JPH04301563A - Minute sample injector - Google Patents

Minute sample injector

Info

Publication number
JPH04301563A
JPH04301563A JP6579691A JP6579691A JPH04301563A JP H04301563 A JPH04301563 A JP H04301563A JP 6579691 A JP6579691 A JP 6579691A JP 6579691 A JP6579691 A JP 6579691A JP H04301563 A JPH04301563 A JP H04301563A
Authority
JP
Japan
Prior art keywords
stator
rotor
hole
sample
mobile phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6579691A
Other languages
Japanese (ja)
Inventor
Mitsuhide Ueno
上野 満秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP6579691A priority Critical patent/JPH04301563A/en
Publication of JPH04301563A publication Critical patent/JPH04301563A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To obtain a minute sample injector which can inject a very minute amount of sample to be measured, with excellent reproducibility. CONSTITUTION:A disk-shaped rotor 7, a shaft rotating integrally with the rotor 7, a handle 13 for rotating the rotor 7 through the intermediary of the shaft, and a first disk-shaped stator 8 disposed oppositely to the rotor 7, are provided. A second disk-shaped stator 10 disposed oppositely to the rotor 7 with the first stator 8 interposed, and first to sixth holes are made at equal intervals along the circumference of the second stator 10. In the rotor 7, first and second grooves are formed in the shapes of circular arcs on the side being in contact with the first stator 8, and in the second stator 10, a third groove is formed to be long in the central part of the side being in contact with the first stator 8. switching of internal flow passages is made with the rotor 7 rotated by 60 deg..

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、液体クロマトグラフや
イオンクロマトグラフに装着され、極微量の試料を安定
的に注入できる試料注入器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sample injector that is attached to a liquid chromatograph or ion chromatograph and is capable of stably injecting a very small amount of sample.

【0002】0002

【従来の技術】図3は、このような試料注入器が装着さ
れたイオンクロマトグラフの構成説明図である。この図
において、1aは例えば炭酸系溶媒でなる移動相が貯留
された槽、1bはスキャベンジャ液が貯留された槽、1
c,1dは廃液槽、2a,2bは送液ポンプ、3は試料
注入器、4は例えば低イオン交換容量の陰イオン交換樹
脂が充填された分離カラム、5は例えばイオン交換膜5
aによって内部が内室5bと外室5cに区分されてなる
サプレッサ、6は例えば導電率検出器でなる検出器であ
る。
2. Description of the Related Art FIG. 3 is an explanatory diagram of the configuration of an ion chromatograph equipped with such a sample injector. In this figure, 1a is a tank in which a mobile phase made of, for example, a carbonate solvent is stored, 1b is a tank in which a scavenger liquid is stored, and 1
c and 1d are waste liquid tanks, 2a and 2b are liquid pumps, 3 is a sample injector, 4 is a separation column filled with, for example, an anion exchange resin with a low ion exchange capacity, and 5 is, for example, an ion exchange membrane 5.
The suppressor is divided into an inner chamber 5b and an outer chamber 5c by a, and 6 is a detector, for example, a conductivity detector.

【0003】このような構成からなるイオンクロマトグ
ラフにおいて、最初、試料注入器3がオフでその内部流
路が実線接続状態となっている。また、ポンプ2aが駆
動すると、槽1a内の移動相が、試料注入器3の第1ポ
―ト3a→溝n→第2ポ―ト3b→分離カラム4→サプ
レッサ5の内室5b→検出器6を経て廃液槽1cに排出
される。また、ポンプ2bが駆動すると、槽1b内のス
キャベンジャ液が、サプレッサ5の外室5bを経て廃液
槽1dに排出される。このため、内室5b内を流れる移
動相に含まれる陽イオンは、イオン交換膜5aを介して
イオン交換され、溶離液の導電率バックグランドが低下
するようになる。
In the ion chromatograph having such a configuration, initially, the sample injector 3 is off and its internal flow path is in a solid line connection state. When the pump 2a is driven, the mobile phase in the tank 1a is transferred from the first port 3a of the sample injector 3 to the groove n to the second port 3b to the separation column 4 to the inner chamber 5b of the suppressor 5 to detection. The liquid is discharged to the waste liquid tank 1c through the vessel 6. Furthermore, when the pump 2b is driven, the scavenger liquid in the tank 1b is discharged into the waste liquid tank 1d via the outer chamber 5b of the suppressor 5. Therefore, the cations contained in the mobile phase flowing in the inner chamber 5b are ion-exchanged via the ion exchange membrane 5a, and the conductivity background of the eluent is reduced.

