JPH04300950A - Production of lignocellulose-phenolic resin having excellent high-temperature fluidity - Google Patents

Production of lignocellulose-phenolic resin having excellent high-temperature fluidity

Info

Publication number
JPH04300950A
JPH04300950A JP6624191A JP6624191A JPH04300950A JP H04300950 A JPH04300950 A JP H04300950A JP 6624191 A JP6624191 A JP 6624191A JP 6624191 A JP6624191 A JP 6624191A JP H04300950 A JPH04300950 A JP H04300950A
Authority
JP
Japan
Prior art keywords
acid
lignocellulose
resin
phenolic resin
anhydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6624191A
Other languages
Japanese (ja)
Inventor
Nobuo Shiraishi
信夫 白石
Koichi Kato
功一 加藤
Mariko Yoshioka
まり子 吉岡
Shigeo Ueda
上田 重雄
Takehiko Ishibashi
石橋 武彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAIYO JUSHI KOGYO KK
Resonac Corp
Original Assignee
TAIYO JUSHI KOGYO KK
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAIYO JUSHI KOGYO KK, Hitachi Chemical Co Ltd filed Critical TAIYO JUSHI KOGYO KK
Priority to JP6624191A priority Critical patent/JPH04300950A/en
Publication of JPH04300950A publication Critical patent/JPH04300950A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To produce a lignocellulose-phenolic resin having excellent high- temperature fluidity by dissolving and solubilizing lignocellulose in a phenolic compound in the presence of a specific organic acid (anhydride) in combination with a strongly acidic catalyst. CONSTITUTION:A lignocellulose-phenolic resin having excellent high-temperature fluidity is produced by (1) dissolving and solubilizing a lignocellulose (e.g. wood flour and pulp) in a phenolic compound in the presence of a strongly acidic catalyst (e.g. mineral acid and Lewis acid) and one or more substances selected from acetic acid, maleic acid, itaconic acid, phthalic acid and their anhydrides, (2) converting the solubilized material into a resin optionally in the presence of a formaldehyde source, (3) adding a necessary amount of a filler (e.g. wood flour), a hardener (e.g. hexamethylenetetramine), a cure accelerator (e.g. calcium hydroxide), a cure-accelerator and water-acceptor (e.g. calcium oxide and magnesium oxide), a mold-releasing agent (e.g. zinc stearate), a pigment and, as necessary, a flame-retardant, etc., and (4) kneading the mixture.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は新規なリグノセルロース
−フェノール樹脂の製造法に関する。本発明のリグノセ
ルロース−フェノール樹脂は圧縮成形や移送成形などに
用いる成形材料、ケイ砂結合用(シェルモールド用)、
砥粒結合用(砥石用)の粉末粘結材などとして有用であ
る。
FIELD OF THE INVENTION This invention relates to a novel method for producing lignocellulose-phenolic resins. The lignocellulose-phenolic resin of the present invention is used as a molding material for compression molding, transfer molding, etc., for bonding silica sand (for shell molding),
It is useful as a powder binding material for binding abrasive grains (for grinding wheels).

【0002】0002

【従来の技術】成形材料やケイ砂結合用ないし砥粒結合
用などのフェノール樹脂としては、ノボラック樹脂が従
来より広く用いられている。これは、ホルムアルデヒド
に対しフェノールを過剰にし、酸を触媒にして合成され
るものである。それに対してフェノールに木材などリグ
ノセルロースを可溶化液状化させた溶液を原料として、
ヘキサメチレンテトラミン、パラホルムアルデヒド、ホ
ルマリンなどホルムアルデヒド源となる物質を加え、樹
脂化してノボラック樹脂様の材料としたり、そのリグノ
セルロースのフェノール可溶化液状物を直接反応樹脂液
として用いるという発想に基づく方法が提案された(出
願番号平1−179483)。しかしながらこれらの樹
脂組成物は、特に酸触媒法可溶化により製造されたもの
は、硬化前の流動期間が短かすぎるという点に欠点があ
り、熱流動性の改良が望まれていた。
BACKGROUND OF THE INVENTION Novolac resins have been widely used as phenolic resins for molding materials and for binding silica sand or abrasive grains. This is synthesized by using an excess of phenol with respect to formaldehyde and using an acid as a catalyst. On the other hand, using a solution made by solubilizing and liquefying lignocellulose such as wood in phenol,
There is a method based on the idea of adding formaldehyde source substances such as hexamethylenetetramine, paraformaldehyde, and formalin and converting it into a resin to make a novolak resin-like material, and using the phenol-solubilized liquid of the lignocellulose as a direct reaction resin liquid. (Application number: Hei 1-179483). However, these resin compositions, especially those produced by acid-catalyzed solubilization, have a drawback in that the flow period before curing is too short, and improvement in thermal fluidity has been desired.

