JPH04301024A - Operation method for counter flow type powdery ore reduction furnace - Google Patents

Operation method for counter flow type powdery ore reduction furnace

Info

Publication number
JPH04301024A
JPH04301024A JP6685291A JP6685291A JPH04301024A JP H04301024 A JPH04301024 A JP H04301024A JP 6685291 A JP6685291 A JP 6685291A JP 6685291 A JP6685291 A JP 6685291A JP H04301024 A JPH04301024 A JP H04301024A
Authority
JP
Japan
Prior art keywords
furnace
ore
reaction
powdery ore
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6685291A
Other languages
Japanese (ja)
Inventor
Satoru Suzuki
悟 鈴木
Kazuya Kunitomo
和也 国友
Tetsuaki Yamamoto
山本 哲明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6685291A priority Critical patent/JPH04301024A/en
Publication of JPH04301024A publication Critical patent/JPH04301024A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To execute reduction of powdery ore at high efficiency by dropping powdery ore at a specific ratio into a vertical furnace heated at the specific temp. through dispersing mechanism in the furnace top and blowing reducing gas from lower part at a specific flow velocity. CONSTITUTION:The multi-hole plate type powdery ore dispersing device 1 is arranged at the top part in inner part of the vertical shaft type reaction furnace 2, and the powdery ore adjusting the particle size is dispersed and dropped into the reaction furnace 2 heated at 600-1000 deg.C in particle vol concn. of <=20% of the vol in the furnace. Then, the reducing gas from the lower of the furnace through an introducing hole 3 is blown and raised at gas flow velocity of end velocity or lower of the average particle size, and the dropped ore is discharged from a reduced ore discharging hole 6. Further, the exhaust gas through the top part in the reaction furnace 2 is introduced into a cyclone 4 and the collected powder is discharged from a discharging tube 7 and the exhaust gas is taken out from an introducing tube 8. By this method, the powdery ore is uniformly dispersed in the reaction chamber 2, and contact with the reducing gas is improved and reducing reaction at high efficiency is secured.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、例えば、予備還元した
粉状鉄鉱石を溶融還元して銑鉄を製造するプロセスにお
ける予備還元炉としての使用に適した鉱石還元炉の操業
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for operating an ore reduction furnace suitable for use as a pre-reduction furnace in the process of producing pig iron by melting and reducing pre-reduced powdered iron ore.

【0002】0002

【従来の技術】従来から、かかる粉状の原鉱石を還元す
るための予備還元炉としては、例えば、特開昭63−1
40018号公報、特開平1−111807号公報に開
示されているように、流動層を形成するライザーの上部
側方から粉状鉱石を投入し、底部から流動層形成用のキ
ャリアガスと溶融還元炉からの排ガスを還元用ガスとし
て導入し、鉱石の流動層を形成して固気反応によって鉱
石を還元するに際して、流動層を形成した粒子と反応気
体を流動層の上方かサイクロンを経て排ガスを除去回収
すると共に、粉体はダウンカマーを下降せしめてライザ
ーに戻す循環流動層法あるいは、特開昭47−1631
2号公報に記載されているように塊状鉱石あるいは塊成
化物を用いて移動層で還元するシャフト型の炉がある。
[Prior Art] Conventionally, as a preliminary reduction furnace for reducing such powdery raw ore, for example, JP-A No. 63-1
As disclosed in Japanese Patent Publication No. 40018 and Japanese Patent Application Laid-Open No. 1-111807, powdered ore is introduced from the upper side of a riser forming a fluidized bed, and a carrier gas for forming a fluidized bed and a melting reduction furnace are introduced from the bottom. When the exhaust gas from the ore is introduced as a reducing gas to form a fluidized bed of ore and the ore is reduced by a solid-gas reaction, the particles and reaction gas that formed the fluidized bed are removed above the fluidized bed or through a cyclone. At the same time as collecting the powder, the powder is returned to the riser by lowering the downcomer, or by the circulating fluidized bed method, or by Japanese Patent Application Laid-Open No. 47-1631.
As described in Publication No. 2, there is a shaft-type furnace in which lump ore or agglomerated material is reduced in a moving bed.

