Ni、Crなどの重
金属とUを除去するものである。 【0010】 【作用】微量の重金属とUを含む放射性廃液に、Mg(
NO3)2・6H2Oなどの水溶性のマグネシウム塩を
溶解した場合、Mgは、弱アルカリ領域でNa2SiO
3あるいは重金属と複塩を形成し、水ガラス殿物を生じ
る要因となる。そして、この水ガラス殿物にはFe、N
i、Crなどの重金属とUが凝集される。よってこの水
ガラス殿物を除去することで廃液処理ができる。 【0011】以下、図面を参照して本発明を更に詳細に
説明する。図1はUと重金属を含むH2SO4系あるい
はH3PO4系の放射性の使用済電解廃液を処理する工
程に本発明方法を適用した一実施例を示すフロー図であ
る。 ここで処理される放射性使用済電解廃液とは、Fe(鉄
)、Ni(ニッケル)、Cr(クロム)、Mo(モリブ
デン)などの重金属とU(ウラン)を含むもので、原子
力施設においてUに汚染された炭素鋼あるいはステンレ
ス鋼を処理する場合に、これらを電界研磨法によって処
理した後に残されるものである。この使用済電解廃液に
は、H2SO4やH3PO4が高濃度で含まれ、Uや重
金属も多量含まれている。 【0012】前記使用済電解廃液には多量のUと重金属
が含まれている。この使用済電解廃液を処理して当該廃
液からUと重金属を除去することで微量のUと重金属を
含む放射性廃液が、生じ、この放射性廃液からUと重金
属を除去する方法が本発明方法である。そこで本発明方
法を説明する前に使用済電解廃液を処理してUと重金属
を除去する方法について図1を基に以下に説明する。 【0013】まず、使用済電解廃液にHNO3などの強
酸を混合工程1において混合し、次に抽出工程2におい
て溶媒を添加して抽出処理を行ない、抽出廃液を中和工
程3においてNaOHなどのアルカリ溶液で中和した後
に瀘過工程4で瀘過する。抽出工程2で得られたUを含
む溶媒は、逆抽出工程5で水を加えて逆抽出を行なって
大部分のUを回収するとともにここで生じた溶媒は再使
用する。瀘過後の沈殿物はセメントによる固化工程10
によりセメント固化してセメント固化体を得、これは放
射性廃棄物として保管する。 【0014】前記瀘過工程4で生じる瀘液が本発明方法
で処理するべき放射性廃液である。 【0015】この放射性廃液(瀘液)を本発明方法によ
って処理するには、溶解工程6において放射性廃液にM
g(NO3)2・6H2Oなどの水溶性のマグネシウム
塩を添加して溶解し、更にNa2SiO3を主成分とす
る水ガラスを添加する。ここで添加溶解するマグネシウ
ム塩としてMg(NO3)2・6H2Oの他に、MgC
l2・6H2Oなどを用いても良い。前記のマグネシウ
ム塩においてMgは、弱アルカリ性領域で、Na2Si
O3あるいは重金属と複塩を形成し、水ガラス殿物を生
じる要因となる。 【0016】次に調整工程7においてNaOHなどのア
ルカリ溶液を添加してpHを8〜9に調節し、水ガラス
殿物を生じさせる。ここで添加するアルカリ溶液は、N
aOHの他にKOHなどでも良い。この後に瀘過工程8
において瀘過を行ない、処理済廃液と水ガラス殿物に分
離し、処理済廃液は排出し、水ガラス殿物は保管する。 この水ガラス殿物には放射性廃液中の微量のUと重金属
が凝集されている。 【0017】 【実施例】「実施例1」H2SO4濃度約30%、Uと
FeとNiおよびMoをそれぞれ約5g/リットル含有
する使用済電解液を処理した例を示す。まず、以下の手
順により使用済電解液中のUを回収した。 【0018】■前記使用済電解液1.8リットルに62
%HNO3を添加する。(HNO3濃度1.4N)■H
NO3を添加した使用済電解液(U含有量4.86g/
リットル)1容量に対し、TBPと希釈剤のnドデカン
を容量比3:7で混合した溶媒1容量を加え、分液ロー
トを用いて室温で5分間震盪し、水相中のUを抽出する
。 ■Uを含有する溶媒1容量に対し、純水1容量を加え、
分液ロートを用いて室温で5分間震盪し、溶媒中のUを
逆抽出する。 ■抽出操作を4段、逆抽出操作をそれぞれの抽出段ごと
に水相にUが検出されなくなるまで(最高6段)繰り返
す。 【0019】以上の手段で回収した合計9.52g(回
収率約98%)のU中のFe、Ni、Moの含有量を表
1に示すが、いずれの値も核燃料分野における含有上限
値以下である。 【0020】 【表1】 【0021】次いでU回収後の抽出廃液に、25%Na
OH溶液を加えてpHを6〜7.0に調整し、含有する
重金属(主としてFe、Ni、CrおよびMo)を水酸
化物の沈殿として瀘別・分離し、沈殿物はセメント固化
した。 【0022】この際に生じた瀘液を放射性廃液として見
立て、これに本発明方法を適用し、処理する。■瀘液1
リットルに対して4gのMg(NO3)2・6H2Oを
添加して溶解する。■瀘液1リットルあたり、2gの水
ガラスを添加し、更にNaOHを添加することにより瀘
液のpHを8〜9に調整した。■1時間攪拌後、24時
間放置した。■24時間の放置後、水ガラス殿物を定量
、瀘紙により瀘過した。 【0023】以上の工程で処理された瀘液中のUおよび
Crの処理前後の含有量を表2に示す。 【0024】 【表2】 【0025】Uの規制値は濃縮度によって若干異なるが
、約1ppm、総量Crも同じく1ppmであることか
ら、表2に示す結果は規制値を十分に下回っていること
が判明した。このことから、本発明方法の効果を確認で
きた。 【0026】「実施例2」H3PO4濃度約30%、U
とFeとNiおよびMoをそれぞれ約5g/リットル含
有する使用済電解液を処理した例を示す。 【0027】まず、以下の手順により使用済電解液中の
Uを回収した。■使用済電解液1リットルに62%HN
O3を添加する。(HNO3濃度6.9N)■HNO3
を添加した使用済電解液(U含有量2.42g/リット
ル)1容量に対し、TBPと希釈剤のnドデカンを容量
比3:7で混合した溶媒1容量を加え、分液ロートを用
いて室温で5分間震盪し、水相中のUを抽出する。■U
を含有する溶媒1容量に対し、純水1容量を加え、分液
ロートを用いて室温で5分間震盪し、溶媒中のUを逆抽
出する。■抽出操作を4段、逆抽出操作をそれぞれの抽
出段ごとに水相にUが検出されなくなるまで(最高5段
)繰り返す。 【0028】以上の手段で回収した合計5.68g(回
収率約97%)のU中のFe、Ni、Moの含有量を表
3に示すが、いずれの値も核燃料分野における含有上限
値以下である。 【0029】 【表3】 【0030】次いで、U回収後の抽出廃液に、25%N
aOH溶液を加えてpHを6.5〜7.0に調整し、含
有する重金属(主としてFe、Ni、CrおよびMo)
を水酸化物の沈殿として瀘別・分離し、沈殿物はセメン
ト固化した。 【0031】この際に生じた瀘液を放射性廃液として見
立て、これに本発明方法を適用し、処理する。■瀘液1
リットルに対して4gのMg(NO3)2・6H2Oを
添加して溶解する。■瀘液1リットルあたり、2gの水
ガラスを添加し、更にNaOHを添加することにより瀘
液のpHを8〜9に調整した。■1時間攪拌後、24時
間放置した。■24時間の放置後、水ガラス殿物を定量
、瀘紙により瀘過した。 【0032】以上の工程で処理された瀘液中のUおよび
Crの処理前後の含有量を表4に示す。 【表4】       【0033】Uの規制値は濃縮度によって
若干異なるが、約1ppm、総量Crも同じく1ppm
であることから、表4に示す結果は規制値を十分に下回
っていることが判明した。このことから、本発明方法の
効果を確認できた。 【0034】 【発明の効果】以上説明したように本発明によれば、U
に汚染された炭素鋼やステンレス鋼などの金属を電界研
磨して生じる廃液を廃液処理して大部分のUと重金属を
除去した後において、微量の重金属とUを含む放射性廃
液に、Mg(NO3)2・6H2Oなどの水溶性のマグ
ネシウム塩を溶解し、その後にアルカリ溶液を添加して
pH調整し、水ガラス殿物を生成させることができる。 この場合、Mgは弱アルカリ性でNa2SiO3あるい
は重金属と複塩を形成し、水ガラス殿物を生じる要因と
なる。従ってこの水ガラス殿物にはFe、Ni、Crな
どの重金属とUが凝集される。よってこの水ガラス殿物
を放射性廃液から除去することでFe、Ni、Crなど
の重金属とUを除去することができ、放射性廃液の処理
ができる効果がある。また、本発明方法によれば、廃液
中のUを検出限界以下に完全に除去できるとともに、重
金属を規制値以下に減少させることができる。
Description: [0001] The present invention relates to a method for treating radioactive waste liquid containing heavy metals such as Fe, Ni, and Cr and U. [0002] Conventionally, an electrolytic polishing method has been known as one of the decontamination methods for metals such as carbon steel and stainless steel contaminated with U, and the electrolytic solution used in this electrolytic polishing method is , 30-70% concentration of H2SO4 and H3PO4
It has been known. When the electrolytic polishing method described above is carried out to decontaminate metals, U, Fe, N, etc. are present in the electrolyte after treatment.