【0003】0003

【発明が解決しようとする課題】本発明は、木材などの
リグノセルロースのフェノール可溶化溶液よりの新規な
リグノセルロース−フェノール樹脂の製造法を提供しよ
うとするものである。すなわち、再生可能な資源である
森林資源の有効な利用法の開発の一つとして、実用的な
成形条件で十分な成形が可能であり、実用的な物性も備
えたリグノセルロース−フェノール樹脂の新製造法を提
供しようとするものである。
SUMMARY OF THE INVENTION The present invention provides a novel method for producing lignocellulose-phenolic resin from a phenol-solubilized solution of lignocellulose such as wood. In other words, as part of the development of effective ways to use forest resources, which are renewable resources, we are developing a new lignocellulose-phenolic resin that can be sufficiently molded under practical molding conditions and has practical physical properties. The aim is to provide a manufacturing method.

【0004】0004

【課題を解決するための手段】本発明の要旨は、木材な
どリグノセルロースのフェノール類への可溶化物を中和
したのち、未反応フェノール類を減圧蒸留などで留去し
、室温で固状を呈するものとした上で粉末化し、木粉な
ど充填剤、ヘキサメチレンテトラミン(硬化剤)、水酸
化カルシウム(硬化促進剤)、ステアリン酸亜鉛(離型
剤)といったものを、ノボラック樹脂での場合の常法に
従って加えて混合したものが、百数十度という高温にも
たらされると、熱流動挙動を示す段階を殆ど取ることな
く、あるいは良好な熱圧成形、射出成形を可能ならしめ
るには不十分な程度にしか取ることなく硬化するという
問題に対する対策として、木材などリグノセルロースを
酸触媒存在下でフェノール類に可溶化、液状化する際に
、適量の無水酢酸、酢酸、無水マレイン酸、マレイン酸
、無水イタコン酸、イタコン酸、無水フタル酸、フタル
酸など有機酸無水物あるいは有機酸の一種ないし二種以
上を添加することを特徴とするリグノセルロース−フェ
ノール類樹脂の製造法に存する。
[Means for Solving the Problems] The gist of the present invention is to neutralize the solubilized material of lignocellulose such as wood into phenols, and then distill off unreacted phenols by vacuum distillation or the like to solidify at room temperature. In the case of novolac resin, fillers such as wood flour, hexamethylenetetramine (hardening agent), calcium hydroxide (hardening accelerator), zinc stearate (mold release agent), etc. When the mixture is added and mixed according to the conventional method, and brought to a high temperature of 100-odd degrees, there is almost no step in which it exhibits thermal fluid behavior, or it is insufficient to enable good hot-pressing molding or injection molding. As a countermeasure to the problem of hardening without taking a sufficient amount, when lignocellulose such as wood is solubilized with phenols in the presence of an acid catalyst and liquefied, an appropriate amount of acetic anhydride, acetic acid, maleic anhydride, maleic acid, etc. The present invention relates to a method for producing a lignocellulose-phenolic resin characterized by adding one or more organic acid anhydrides or organic acids such as acid, itaconic anhydride, itaconic acid, phthalic anhydride, and phthalic acid.