【0003】0003

【発明が解決しようとする課題】しかしながら、この従
来の還元炉において、流動層によるものにおいては、ガ
スの利用効果を上げるためには、多段階にわたる反応層
を形成する必要があり、このため、設備費の増加と操業
が煩雑であるという欠点がある。
[Problems to be Solved by the Invention] However, in this conventional reduction furnace using a fluidized bed, it is necessary to form reaction layers in multiple stages in order to increase the effectiveness of gas utilization. The drawbacks are increased equipment costs and complicated operations.

【0004】また、シャフト型の炉においては、鉱石の
炉内での粉化や、スティッキングによる棚吊りを防止す
るために、投入する粉鉱石のペレット化が必要となり、
原料粉鉱石をそのまま使用できず、コストが増大すると
いう欠点がある。
[0004] In addition, in shaft type furnaces, it is necessary to pelletize the fine ore to be charged in order to prevent the ore from being pulverized in the furnace and hanging on the shelf due to sticking.
The disadvantage is that the raw material powder ore cannot be used as is, and the cost increases.

【0005】本発明において解決すべき課題は、上記、
流動炉とシャフト炉における欠点を解消して、粉状原鉱
石を予備処理することなしに直接使用することができ、
しかも、使用する還元ガスの反応効率が高い還元炉とそ
の使用方法を見出すことにある。
[0005] The problems to be solved by the present invention are as described above.
It overcomes the drawbacks of fluidized bed furnaces and shaft furnaces and allows powdered raw ore to be used directly without pre-treatment.
Moreover, the objective is to find a reducing furnace with high reaction efficiency for the reducing gas used and a method of using the same.

【0006】[0006]

【課題を解決するための手段】本発明は、反応空間内に
粉状鉱石を分散状態で落下させ、同落下鉱石に下方から
還元ガスを導入せしめて還元反応を生じさせる向流型反
応炉による粉状鉱石の還元方法によってその課題を解決
した。
[Means for Solving the Problems] The present invention employs a countercurrent reactor in which powdery ore is dropped in a dispersed state into a reaction space and a reducing gas is introduced into the falling ore from below to cause a reduction reaction. This problem was solved by a method of reducing powdered ore.

【0007】この向流型反応炉において、1mm程度の
粉状鉄鉱石を使用する場合、その還元反応を効率良く行
うためには、反応空間に均一に落下させる必要があり、
そのためには反応空間の頂部に回転翼、多孔板のような
分散装置を配置し、この分散装置から原料を投下し、且
つ、投下粉状鉱石の反応空間内の体積濃度を20%以下
に維持する。
[0007] When using powdered iron ore of about 1 mm in this countercurrent type reactor, in order to carry out the reduction reaction efficiently, it is necessary to drop it uniformly into the reaction space.
To do this, a dispersion device such as a rotary blade or a perforated plate is placed at the top of the reaction space, the raw material is dropped from this dispersion device, and the volume concentration of the dropped powdery ore in the reaction space is maintained at 20% or less. do.

【0008】さらに、この反応空間は外熱によって、あ
るいは加熱した還元ガスの導入によって、600〜10
00℃に維持される。
[0008] Furthermore, this reaction space is heated by external heat or by introducing a heated reducing gas.
The temperature is maintained at 00°C.

【0009】還元に必要な粒子の滞留時間の調整は、吹
き込む還元ガスの流速を粒子の終末速度に近づけること
によって、あるいは粒子が落下する反応室の高さによっ
て行う。
The residence time of the particles necessary for reduction is adjusted by making the flow rate of the injected reducing gas approach the terminal velocity of the particles, or by adjusting the height of the reaction chamber into which the particles fall.

【0010】0010

【作用】粉鉱石を反応室内に均一に分散させて、還元ガ
スと鉱石粒子との接触を良くすることで、高効率の還元
反応を確保する。
[Operation] A highly efficient reduction reaction is ensured by uniformly dispersing the fine ore in the reaction chamber and improving the contact between the reducing gas and the ore particles.

【0011】また、投下粉状鉱石の反応空間内の体積濃
度が20%を超えると粒子の分散が難しく、スティッキ
ングしやすくなるため、その濃度は20%以下に維持す
る必要があるが、濃度が低くなるとガスの反応効率が悪
化することおよび高濃度では操業が難しくなるので、5
〜10%の範囲内にあるのが望ましい。
[0011] Furthermore, if the volumetric concentration of the dropped powdery ore in the reaction space exceeds 20%, it will be difficult to disperse the particles and they will tend to stick, so it is necessary to maintain the concentration below 20%. If the concentration is too low, the reaction efficiency of the gas will deteriorate, and if the concentration is high, it will be difficult to operate.
It is desirable that it be within the range of ~10%.