Heavy metals such as i and Cr are included. The decontamination effect of this electrolytic solution decreases when more than a certain amount of elements are dissolved, so it is replaced when the decontamination effect decreases. [0003] Normally, such used electrolytes have a high concentration of metal ions and are difficult to dispose of, so they are often stored as radioactive waste, which poses a problem in terms of disposal. . [0004] Conventionally, a solvent extraction method has generally been adopted as a method for extracting U dissolved in a solution, and as a solvent when extracting U from the above-mentioned H2SO4-based or H3PO4-based solutions, Trioctylamine (TOA)
is often used, and tributyl phosphate (TBP) is often used as a solvent when extracting U from an HNO3-based solution. [0005] However, after treating this type of waste liquid with TOA or TBP and recovering U, a small amount of U and heavy metals remain in the extracted waste liquid. Conventionally,
In order to remove this small amount of U and heavy metals, they are made into a precipitate from the solution, which is solidified into cement and then removed. However, since the waste liquid after removing the precipitate also contains trace amounts of U and heavy metals, there is a problem that the waste liquid cannot be disposed of unless these trace amounts of U and heavy metals are removed. Conventionally, as a method for removing trace amounts of U and heavy metals, there has been known a method of removing heavy metals from waste liquid by coagulation and precipitation, and one of the coagulation and precipitation methods is the water glass method. In other words, Na2SiO3, which is the main component of water glass, is known to react with strong acids to form a precipitate, or become a gel to coagulate and precipitate heavy metals, so this property can be used to remove the precipitate. It is possible to do this. It is known that such water glass precipitates can also be produced by the presence of substances other than strong acids, such as ammonium salts. [0007] However, it has been revealed that the waste liquid after removing the precipitate does not produce precipitate simply by adding water glass. Therefore, it is necessary to add some kind of auxiliary agent to generate water glass precipitate, but considering the final pH adjustment at the time of disposal, it is not a good idea to add a strong acid, and it is not advisable to add ammonia. This is problematic due to emission regulations. The present invention was made in order to solve the above-mentioned problems, and it is possible to produce water glass precipitates without adding strong acids or ammonia to sulfuric acid-based or phosphoric acid-based waste liquids containing trace amounts of U and heavy metals. The purpose of the present invention is to provide a method for treating radioactive waste liquid that can remove radioactive waste and heavy metals. [Means for Solving the Problems] In order to solve the above-mentioned problems, the invention as set forth in claim 1 provides a solution to a sulfuric acid-based or phosphoric acid-based radioactive waste liquid containing heavy metals such as Fe, Ni, and Cr and U.
After dissolving the water-soluble magnesium salt, water glass is added, and an alkaline solution is further added to adjust the pH to 8 to 9 to form a water glass precipitate, which removes heavy metals such as Fe, Ni, and Cr and U. It is to be removed. [Operation] Mg (
When a water-soluble magnesium salt such as NO3)2.6H2O is dissolved, Mg becomes Na2SiO in the weak alkaline region.
3 or forms a double salt with heavy metals, which causes water glass precipitate. In this water glass precipitate, Fe, N
Heavy metals such as i, Cr and U are aggregated. Therefore, waste liquid can be treated by removing this water glass precipitate. The present invention will be explained in more detail below with reference to the drawings. FIG. 1 is a flow diagram showing an embodiment in which the method of the present invention is applied to a process of treating a radioactive spent electrolytic waste solution of H2SO4 or H3PO4 containing U and heavy metals. The radioactive spent electrolytic waste liquid treated here contains heavy metals such as Fe (iron), Ni (nickel), Cr (chromium), Mo (molybdenum), and U (uranium), and is When processing contaminated carbon steel or stainless steel, it is what remains after processing these by electropolishing. This used electrolytic waste solution contains