【0005】特に、強酸触媒を用いてリグノセルロース
をフェノール類に可溶化する際に、前記有機酸無水物な
いし有機酸が適量存在すると、それらは可溶化に伴って
低分子化されたリグノセルロース成分上の反応サイトの
幾種かを、フェノールと奪い合い、結果的に最終的な三
次元硬化速度をより適当なものとするフェノール化が行
われる共に、それらに伴って導入されたアシル基が該リ
グノセルロース−フェノール類樹脂の熱可塑性、熱流動
性を高める結果となることは特記しうる。
In particular, when a strong acid catalyst is used to solubilize lignocellulose in phenols, if an appropriate amount of the organic acid anhydride or organic acid is present, the lignocellulose component is reduced in molecular weight as a result of solubilization. Phenolization takes place, which competes with phenol for some of the above reaction sites, resulting in a more appropriate final three-dimensional curing rate, and the acyl groups introduced along with them compete with phenol. It is noteworthy that the thermoplasticity and thermal fluidity of the cellulose-phenolic resin are improved.

【0006】本発明のリグノセルロース−フェノール樹
脂成形物の製造法で用いられるリグノセルロースとして
は、木粉、木材繊維(パルプ)、木材チップ、オイルパ
ームの樹幹、ヤシガラなど未利用リグノセルロース、バ
ガス、樹皮、稲わらなどが用いられる。
[0006] The lignocellulose used in the method for producing the lignocellulose-phenolic resin molded product of the present invention includes wood flour, wood fiber (pulp), wood chips, unused lignocellulose such as oil palm tree trunks and coconut shells, bagasse, Bark, rice straw, etc. are used.

【0007】本発明で用いられるフェノール類としては
、フェノール、クレゾール、キシレノール、レゾルシノ
ール、アルキルレゾルシノールなどがある。リグノセル
ロースのフェノール類への可溶化溶解時には、リグノセ
ルロースの主要構成成分であるリグニン、セルロースお
よびヘミセルロースの分子内結合の種々の度合の開裂と
、開裂された各成分への種々の度合のフェノール類の導
入が行われ、溶解を容易にし、溶液の性能、性質を優れ
たものとしていると共に、リグニンなどリグノセルロー
ス構成成分の反応性を高めている。すなわち、セルロー
スおよびヘミセルロースは本過程中に加水分解と脱水反
応が進み、ヒドロキシメチルフルフラール、フルフラー
ル生成の方向への低分子化とフェノール化を生じ、また
、リグニンもそれ特有の低分子化とフェノール化を受け
、木材のすべての成分が反応性の高いものへと変換して
いる。
[0007] Phenols used in the present invention include phenol, cresol, xylenol, resorcinol, and alkylresorcinol. When lignocellulose is solubilized in phenols, the intramolecular bonds of lignin, cellulose, and hemicellulose, which are the main components of lignocellulose, are cleaved to various degrees, and the phenols are converted to various degrees into each of the cleaved components. has been introduced to facilitate dissolution, improve the performance and properties of the solution, and increase the reactivity of lignocellulose constituents such as lignin. In other words, cellulose and hemicellulose undergo hydrolysis and dehydration reactions during this process, resulting in low-molecularization and phenolization in the direction of hydroxymethylfurfural and furfural production, and lignin also undergoes its own unique low-molecularization and phenolization. As a result, all components of wood are converted into highly reactive substances.

【0008】この様な反応は、木材などが本来樹脂酸を
含有し、また加水分解して酢酸を生じやすいアセチル基
を構成成分中にペンダント基として持っていることから
、触媒なしで、単に加熱することによっても進むが、こ
の場合は200−270℃といったかなり高い温度が必
要である。この様な加水分解、脱水、フェノール化とい
った反応をより容易に起こさせるためには、硫酸、塩酸
などの鉱酸、トルエンスルホン酸、フェノールスルホン
酸など有機酸、塩化アルミニウム、塩化亜鉛、三フッ化
ホウ素等のルイス酸などの酸の存在が有効である。酸が
存在する場合、リグノセルロースのフェノールへの可溶
化は150℃での反応でも可能となる。ただし、無触媒
液状化の場合と酸触媒液状化の場合とでは、後者の方が
条件によっては5倍もフェノールが多量に導入されるな
ど可溶化生成物に違いを生ずる。それらをも勘案してそ
れら可溶化液化物の利用を考えなけれはならない。
[0008] Such a reaction can be carried out simply by heating without a catalyst, since wood originally contains resin acids and also has an acetyl group as a pendant group in its constituent components that easily hydrolyzes to produce acetic acid. It can also be done by doing this, but in this case a fairly high temperature of 200-270°C is required. In order to make such reactions such as hydrolysis, dehydration, and phenolization occur more easily, mineral acids such as sulfuric acid and hydrochloric acid, organic acids such as toluenesulfonic acid and phenolsulfonic acid, aluminum chloride, zinc chloride, and trifluoride are used. The presence of an acid such as a Lewis acid such as boron is effective. In the presence of acid, solubilization of lignocellulose in phenol is also possible in a reaction at 150°C. However, there is a difference in the solubilized product between non-catalytic liquefaction and acid-catalyzed liquefaction, with the latter introducing five times as much phenol depending on the conditions. We must take these into account when considering the use of these solubilized and liquefied products.