【0004】一方、シリンジ3hを用い、試料注入器3
の第3ポ―ト3cから被測定試料を注入すると、該試料
は、試料注入器3の第3ポ―ト3c→計量管3g→第6
ポ―ト3f→溝3m→第5ポ―ト3eを通って流れ、計
量管3g内を満たす。この状態で、試料注入器3がオン
になって、その内部流路が破線接続状態に切換えられる
と、計量管3g内の被測定試料は、移動相によって分離
カラム4に搬送され、該分離カラムで被測定試料中のイ
オン種がクロマトグラフィックに分離される。このよう
にして分離された被測定試料は、サプレッサ5の内室5
bを経由して検出器6で検出される。
On the other hand, using the syringe 3h, the sample injector 3
When the sample to be measured is injected from the third port 3c of the sample injector 3, the sample is transferred from the third port 3c of the sample injector 3 to the measuring tube 3g to the sixth
It flows through port 3f → groove 3m → fifth port 3e, filling the inside of metering tube 3g. In this state, when the sample injector 3 is turned on and its internal flow path is switched to the broken line connection state, the sample to be measured in the measuring tube 3g is transported to the separation column 4 by the mobile phase, and the sample to be measured is transferred to the separation column 4 by the mobile phase. The ionic species in the sample to be measured are separated chromatographically. The sample to be measured separated in this way is stored in the inner chamber 5 of the suppressor 5.
It is detected by the detector 6 via b.

【0005】[0005]

【発明が解決しようとする課題】然るに、上述のような
従来例においては、試料注入器3による試料注入量が被
測定試料の量や分離カラム4の大きさなどによって決定
されるようになっていた。また、測定条件(例えば移動
相のpH濃度など)が被測定試料や溶媒の性質によって
影響を受けやすいか否かによっても試料注入量が変化す
ることもあった。このため、試料注入器3を用いて微量
の被測定試料を分離カラム4に導入するには、計量管3
gの内径と長さを小さくして内容積を少なくするか、シ
リンジ3hを用いて計量管3gに被測定試料を部分的に
注入する方法がとられていた。
However, in the conventional example described above, the amount of sample injected by the sample injector 3 is determined by the amount of the sample to be measured, the size of the separation column 4, etc. Ta. Further, the sample injection amount may also change depending on whether the measurement conditions (for example, the pH concentration of the mobile phase, etc.) are easily influenced by the properties of the sample to be measured or the solvent. Therefore, in order to introduce a minute amount of the sample to be measured into the separation column 4 using the sample injector 3, the measuring tube 3 must be
The methods used have been to reduce the internal volume by reducing the inner diameter and length of tube 3g, or to partially inject the sample to be measured into measuring tube 3g using syringe 3h.

【0006】然しながら、計量管3gの内径と長さを小
さくして内容積を少なくする方法では、内容積5μl以
下の計量管を再現性良く作るのが困難であるという欠点
があった。また、シリンジ3hを用いて計量管3gに被
測定試料を部分的に注入する場合には、小容量のシリン
ジ3hを使用して0.5μl程度まで試料の注入が可能
であるものの、再現性良く注入することは困難であると
いう欠点があった。
However, the method of reducing the internal volume by reducing the inner diameter and length of the measuring tube 3g has the disadvantage that it is difficult to produce a measuring tube with an internal volume of 5 μl or less with good reproducibility. In addition, when partially injecting the sample to be measured into the measuring tube 3g using the syringe 3h, it is possible to inject up to about 0.5 μl using the small-capacity syringe 3h, but the reproducibility is poor. The disadvantage was that it was difficult to inject.