H2SO4 and H3PO4 at high concentrations, and also contains large amounts of U and heavy metals. [0012] The spent electrolytic waste liquid contains a large amount of U and heavy metals. By treating this used electrolytic waste solution and removing U and heavy metals from the waste solution, a radioactive waste solution containing trace amounts of U and heavy metals is generated, and the method of the present invention is to remove U and heavy metals from this radioactive waste solution. . Therefore, before explaining the method of the present invention, a method for treating a used electrolytic waste solution to remove U and heavy metals will be described below with reference to FIG. 1. [0013] First, a strong acid such as HNO3 is mixed with the used electrolytic waste liquid in the mixing step 1, then a solvent is added in the extraction step 2 for extraction treatment, and the extracted waste liquid is mixed with an alkali such as NaOH in the neutralization step 3. After neutralization with the solution, it is filtered in a filtration step 4. The U-containing solvent obtained in extraction step 2 is back-extracted with water added in back-extraction step 5 to recover most of the U, and the solvent produced here is reused. The precipitate after filtration is solidified with cement step 10
The solidified cement is obtained by solidifying the cement, which is stored as radioactive waste. The filtrate produced in the filtration step 4 is the radioactive waste liquid to be treated in the method of the present invention. In order to treat this radioactive waste liquid (filtrate) according to the method of the present invention, M is added to the radioactive waste liquid in the dissolution step 6.
A water-soluble magnesium salt such as g(NO3)2.6H2O is added and dissolved, and water glass containing Na2SiO3 as a main component is further added. Here, as the magnesium salt added and dissolved, in addition to Mg(NO3)2.6H2O, MgC
l2.6H2O or the like may also be used. In the above magnesium salt, Mg is in a weakly alkaline region, and Na2Si
It forms a double salt with O3 or heavy metals, which causes water glass precipitate. Next, in the adjustment step 7, an alkaline solution such as NaOH is added to adjust the pH to 8 to 9 to form a water glass precipitate. The alkaline solution added here is N
In addition to aOH, KOH or the like may also be used. After this, filtration step 8
The treated waste liquid and water glass precipitate are separated by filtration, the treated waste liquid is discharged, and the water glass precipitate is stored. A trace amount of U and heavy metals in the radioactive waste liquid are aggregated in this water glass precipitate. [Example 1] An example in which a used electrolytic solution containing approximately 30% H2SO4 concentration and approximately 5 g/liter of each of U, Fe, Ni, and Mo is treated will be described. First, U in the used electrolyte was recovered by the following procedure. ■ 62 liters of the used electrolyte
Add %HNO3. (HNO3 concentration 1.4N) ■H
Spent electrolyte with NO3 added (U content 4.86g/
Add 1 volume of a solvent consisting of a mixture of TBP and diluent n-dodecane at a volume ratio of 3:7 to 1 volume (liter), and shake for 5 minutes at room temperature using a separating funnel to extract U in the aqueous phase. . ■Add 1 volume of pure water to 1 volume of solvent containing U,
Shake for 5 minutes at room temperature using a separating funnel to back-extract U in the solvent. ■ Repeat the extraction operation in 4 stages and the back extraction operation for each extraction stage until no U is detected in the aqueous phase (up to 6 stages). The contents of Fe, Ni, and Mo in the total of 9.52 g (recovery rate of about 98%) of U recovered by the above method are shown in Table 1, and all values are below the upper limit for content in the nuclear fuel field. It is. [Table 1] Next, 25% Na was added to the extraction waste liquid after U recovery.
The pH was adjusted to 6 to 7.0 by adding an OH solution, and the heavy metals (mainly Fe, Ni, Cr, and Mo) contained were filtered and separated as hydroxide precipitates, and the precipitates were solidified into cement. [0022] The filtrate produced at this time is regarded as a radioactive waste liquid, and the method of the present invention is applied to it to treat it. ■Filtrate 1