【0009】この様な特徴を有するリグノセルロースの
フェノール類への可溶化溶解時に、無水酢酸、酢酸、無
水マレイン酸、マレイン酸、無水イタコン酸、イタコン
酸、無水フタル酸、フタル酸など有機酸無水物あるいは
有機酸の一種ないし二種以上を添加すると、前述のよう
に、部分的にフェノール化と競合し、フェノールのリグ
ノセルロース成分低分子化物への導入の度合をより適正
なものとし、硬化完了に要する時間を適正量遅延させる
と共に、アシル基の導入による内部可塑化の効果がリグ
ノセルロース−フェノール樹脂に与えられることとなる
When lignocellulose having such characteristics is solubilized and dissolved in phenols, organic acid anhydrides such as acetic anhydride, acetic acid, maleic anhydride, maleic acid, itaconic anhydride, itaconic acid, phthalic anhydride, phthalic acid, etc. When one or more types of phenol or organic acids are added, as mentioned above, they partially compete with phenolization, make the degree of introduction of phenol into the low molecular weight lignocellulose component more appropriate, and complete curing. In addition to delaying the time required for this by an appropriate amount, the lignocellulose-phenolic resin is given the effect of internal plasticization due to the introduction of acyl groups.

【0010】本発明では,場合により以上のように得ら
れたリグノセルロースのフェノール類への可溶化物のノ
ボラック樹脂化を行うが、その際その可溶化物が酸性で
あることを利用する。すなわち、リグノセルロース−フ
ェノール類可溶化物にパラホルムアルデヒド、ホルマリ
ン、ヘキサメチレンテトラミンをホルムアルデヒドとし
て系中のフェノール計算量に対し、モル比で1以下とな
るよう添加し、反応温度を80℃程度として0−40分
反応させる(全然反応させない場合もある)。ただし、
ホルムアルデヒドと全然反応させないものもノボラック
樹脂的用途に有用に使いうる。
[0010] In the present invention, the lignocellulose obtained as described above is converted into a novolac resin by phenol-solubilizing the lignocellulose, and in this case, the acidity of the solubilized product is utilized. That is, paraformaldehyde, formalin, and hexamethylenetetramine are added to the lignocellulose-phenol solubilized material as formaldehyde so that the molar ratio is 1 or less relative to the calculated amount of phenol in the system, and the reaction temperature is set to about 80°C. - Allow to react for 40 minutes (in some cases, it may not react at all). however,
Those that do not react with formaldehyde at all can also be usefully used for novolac resin applications.

【0011】このようにして得られた樹脂化液ないしリ
グノセルロース−フェノール類可溶化物そのものは、ま
ず中和され、室温で粉末状となる様操作される。得られ
た粉末状生成物はノボラック樹脂初期縮合物類以のもの
とみなして利用しうる。すなわち、この粉末状生成物に
対し、木粉、木材繊維(パルプ)、リグニン又はリグニ
ン化合物、合成繊維、さらにはケイ石、ケイソウ土、ガ
ラス、アルミナ、マイカ、カーボンブラック、炭化ケイ
素などの無機物を充填材として全体の20−70重量%
加え、さらにヘキサメチレンテトラミンなど硬化剤を必
要量加える。
The resin solution or lignocellulose-phenol solubilized product itself obtained in this manner is first neutralized and operated to form a powder at room temperature. The resulting powdered product can be used as more than a novolac resin precondensate. That is, this powdered product is treated with wood flour, wood fibers (pulp), lignin or lignin compounds, synthetic fibers, and inorganic substances such as silica, diatomaceous earth, glass, alumina, mica, carbon black, and silicon carbide. 20-70% by weight of the total as filler
In addition, the required amount of a curing agent such as hexamethylenetetramine is added.