【0007】本発明は、かかる状況に鑑みてなされもの
であり、その課題は、極微量の被測定試料を再現性良く
注入できる微量試料注入器を提供することにある。
The present invention has been made in view of the above circumstances, and its object is to provide a microsample injector capable of injecting a microscopic amount of a sample to be measured with good reproducibility.

【0008】[0008]

【課題を解決するための手段】本発明は、微量試料注入
器において、ディスク状のロ―タ−と、該ロ―タ−と一
体的に回転するシャフトと、該シャフトを介して前記ロ
―タ―を回転させるハンドルと、前記ロ―タ―と対向配
置されるディスク状の第1のステ―タと、該第1ステ―
タを介して前記ロ―タ―と対向配置されるディスク状の
第2ステ―タと、該第2ステ―タの円周に沿って等間隔
に穿設された第1〜第6の穴と、前記ロ―タ―において
前記第1ステ―タと接する面に円弧状に形成された第1
及び第2の溝と、前記第2ステ―タにおいて前記第1ス
テ―タと接する面の中央部に長尺状に形成されている第
3の溝と、前記第1ステ―タにおいて前記第1乃至第6
穴に夫々対応する位置に穿設された第7〜第12の穴と
、前記第1穴に接続された移動相導入流路と、前記第2
穴に接続された移動相導出流路と、前記第4穴に接続さ
れた被測定液導入流路と、前記第5穴に接続された被測
定液導出流路とを設け、前記ロ―タ―が60゜回転され
て内部流路の切換を行なうような構成にすることによっ
て前記課題を解決したものである。
[Means for Solving the Problems] The present invention provides a micro sample injector that includes a disk-shaped rotor, a shaft that rotates integrally with the rotor, and a rotor that rotates through the shaft. a handle for rotating the rotor; a disk-shaped first stator disposed opposite to the rotor;
a disk-shaped second stator disposed opposite to the rotor via the rotor; and first to sixth holes bored at equal intervals along the circumference of the second stator. and a first arc-shaped surface of the rotor that is in contact with the first stator.
and a third groove formed in an elongated shape in the center of the surface of the second stator that contacts the first stator; 1st to 6th
seventh to twelfth holes drilled at positions corresponding to the holes, a mobile phase introduction channel connected to the first hole, and the second
A mobile phase lead-out flow path connected to the hole, a test liquid introduction flow path connected to the fourth hole, and a test liquid lead-out flow path connected to the fifth hole are provided, and the rotor The above-mentioned problem has been solved by adopting a configuration in which the internal flow path is switched by rotating the internal flow path by 60 degrees.

【0009】[0009]