【0012】0012

【実施例】本発明を鉄鉱石の溶融還元炉に投入する粉鉱
石の予備還元に適用した例について説明する。
[Embodiment] An example in which the present invention is applied to preliminary reduction of fine ore to be introduced into an iron ore smelting reduction furnace will be described.

【0013】図1は本発明を実施した装置の概要を示す
FIG. 1 shows an overview of an apparatus embodying the present invention.

【0014】同図において、1は、内容積50リットル
のシャフト型の反応炉2の内方頂部に設けられた多孔板
タイプの粉鉱石分散装置を示す。鉄分品位64%の組成
を有し、粒度を1mm以下に調整した粉鉱石を反応炉2
の投入口5から分散装置1内に投入し、この分散装置1
から毎分0.4リットルの割合で反応炉2内に分散投入
した。一方、950℃で、CO−70%、H2 −30
%のガス組成を有する溶融還元炉の排ガスを還元ガス導
入口3から、50Nm3 /hrの割合で導入し、沈降
鉱石を還元鉱排出口6から排出した。排出鉱石の平均還
元率は62%であって、その排出量は85kg/hrで
あった。また、反応炉2の頂部を経た排ガス導出管8か
らの排出ガスの組成はCO−42%、H2 −18%、
CO2 −28%、H2 O−12%であって、サイク
ロン4によって捕集され、捕集粉排出管7から排出され
た微粉量は3kg/hrであった。また、排出ガス温度
は600℃であった。
In the figure, reference numeral 1 indicates a perforated plate type fine ore dispersion device installed at the inner top of a shaft-type reactor 2 having an internal volume of 50 liters. Fine ore with an iron content of 64% and particle size adjusted to 1 mm or less is placed in reactor 2.
into the dispersion device 1 through the inlet 5 of the dispersion device 1.
The water was dispersed into the reactor 2 at a rate of 0.4 liters per minute. On the other hand, at 950℃, CO-70%, H2-30
% gas composition of the smelting reduction furnace was introduced from the reducing gas inlet 3 at a rate of 50 Nm3/hr, and the precipitated ore was discharged from the reduced ore outlet 6. The average reduction rate of the discharged ore was 62%, and the discharge amount was 85 kg/hr. Furthermore, the composition of the exhaust gas from the exhaust gas outlet pipe 8 which has passed through the top of the reactor 2 is CO-42%, H2-18%,
CO2 -28%, H2 O -12%, and the amount of fine powder collected by the cyclone 4 and discharged from the collected powder discharge pipe 7 was 3 kg/hr. Further, the exhaust gas temperature was 600°C.

【0015】[0015]

【発明の効果】本発明によって、以下の効果を奏する。[Effects of the Invention] The present invention provides the following effects.

【0016】(1)粉鉱石を還元処理に直接利用でき、
格別の粉鉱石の予備処理を必要としない。
(1) Fine ore can be directly used for reduction treatment,
No special preliminary treatment of fine ore is required.

【0017】(2)一塔式の還元炉により、高レベルの
ガス利用率を確保できる。
(2) A high level of gas utilization can be ensured by the single-column reduction furnace.

【0018】(3)反応炉の圧力損失を小さくできるの
で、エネルギー原単位を低下できる。 (4)粉鉱石は反応炉で熱交換されるので、排出ガス温
度を低下でき、エネルギー原単位を低下できる。
(3) Since the pressure loss in the reactor can be reduced, the energy consumption rate can be reduced. (4) Since the fine ore undergoes heat exchange in the reactor, the exhaust gas temperature can be lowered and the energy consumption rate can be lowered.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明を溶融還元炉の予備還元装置として実施
した装置の概要を示す。
FIG. 1 shows an outline of an apparatus in which the present invention is implemented as a preliminary reduction apparatus for a smelting reduction furnace.