【0012】添加物としては、さらに必要に応じ、アル
キルレゾルシノールなど強化剤;多価イソシアネート化
合物、多価エポキシ化合物など架橋剤;酸化カルシウム
、酸化マグネシウム、水酸化カルシウムなど硬化促進剤
;顔料;難燃剤;ステアリン酸、ステアリン酸カルシウ
ムなど滑剤を加える。それらの混合のためにはリボン型
回転羽根と外側にジャケットを有するニーダー型構造の
混合機やバンバリーミキサーなどが用いられ、また、混
練はスクリュー押出し型の混練機、コニーダー、加熱ロ
ール、ボールミルなどによって行いうる。
[0012]Additives further include, if necessary, reinforcing agents such as alkylresorcinol; crosslinking agents such as polyvalent isocyanate compounds and polyvalent epoxy compounds; hardening accelerators such as calcium oxide, magnesium oxide, and calcium hydroxide; pigments; and flame retardants. ;Add a lubricant such as stearic acid or calcium stearate. For mixing, a mixer with a kneader-type structure having a ribbon-type rotary blade and a jacket on the outside, a Banbury mixer, etc. is used, and for kneading, a screw extrusion-type kneader, a co-kneader, a heating roll, a ball mill, etc. are used. I can do it.

【0013】以下に実施例を挙げて本発明をさらに詳し
く説明するが、本発明はこれら実施例に限定されるもの
ではない。
The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited to these Examples.

【0014】[0014]

【参考例1】通常のノボラック樹脂成形材料15gをト
ルクレオメーター〔東洋精機(株)製、ラボプラストミ
ル装着;30ml容〕に導入し、120℃、30rpm
 の条件でフルスケール1000kg・cm、チャート
スピード6cm/min (6目盛り/min )とし
て、熱流動・硬化挙動を測定した結果を図2に示す。た
だし、このノボラック樹脂成形材料は、ノボラック初期
縮合物粉末にヘキサミン、木粉、硬化促進剤(水酸化カ
ルシウム)、離型剤を70℃で混練混合したものである
[Reference Example 1] 15 g of a normal novolac resin molding material was introduced into a torque rheometer [manufactured by Toyo Seiki Co., Ltd., equipped with Laboplasto Mill; 30 ml capacity], and the temperature was set at 120°C and 30 rpm.
Figure 2 shows the results of measuring thermal flow and curing behavior under the following conditions, with a full scale of 1000 kg cm and a chart speed of 6 cm/min (6 divisions/min). However, this novolak resin molding material is obtained by kneading and mixing hexamine, wood flour, hardening accelerator (calcium hydroxide), and mold release agent with novolac initial condensate powder at 70°C.

【0015】[0015]

【参考例2】スギ木粉(80メッシュ程度)10gにフ
ェノール20gおよび硫酸1gを加えて150℃常圧下
に30分還流加熱した。加熱終了後、直ちに水酸化バリ
ウム(8水化物)約1.8gを加えて中和し、今度は減
圧下(約10mmHg)150℃で約60分間かけて遊
離のフェノールを除去した。この後、放冷して残留物を
鉄製乳鉢で粉砕して黒褐色の粉末約25gを得た。この
様にして得られた粉末78部に、ヘキサミン16部、硬
化促進剤として水酸化カルシウム4部、及び内部離型剤
としてステアリン酸亜鉛2部をよく混合し、充填材とし
ての木粉(粒度150メッシュパス)と5:5の割合で
混合(乳鉢中で)し、その15gをトルクレオメーター
中に導入し、参考例1と同様な条件で熱流動・硬化挙動
を測定し、図3に示す。図3より、この組成物の場合、
熱流動域が極端に短く、硬化時間が著しく短いことが図
2との比較からいえる。
[Reference Example 2] 20 g of phenol and 1 g of sulfuric acid were added to 10 g of cedar wood flour (approximately 80 mesh) and heated under reflux at 150° C. for 30 minutes under normal pressure. Immediately after heating, approximately 1.8 g of barium hydroxide (octahydrate) was added to neutralize the mixture, and free phenol was removed at 150° C. under reduced pressure (approximately 10 mmHg) for approximately 60 minutes. Thereafter, the mixture was allowed to cool and the residue was ground in an iron mortar to obtain about 25 g of a blackish brown powder. 78 parts of the powder thus obtained were thoroughly mixed with 16 parts of hexamine, 4 parts of calcium hydroxide as a hardening accelerator, and 2 parts of zinc stearate as an internal mold release agent. 150 mesh pass) at a ratio of 5:5 (in a mortar), 15 g of the mixture was introduced into a torque rheometer, and the thermal flow and hardening behavior was measured under the same conditions as in Reference Example 1. show. From FIG. 3, in the case of this composition,
It can be seen from a comparison with FIG. 2 that the heat flow region is extremely short and the curing time is extremely short.