【作用】本発明は次のように作用する。即ち、初め、本
発明実施例の試料導入器がオフにされ、移動相の導入流
路から導入された移動相は、第2ステ―タの第1穴→第
1ステ―タの第1穴→ロ―タ−の第1溝→第1ステ―タ
の第2穴→第2ステ―タの第2穴を経て、移動相の導出
流路から排出される。また、シリンジでロ―タ―の穴に
導入された被測定液は、第1穴→第1ステ―タの穴→第
2ステ―タの溝→第1ステ―タの穴→ロ―タ―の第2溝
→第1ステ―タの穴→第2ステ―タの穴を経て、被測定
液の導出流路から排出される。このようにして、第2ス
テ―タの溝に被測定液が満たされる。次に、本発明実施
例の試料導入器がオンにされ、、移動相の導入流路Q1
 から導入された移動相は、第2ステ―タの第1穴→第
1ステ―タの第1穴→ロ―タの第1溝→第1ステ―タの
穴→第2ステ―タの溝→第1ステ―タの穴→ロ―タ―の
第2溝→第1ステ―タの穴→第2ステ―タを経て、移動
相の導出流路から排出される。また、シリンジでロ―タ
―の穴に導入される被測定液は、第1穴→第1ステ―タ
の穴→第2ステ―タの穴を経て被測定液の導出流路から
排出される。
[Operation] The present invention operates as follows. That is, at first, the sample introducer of the embodiment of the present invention is turned off, and the mobile phase introduced from the mobile phase introduction channel flows from the first hole of the second stator to the first hole of the first stator. → the first groove of the rotor → the second hole of the first stator → the second hole of the second stator, and is discharged from the mobile phase outlet channel. The liquid to be measured introduced into the rotor hole with the syringe is transferred from the first hole to the first stator hole to the second stator groove to the first stator hole to the rotor. -> the second groove of the first stator → the hole of the second stator, and is discharged from the outlet flow path of the liquid to be measured. In this way, the groove of the second stator is filled with the liquid to be measured. Next, the sample introducer of the embodiment of the present invention is turned on, and the mobile phase introduction channel Q1
The mobile phase introduced from the first hole of the second stator → first hole of the first stator → first groove of the rotor → hole of the first stator → hole of the second stator The mobile phase passes through the groove → the hole in the first stator → the second groove in the rotor → the hole in the first stator → the second stator, and is discharged from the mobile phase outlet flow path. In addition, the liquid to be measured introduced into the hole of the rotor with the syringe passes through the first hole → the hole of the first stator → the hole of the second stator, and is discharged from the extraction flow path of the liquid to be measured. Ru.

【0010】0010

【実施例】以下、本発明について図を用いて詳細に説明
する。第1図は本発明実施例を分解して示す分解構成斜
視図であり、図中、7は例えばセラミックで製造された
ディスク状のロ―タ―、8はロ―タ―7と対向配置され
ているディスク状の第1ステ―タ、9はスペ―サ、10
は第1ステ―タ8及びスペ―サ9を介してロ―タ7と対
抗配置されている第2ステ―タ、11はシャフト(ある
いはベアリングユニット)、12はハウジング、13は
シャフト11を介してロ―タ―7を回転させるハンドル
を示している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained in detail below with reference to the drawings. FIG. 1 is an exploded perspective view showing an embodiment of the present invention, and in the figure, 7 is a disk-shaped rotor made of ceramic, for example, and 8 is a rotor 7 disposed opposite to it. a disc-shaped first stator, 9 a spacer, 10
11 is a shaft (or bearing unit); 12 is a housing; The handle that rotates the rotor 7 is shown.

【0011】また、第2図は本発明実施例の要部を示す
要部構成説明図であり、図中、(イ)はロ―タ―を示し
、(ロ)は第1ステ―タを示し、(ハ)は第2ステ―タ
に置ける第1ステ―タとの対向面を示し、(ニ)は第2
ステ―タの外側を示している。また、第2図において、
7aはロ―タ―7を貫通するようにして設けられている
穴、7b,7cはロ―タ―7において第1ステ―タ8と
接する面に設けられ円弧状に形成されている第1,第2
の溝、71〜73はネジ穴、8a〜8fは第1ステ―タ
8を貫通するようにして設けられている第1〜第6の穴
、10a〜10dは第2ステ―タ10を貫通するように
して設けられている第7〜第10の穴、10eは第2ス
テ―タ10においてスペ―サ9を介して第1ステ―タ8
と接する面の中央部に長尺状に形成されている第3の溝
、Q1 は移動相の導入流路、Q2 は移動相の導出流
路、Q3 は被測定液の導入流路、Q4 は被測定液の
導出流路である。
FIG. 2 is an explanatory diagram showing the main part of the embodiment of the present invention. In the figure, (A) shows the rotor, and (B) shows the first stator. , (c) shows the surface of the second stator facing the first stator, and (d) shows the surface of the second stator facing the first stator.
The outside of the stator is shown. Also, in Figure 2,
7a is a hole provided so as to pass through the rotor 7, and 7b and 7c are first holes provided in a surface of the rotor 7 in contact with the first stator 8 and formed in an arc shape. , second
grooves, 71 to 73 are screw holes, 8a to 8f are first to sixth holes provided to penetrate the first stator 8, and 10a to 10d are holes that penetrate the second stator 10. The seventh to tenth holes 10e provided in this manner are connected to the first stator 8 through the spacer 9 in the second stator 10.
Q1 is a mobile phase introduction channel, Q2 is a mobile phase outlet channel, Q3 is a measurement liquid introduction channel, and Q4 is a third groove formed in an elongated shape in the center of the surface in contact with the This is the outlet flow path for the liquid to be measured.