Add and dissolve 4 g of Mg(NO3)2.6H2O per liter. (2) 2 g of water glass was added per liter of the filtrate, and the pH of the filtrate was adjusted to 8-9 by further adding NaOH. (2) After stirring for 1 hour, it was left to stand for 24 hours. (2) After standing for 24 hours, the water glass precipitate was quantitatively determined and filtered using filter paper. Table 2 shows the contents of U and Cr in the filtrate treated in the above steps before and after the treatment. [Table 2] [0025] The regulatory value for U varies slightly depending on the concentration, but it is approximately 1 ppm, and the total amount of Cr is also 1 ppm, so the results shown in Table 2 are well below the regulatory value. There was found. From this, the effect of the method of the present invention was confirmed. "Example 2" H3PO4 concentration approximately 30%, U
An example is shown in which a used electrolytic solution containing approximately 5 g/liter of each of Fe, Ni, and Mo was treated. First, U in the used electrolyte was recovered by the following procedure. ■62% HN in 1 liter of used electrolyte
Add O3. (HNO3 concentration 6.9N) ■HNO3
To 1 volume of the used electrolyte (U content: 2.42 g/liter), add 1 volume of a solvent containing TBP and n-dodecane as a diluent at a volume ratio of 3:7, and use a separating funnel to Shake at room temperature for 5 minutes to extract U in the aqueous phase. ■U
1 volume of pure water is added to 1 volume of the solvent containing , and the mixture is shaken for 5 minutes at room temperature using a separating funnel to back-extract U in the solvent. ■ Repeat the extraction operation in 4 stages and the back extraction operation for each extraction stage until no U is detected in the aqueous phase (up to 5 stages). The contents of Fe, Ni, and Mo in the total of 5.68 g (recovery rate of about 97%) of U recovered by the above method are shown in Table 3, and all values are below the upper limit for content in the nuclear fuel field. It is. [Table 3] Next, 25% N was added to the extraction waste liquid after U recovery.
Adjust the pH to 6.5-7.0 by adding aOH solution and remove the heavy metals contained (mainly Fe, Ni, Cr and Mo).
was filtered and separated as hydroxide precipitate, and the precipitate was solidified with cement. The filtrate produced at this time is regarded as a radioactive waste liquid, and the method of the present invention is applied to it to treat it. ■Filtrate 1
Add and dissolve 4 g of Mg(NO3)2.6H2O per liter. (2) 2 g of water glass was added per liter of the filtrate, and the pH of the filtrate was adjusted to 8-9 by further adding NaOH. (2) After stirring for 1 hour, it was left to stand for 24 hours. (2) After standing for 24 hours, the water glass precipitate was quantitatively determined and filtered using filter paper. Table 4 shows the contents of U and Cr in the filtrate treated in the above steps before and after the treatment. [Table 4] The regulatory value for U varies slightly depending on the concentration, but is approximately 1 ppm, and the total amount of Cr is also 1 ppm.
Therefore, it was found that the results shown in Table 4 were well below the regulation value. From this, the effect of the method of the present invention was confirmed. Effects of the Invention As explained above, according to the present invention, U
After treating the waste liquid produced by electrolytic polishing of metals such as carbon steel and stainless steel contaminated with carbon steel and removing most of the U and heavy metals, Mg (NO3 ) A water glass precipitate can be produced by dissolving a water-soluble magnesium salt such as 2.6H2O and then adding an alkaline solution to adjust the pH. In this case, Mg is weakly alkaline and forms a double salt with Na2SiO3 or heavy metals, causing water glass precipitate. Therefore, heavy metals such as Fe, Ni, Cr, and U are aggregated in this water glass precipitate. Therefore, by removing this water glass precipitate from the radioactive waste liquid, heavy metals such as Fe, Ni, Cr, etc. and U can be removed, and the radioactive waste liquid can be effectively treated. Further, according to the method of the present invention, U in the waste liquid can be completely removed to below the detection limit, and heavy metals can be reduced to below the regulation value.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】図1は本発明方法を説明するためのフロー図で
ある。
FIG. 1 is a flow diagram for explaining the method of the present invention.