【0016】[0016]

【実施例1】無水酢酸を0.5g(4.9×10−3モ
ル)さらに加える以外、参考例2と同様な条件で木粉を
フェノール中で可溶化・液化し、次いで中和および未反
応フェノールを留去し、粉砕して黒褐色の粉末を得た。 その後、やはり参考例2と全く同様にして、ヘキサミン
、水酸化カルシウム、ステアリン酸亜鉛および木粉と混
合し、その15gをトルクレオメーター中に導入、参考
例1および2と同様な条件下で熱流動・硬化挙動を測定
した結果を図4に示す。図4より、図3の結果に比べ硬
化時間が幾分長くなっていることがわかる。
[Example 1] Wood flour was solubilized and liquefied in phenol under the same conditions as in Reference Example 2, except that 0.5 g (4.9 x 10-3 mol) of acetic anhydride was further added, and then neutralized and untreated. The reaction phenol was distilled off and the mixture was ground to obtain a dark brown powder. Thereafter, in the same manner as in Reference Example 2, hexamine, calcium hydroxide, zinc stearate and wood flour were mixed, 15 g of the mixture was introduced into a torque rheometer, and heated under the same conditions as in Reference Examples 1 and 2. Figure 4 shows the results of measuring flow and hardening behavior. It can be seen from FIG. 4 that the curing time is somewhat longer than the results shown in FIG.

【0017】[0017]

【実施例2】無水酢酸の添加量を5g(49×10−3
モル)とする以外、実施例1(参考例2)と同様な条件
で、木材−フェノール樹脂成形材料を得、同条件で熱流
動・硬化挙動を測定し、結果を図5に示す。図5より、
この場合、溶融曲線、溶融粘度および硬化曲線がいずれ
も典型的形で認められるようになり、硬化時間も図2の
市販ノボラック樹脂に類似のものとなっていることが明
らかである。さらに図2に近い熱流動・硬化曲線を示す
木材−フェノール樹脂成形材料が得られうることも予想
出来る結果である。
[Example 2] The amount of acetic anhydride added was 5 g (49 x 10-3
A wood-phenolic resin molding material was obtained under the same conditions as in Example 1 (Reference Example 2), except that the amount of mol) was used, and the thermal flow and curing behavior was measured under the same conditions. The results are shown in FIG. From Figure 5,
In this case, it is clear that the melting curve, melt viscosity and curing curve are all typical, and the curing time is similar to that of the commercially available novolak resin in FIG. Furthermore, it is a predictable result that a wood-phenolic resin molding material exhibiting a thermal flow/hardening curve close to that shown in FIG. 2 can be obtained.

【0018】[0018]