【0012】以下、第1図と第2図を用いて本発明実施
例の動作について説明する。初め、本発明実施例の試料
導入器がオフにされ、第1図及び第2図に示した状態と
なっている。この状態において、移動相の導入流路Q1
 から導入された移動相は、第2ステ―タ10の第1穴
10a→第1ステ―タ8の第1穴8a→ロ―タ−の第1
溝7b→第1ステ―タ8の第2穴8b→第2ステ―タ1
0の第2穴10bを経て、移動相の導出流路Q2 から
排出される。また、シリンジ3hでロ―タ―7の穴7a
に導入された被測定液は、第1穴7a→第1ステ―タ8
の穴8f→第2ステ―タ10の溝10e→第1ステ―タ
8の穴8c→ロ―タ―7の第2溝7c→第1ステ―タ8
の穴8d→第2ステ―タ10の穴10cを経て、被測定
液の導出流路Q3 から排出される。このようにして、
第2ステ―タ10の溝10eに被測定液が満たされる。
The operation of the embodiment of the present invention will be explained below with reference to FIGS. 1 and 2. Initially, the sample introducer of the embodiment of the present invention is turned off and is in the state shown in FIGS. 1 and 2. In this state, the mobile phase introduction channel Q1
The mobile phase introduced from the first hole 10a of the second stator 10→the first hole 8a of the first stator 8→the first hole of the rotor
Groove 7b → second hole 8b of first stator 8 → second stator 1
The mobile phase is discharged from the mobile phase outlet channel Q2 through the second hole 10b. Also, with syringe 3h, hole 7a of rotor 7
The liquid to be measured introduced into the first hole 7a → the first stator 8
hole 8f → groove 10e of second stator 10 → hole 8c of first stator 8 → second groove 7c of rotor 7 → first stator 8
The measured liquid passes through the hole 8d of the second stator 10 and then the hole 10c of the second stator 10, and is discharged from the outlet channel Q3 of the liquid to be measured. In this way,
The groove 10e of the second stator 10 is filled with the liquid to be measured.

【0013】次に、本発明実施例の試料導入器がオンに
され、ハンドル13が第1図の矢印方向に60゜回転さ
せられる。この結果、ロ―タ―7も第2図(イ)の矢印
方向に60゜回転させられる。この状態において、移動
相の導入流路Q1 から導入された移動相は、第2ステ
―タ10の第1穴10a→第1ステ―タ8の第1穴8a
→ロ―タの第1溝7b→第1ステ―タ8の穴8f→第2
ステ―タ10の溝10e→第1ステ―タ8の穴8c→ロ
―タ―7の第2溝7c→第1ステ―タ8の穴8b→第2
ステ―タ10bを経て、移動相の導出流路Q2から排出
される。この導出流路Q2 は、第3図の分離カラム4
に接続されている。従って、第2ステ―タ10の溝10
eから搬送された被測定試料は、分離カラムでクロマト
グラフィックに分離されるようになる。また、シリンジ
3hでロ―タ―7の穴7aに導入される被測定液は、第
1穴7a→第1ステ―タ8の穴8e→第2ステ―タ10
の穴10dを経て被測定液の導出流路Q3 から排出さ
れる。
Next, the sample introducer of the present invention is turned on and the handle 13 is rotated 60 degrees in the direction of the arrow in FIG. As a result, the rotor 7 is also rotated by 60 degrees in the direction of the arrow in FIG. 2(a). In this state, the mobile phase introduced from the mobile phase introduction channel Q1 is transferred from the first hole 10a of the second stator 10 to the first hole 8a of the first stator 8.
→ First groove 7b of rotor → Hole 8f of first stator 8 → Second groove
Groove 10e of stator 10 → hole 8c of first stator 8 → second groove 7c of rotor 7 → hole 8b of first stator 8 → second
It passes through the stator 10b and is discharged from the mobile phase outlet channel Q2. This outlet channel Q2 is connected to the separation column 4 in FIG.
It is connected to the. Therefore, the groove 10 of the second stator 10
The sample to be measured transported from e is chromatographically separated in a separation column. Further, the liquid to be measured introduced into the hole 7a of the rotor 7 with the syringe 3h is transferred from the first hole 7a to the hole 8e of the first stator 8 to the second stator 10.
The liquid to be measured is discharged from the outlet channel Q3 through the hole 10d.