【符号の説明】[Explanation of symbols]

1  粉鉱石分散装置 2  反応炉 3  還元ガス導入口 4  サイクロン 5  原料鉱石投入口 6  還元鉱排出口 7  サイクロン捕集粉排出管 8  排ガス導出管 1. Powdered ore dispersion equipment 2 Reactor 3 Reducing gas inlet 4 Cyclone 5 Raw material ore input port 6 Reduced ore discharge port 7 Cyclone collected powder discharge pipe 8 Exhaust gas outlet pipe

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  縦長の炉内形状を有し、炉の頂部に粉
状鉱石の分散機構を設け、この分散機構から粉鉱石を6
00〜1000℃に加熱された炉内に、炉内容積の20
%を超えない粒子体積濃度で分散落下せしめ、且つ、こ
の炉内に下方から還元ガスを平均粒子径の終末速度以下
のガス流速で吹き込み上昇させる向流型粉鉱石還元炉の
操業方法。
Claim 1: The furnace has a vertically elongated internal shape, and a powder ore dispersion mechanism is provided at the top of the furnace.
In a furnace heated to 00 to 1000℃, 20
A method for operating a countercurrent type ore reduction furnace, in which the particles are dispersed and fallen at a volume concentration not exceeding 1.2%, and reducing gas is blown into the furnace from below at a gas flow rate lower than the terminal velocity of the average particle diameter.
JP6685291A 1991-03-29 1991-03-29 Operation method for counter flow type powdery ore reduction furnace Withdrawn JPH04301024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6685291A JPH04301024A (en) 1991-03-29 1991-03-29 Operation method for counter flow type powdery ore reduction furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6685291A JPH04301024A (en) 1991-03-29 1991-03-29 Operation method for counter flow type powdery ore reduction furnace

Publications (1)

Publication Number Publication Date
JPH04301024A true JPH04301024A (en) 1992-10-23

Family

ID=13327798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6685291A Withdrawn JPH04301024A (en) 1991-03-29 1991-03-29 Operation method for counter flow type powdery ore reduction furnace

Country Status (1)

Country Link
JP (1) JPH04301024A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012067326A (en) * 2010-09-21 2012-04-05 Jfe Steel Corp Reduced iron manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012067326A (en) * 2010-09-21 2012-04-05 Jfe Steel Corp Reduced iron manufacturing method

Similar Documents

Publication Publication Date Title
JP3264330B2 (en) Fluidized bed reduction apparatus for iron ore particles and method for reducing iron ore particles using the apparatus
US2758021A (en) Process of preparing metal powders by a fluo-solid reduction process
CN1033264A (en) The method of preparing titanic chloride using carbon-containing slag
CN104673954A (en) Direct-reduction ironmaking method and system for iron-containing mineral powder
JP2964444B2 (en) Method and apparatus for direct reduction of fine ore or concentrate
CN108754178A (en) A kind of smelting process of zinc sulfide concentrates
CN110372032A (en) The method that titanium dioxide is prepared by ilmenite
CN110306036B (en) Method for treating vanadium-titanium magnetite through fluidized reduction, electric arc melting and rotary kiln sodium treatment
CN109943710B (en) Iron ore powder multi-stage suspension state reduction roasting device and method
US3214264A (en) Treatment of metal oxides
JPH04301024A (en) Operation method for counter flow type powdery ore reduction furnace
WO2000001856A1 (en) Method and apparatus for reducing iron-oxides-particles having a broad range of sizes
WO2005080616A1 (en) Process for reducing solids containing copper in a fluidized bed
CA2211906C (en) 2-stage fluidized bed furnace for pre-reducing fine iron ore and method for pre-reducing fine iron ore using the furnace
CN112609070B (en) Method for strengthening separation and extraction of boron and iron in boron-containing iron concentrate by suspension reduction roasting
JPH06271919A (en) Method for pre-treating coal and ore for smelting reduction furnace
JP2620793B2 (en) Preliminary reduction furnace for smelting reduction
US6132489A (en) Method and apparatus for reducing iron-oxides-particles having a broad range of sizes
US6146442A (en) Apparatus and method for introducing gas into a shaft furnace without disturbing burden flow
CN206783330U (en) Multistage chlorination furnace with retracting device
JPS63259035A (en) Treatment of material containing by-product zn
CN107058665A (en) A kind of shaft furnace cooling gas processing system for being capable of blowback and method
CN207699619U (en) The system containing Iron Ore Powder of processing
JP2000510535A (en) Two-stage dual single fluidized bed prereduction apparatus and method for prereduction of fine iron ore
JPH03138309A (en) Apparatus for reducing ore

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514