【符号の説明】[Explanation of symbols]

1    混合工程 2    抽出工程 3    中和工程 4    瀘過工程 5    溶解工程 6    調整工程 7    瀘過工程 1 Mixing process 2 Extraction process 3 Neutralization process 4. Filtration process 5     Dissolution process 6 Adjustment process 7. Filtration process

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】Fe、Ni、Crなどの重金属とUを含む
硫酸系あるいはリン酸系の放射性廃液に、水溶性のマグ
ネシウム塩を溶解した後に水ガラスを添加し、更にアル
カリ溶液を添加してpHを8〜9に調整し、水ガラス殿
物を生成させてFe、Ni、Crなどの重金属とUを除
去することを特徴とする放射性廃液の処理方法。
Claim 1: A water-soluble magnesium salt is dissolved in a sulfuric acid-based or phosphoric acid-based radioactive waste liquid containing heavy metals such as Fe, Ni, and Cr and U, and then water glass is added, and an alkaline solution is further added. A method for treating radioactive waste liquid, which comprises adjusting the pH to 8 to 9, generating a water glass precipitate, and removing heavy metals such as Fe, Ni, Cr, and U.
JP9169891A 1991-03-29 1991-03-29 Treating method for radioactive waste fluid Pending JPH04301799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9169891A JPH04301799A (en) 1991-03-29 1991-03-29 Treating method for radioactive waste fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9169891A JPH04301799A (en) 1991-03-29 1991-03-29 Treating method for radioactive waste fluid