【0014】このようにして本発明実施例の試料導入器
がオンオフ動作を繰り返すことにより、イオンクロマト
グラフなどの分析計に極微量の被測定試料を再現性良く
注入できるようになる。尚、本発明は上述の実施例に限
定されることなく種々の変形が可能である。
By repeating the on-off operation of the sample introducer according to the embodiment of the present invention in this way, it becomes possible to inject a very small amount of the sample to be measured into an analyzer such as an ion chromatograph with good reproducibility. Note that the present invention is not limited to the above-described embodiments, and can be modified in various ways.

【0015】[0015]

【発明の効果】以上詳しく説明したような本発明によれ
ば、従来の試料注入器のステ―タを試料ル―プとなる溝
を有する第2ステ―タに交換することにより、簡単な構
成で注入再現性に優れた微量試料注入器が実現できる。 また、本発明によれば、試料溶媒や試料溶液のpHによ
り分離カラムでの各成分の保持時間が変動しやすい場合
でも、再現性良く測定を行なえるという利点もある。更
に、前記従来例のマイクロシリンジによる試料注入に比
して測定者による被測定試料採取のバラツキがなく、再
現性の良い測定を行なえるという利点もある。
According to the present invention as described in detail above, the stator of a conventional sample injector can be replaced with a second stator having a groove serving as a sample loop, thereby simplifying the structure. A micro sample injector with excellent injection reproducibility can be realized. Further, according to the present invention, even when the retention time of each component in the separation column is likely to fluctuate depending on the pH of the sample solvent or sample solution, there is also the advantage that measurement can be performed with good reproducibility. Furthermore, compared to the conventional example of sample injection using a microsyringe, this method has the advantage that there is no variation in the sampling of the sample to be measured by the measuring person, and measurements can be performed with good reproducibility.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明実施例の分解構成斜視図である。FIG. 1 is an exploded perspective view of an embodiment of the present invention.

【図2】本発明実施例の要部説明図である。FIG. 2 is an explanatory diagram of main parts of an embodiment of the present invention.