【実施例3】無水酢酸の代わりに酢酸を10g量で用い
る以外、実施例1および2(そのもとは参考例2)と同
様な条件で木材−フェノール樹脂成形材料を得、同条件
で熱流動・硬化挙動を測定し、結果を図6に示す。図6
より、まず硬化時間が非常に長くなっていることが知ら
れると共に、そもそも硬化がきちんと起こったのかどう
かが判断しにくいプロフィルとなっている。アセチル化
が実施例1および2に比べ最も進み、熱流動性が高まる
と共に、その反面で結合フェノールが3者中最も少ない
ことも予想されうる。すなわち、結合フェノールが少な
く、硬化時のトルクが小さくなっていると見ることがで
きる。過度の酢酸の使用は成形材料を作るという目的か
らは、必ずしも良くないといえる。
[Example 3] A wood-phenolic resin molding material was obtained under the same conditions as in Examples 1 and 2 (originally Reference Example 2) except that 10 g of acetic acid was used instead of acetic anhydride, and heated under the same conditions. The flow and hardening behavior was measured and the results are shown in FIG. Figure 6
First of all, it is known that the curing time is extremely long, and the profile is such that it is difficult to judge whether curing has occurred properly in the first place. It can be expected that the acetylation is the most advanced compared to Examples 1 and 2, and the thermal fluidity is increased, while on the other hand, the amount of bound phenol is the least among the three. In other words, it can be seen that there is less bound phenol and the torque during curing is smaller. It can be said that excessive use of acetic acid is not necessarily good for the purpose of producing molding materials.

【0019】[0019]

【発明の効果】以上のごとく、本発明になるリグノセル
ロース−フェノール樹脂は、通常のフェノール樹脂とほ
ぼ同等の熱流動性を有しており、作業性に優れた成形材
料を提供することが可能になった。
[Effects of the Invention] As described above, the lignocellulose-phenolic resin of the present invention has almost the same thermal fluidity as ordinary phenolic resin, and it is possible to provide a molding material with excellent workability. Became.

【0020】[0020]

【図面の簡単な説明】[Brief explanation of drawings]

【図1】  トルクレオメーター(東洋精機製ラボプラ
ストミル装着30ml容量)による熱硬化性樹脂の熱硬
化挙動図を示す。
FIG. 1 shows a thermosetting behavior diagram of a thermosetting resin measured by a torque rheometer (30 ml capacity equipped with Labo Plastomill manufactured by Toyo Seiki).

【図2】  通常のフェノールノボラック樹脂を用いた
成形材料の熱硬化挙動を示す。
FIG. 2 shows the thermosetting behavior of a molding material using a common phenolic novolak resin.

【図3】  触媒法可溶化木材からのフェノール樹脂様
成形材料の熱硬化挙動を示す。
FIG. 3 shows the thermosetting behavior of phenolic resin-like molding materials from catalytically solubilized wood.

【図4】  無水酢酸を少量加えて可溶化して得た木材
液化物からのフェノール樹脂様成形材料の熱硬化挙動を
示す。
FIG. 4 shows the thermosetting behavior of a phenolic resin-like molding material made from a wood liquefied product obtained by solubilizing it by adding a small amount of acetic anhydride.

【図5】  無水酢酸を適量に近い量加えて可溶化して
得た木材液化物からのフェノール樹脂様成形材料の熱硬
化挙動を示す。
FIG. 5 shows the thermosetting behavior of a phenolic resin-like molding material made from a liquefied wood product obtained by solubilizing it by adding a nearly appropriate amount of acetic anhydride.