Publications (1)

Publication Number Publication Date
JPH04301799A true JPH04301799A (en) 1992-10-26

Family

ID=14033739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9169891A Pending JPH04301799A (en) 1991-03-29 1991-03-29 Treating method for radioactive waste fluid

Country Status (1)

Country Link
JP (1) JPH04301799A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100485973B1 (en) * 2002-11-20 2005-05-03 주식회사 데콘엔지니어링 A preliminary acid cleansing device of a high radioactive contamination metal
CN114988601A (en) * 2022-04-22 2022-09-02 中南大学 Method for strengthening uranium and arsenic mineralization and improving mineral stability

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100485973B1 (en) * 2002-11-20 2005-05-03 주식회사 데콘엔지니어링 A preliminary acid cleansing device of a high radioactive contamination metal
CN114988601A (en) * 2022-04-22 2022-09-02 中南大学 Method for strengthening uranium and arsenic mineralization and improving mineral stability

Similar Documents

Publication Publication Date Title
AU689676B2 (en) Process for decontaminating radioactive materials
DE1114794B (en) Process for the extraction of uranium by the alkaline treatment of uranium ores
JPH05115884A (en) Method for recovering ethylenediamine tetraacetate from evaporator cleaning liquid
JPH08503879A (en) Recovery of valuable metals from process residues
JPS60206481A (en) Recovery treatment of waste stainless steel pickling solution
JPH04301799A (en) Treating method for radioactive waste fluid
Moore et al. One-step anhydrite scale removal
US8993828B2 (en) Method of radium stabilizing in solid effluent or effluent containing substances in suspension
JPS5846355B2 (en) Treatment method for fluorine-containing ammonia waste liquid
JP2015152554A (en) Radioactive waste liquid treatment method
JPS63198897A (en) Method particularly used for reprocessing irradiated nuclear fuel in order to separate technetium existing in organic solvent together with one kind or more of other metal such as zirconium and uranium or plutonium
JP4225659B2 (en) Decontamination method of radioactive liquid waste
JP3073353B2 (en) Treatment method of decontamination waste liquid
JP3696943B2 (en) Treatment agent for heavy metal removal from wastewater and wastewater treatment method using the same
JPH0572391A (en) Method for treating radioactive waste liquid
JPH0375617B2 (en)
JP2921506B2 (en) How to treat high level radioactive solutions
JP2530150B2 (en) How to recover valuable metals
JPH0580195A (en) Radioactive waste liquid processing method ring water
JP2561909B2 (en) Treatment method of radioactive liquid waste
EP0066988A2 (en) Method of recovering uranium
RU2200992C2 (en) Method for recovery of solid and/or liquid uranium-containing wastes
JP2001089884A (en) Method for recovering aqueous solution of nitric acid from pickling waste solution
JP3197233B2 (en) Method for reducing volume of acidic radioactive waste solution and its treatment system
JPH0720285A (en) Removing method of underwater radioactive substance