【図3】従来例の使用例説明図である。 1a,1b  槽 2a,2b  送液ポンプ 3  試料注入器 4  分離カラム 5  サプレッサ 6  検出器 7  ロ―タ― 8  第1ステ―タ 10  第2ステ―タFIG. 3 is an explanatory diagram of a usage example of a conventional example. 1a, 1b tank 2a, 2b Liquid pump 3 Sample injector 4 Separation column 5 Suppressor 6 Detector 7 Rotor 8 First stator 10 Second stator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ディスク状のロ―タ−と、該ロ―タ−と一
体的に回転するシャフトと、該シャフトを介して前記ロ
―タ―を回転させるハンドルと、前記ロ―タ―と対向配
置されるディスク状の第1のステ―タと、該第1ステ―
タ及びスペ―サを介して前記ロ―タ―と対向配置される
ディスク状の第2ステ―タと、前記第1ステ―タの円周
に沿って等間隔に穿設された第1〜第6の穴と、前記ロ
―タ―において前記第1ステ―タと接する面に円弧状に
形成された第1及び第2の溝と、前記第2ステ―タにお
いて前記第1ステ―タと接する面の中央部に長尺状に形
成されている第3の溝と、前記第1ステ―タにおいて前
記第1,第2,第4,及び第5穴に夫々対応する位置に
穿設された第7〜第10の穴と、前記第1穴に接続され
た移動相導入流路と、前記第7穴に接続された移動相導
出流路と、前記第8穴に接続された被測定液導入流路と
、前記第9穴に接続された被測定液導出流路とを具備し
、前記ロ―タ―が60゜回転されて内部流路の切換を行
なうことを特徴とする試料注入器。
Claim 1: A disc-shaped rotor, a shaft that rotates integrally with the rotor, a handle that rotates the rotor via the shaft, and a handle that rotates the rotor via the shaft. disc-shaped first stators disposed opposite to each other;
a disk-shaped second stator disposed opposite to the rotor via a rotor and a spacer; a sixth hole; first and second grooves formed in an arc shape on a surface of the rotor in contact with the first stator; a third groove formed in an elongated shape in the center of the surface in contact with the first stator, and bored at positions corresponding to the first, second, fourth, and fifth holes, respectively, in the first stator; 7th to 10th holes, a mobile phase introduction channel connected to the first hole, a mobile phase outlet channel connected to the seventh hole, and a cover connected to the eighth hole. A sample comprising a measurement liquid introduction flow path and a measurement liquid output flow path connected to the ninth hole, and wherein the rotor is rotated by 60 degrees to switch the internal flow path. syringe.
JP6579691A 1991-03-29 1991-03-29 Minute sample injector Pending JPH04301563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6579691A JPH04301563A (en) 1991-03-29 1991-03-29 Minute sample injector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6579691A JPH04301563A (en) 1991-03-29 1991-03-29 Minute sample injector

Publications (1)

Publication Number Publication Date
JPH04301563A true JPH04301563A (en) 1992-10-26

Family

ID=13297356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6579691A Pending JPH04301563A (en) 1991-03-29 1991-03-29 Minute sample injector

Country Status (1)

Country Link
JP (1) JPH04301563A (en)

Similar Documents

Publication Publication Date Title
US5132012A (en) Liquid chromatograph
US4068528A (en) Two position rotary valve for injecting sample liquids into an analysis system
US4182184A (en) Sample injector
US5573651A (en) Apparatus and method for flow injection analysis
JP4670590B2 (en) Channel switching valve and high-performance liquid chromatograph using the same
JP5413370B2 (en) Sample injection port and autosampler having the same
US4243071A (en) Sample injection valve
US20130067997A1 (en) Single injection valve for hplc combining sample introduction, wash cycles and diagnosis
EP2609351B1 (en) Variable-volume injection valve
JPH04301563A (en) Minute sample injector
KR101607354B1 (en) Sample injector
JP2009276110A (en) Sample injecting system for chromatographic analyzer
JPH05273187A (en) Trace sample injector
Sahleström et al. Flow-injection extraction with a microvolume module based on integrated conduits
JPH04299255A (en) Trace sample injector
JPH04299254A (en) Trace sample injector
JPH04301565A (en) Sample injector for two-channel injection
JPH04204156A (en) Sample injecting apparatus
JPH04301564A (en) Sample injector for two-channel injection
JP4360206B2 (en) Liquid chromatograph mixer
JPH04204157A (en) Sample injecting apparatus
EP0384789A2 (en) Particle detector and control system for controlling liquid flow in the particle detector
JPH04204155A (en) Sample injecting apparatus
WO1998041856A1 (en) Liquid chromatography electrochemical detector, liquid chromatograph, and analyzing method using the chromatograph
SU828848A1 (en) Sample admission unit for liquid chromatograph