【図6】  酢酸を過度と思われる量加えて可溶化して
得た木材液化物からのフェノール樹脂様成形材料の熱硬
化挙動を示す。
FIG. 6 shows the thermosetting behavior of a phenolic resin-like molding material made from a wood liquefied material obtained by solubilizing it by adding a seemingly excessive amount of acetic acid.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  鉱酸やルイス酸等の強酸性触媒の存在
下、リグノセルロースをフェノール類に溶解可溶化する
際に、無水酢酸、酢酸、無水マレイン酸、マレイン酸、
無水イタコン酸、イタコン酸、無水フタル酸、フタル酸
等の有機酸無水物又は有機酸の一種ないし二種以上を共
存させ、得られた可溶化物を直接あるいはホルムアルデ
ヒド源を加えて樹脂化したのち、必要量の木粉等の充填
材、ヘキサメチレンテトラミン等の硬化剤、水酸化カル
シウム等の硬化促進剤、酸化マグネシウム、酸化カルシ
ウム等の硬化促進剤兼水分捕捉剤、ステアリン酸亜鉛等
の離型剤、顔料、必要により難燃剤等を配合して成る熱
流動性に優れたリグノセルロース−フェノール樹脂の製
造法。
Claim 1: When lignocellulose is dissolved and solubilized in phenols in the presence of a strong acidic catalyst such as a mineral acid or a Lewis acid, acetic anhydride, acetic acid, maleic anhydride, maleic acid,
One or more organic acid anhydrides or organic acids such as itaconic anhydride, itaconic acid, phthalic anhydride, and phthalic acid are allowed to coexist, and the resulting solubilized product is made into a resin either directly or by adding a formaldehyde source. , a filler such as wood flour in the required amount, a hardening agent such as hexamethylenetetramine, a hardening accelerator such as calcium hydroxide, a hardening accelerator/moisture scavenger such as magnesium oxide and calcium oxide, and a mold release agent such as zinc stearate. A method for producing a lignocellulose-phenol resin with excellent thermal fluidity, which is made by blending a phenolic resin, a pigment, and if necessary a flame retardant.
JP6624191A 1991-03-29 1991-03-29 Production of lignocellulose-phenolic resin having excellent high-temperature fluidity Pending JPH04300950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6624191A JPH04300950A (en) 1991-03-29 1991-03-29 Production of lignocellulose-phenolic resin having excellent high-temperature fluidity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6624191A JPH04300950A (en) 1991-03-29 1991-03-29 Production of lignocellulose-phenolic resin having excellent high-temperature fluidity

Publications (1)

Publication Number Publication Date
JPH04300950A true JPH04300950A (en) 1992-10-23

Family

ID=13310172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6624191A Pending JPH04300950A (en) 1991-03-29 1991-03-29 Production of lignocellulose-phenolic resin having excellent high-temperature fluidity

Country Status (1)

Country Link
JP (1) JPH04300950A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001074949A1 (en) * 2000-03-31 2001-10-11 Masamitsu Hunaoka Lignocellulosic composition comprising lignophenol derivative and cellulose ingredient
JP2014125595A (en) * 2012-12-27 2014-07-07 Hitachi Chemical Co Ltd Resin composition, and molded product thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001074949A1 (en) * 2000-03-31 2001-10-11 Masamitsu Hunaoka Lignocellulosic composition comprising lignophenol derivative and cellulose ingredient
JP2014125595A (en) * 2012-12-27 2014-07-07 Hitachi Chemical Co Ltd Resin composition, and molded product thereof

Similar Documents

Publication Publication Date Title
CA2646535A1 (en) Methods for producing modified aromatic renewable materials and compositions thereof
JP3911614B2 (en) Biomass resin composition, method for producing the same, and molding material comprising the biomass resin composition
US5254639A (en) Binding agents
JP7215046B2 (en) Method for producing resin material containing phenol-modified lignin resin, and method for producing structure using the same
JP3152421B2 (en) Method for producing lignocellulose-phenolic resin and lignocellulose-phenolic resin molded product
JP2020050814A (en) Resin material comprising phenol-modified lignin resin, phenol-modified lignin resin composition using the same, and structure body
JPH04300950A (en) Production of lignocellulose-phenolic resin having excellent high-temperature fluidity
WO2018155292A1 (en) Adhesive for thermocompression molding, wooden board and method for producing same
JPH01158021A (en) Lignocellulose-phenolic resin composition
KR102477271B1 (en) Thermosetting resin composition with high toughness and flame retardant
JP7459564B2 (en) Method for producing lignin-modified novolac phenolic resin and method for producing crosslinked resin
JPH04300949A (en) Production of molded article of lignocellulose-phenolic resin
JPH03263417A (en) Babassu kernel layer-phenolic resin
JP4355981B2 (en) Phenolic resin molding composition
JPS63210121A (en) Injection-moldable epoxy resin composition
JP2539482B2 (en) Epoxy resin composition for semiconductor encapsulation
US1693112A (en) Phenol resin and process of making same
JP4487334B2 (en) Thermosetting resin composition and molding material using the same
JPH09176259A (en) Phenolic resin molding material
JPH08283534A (en) Melamine-phenol resin composition
JP4120517B2 (en) Wood resin for molding on-vehicle components, its manufacturing method, wood resin material for molding on-vehicle components, and on-vehicle components molded therefrom
JPH09188734A (en) Phenolic resin molding material
JPS6031585A (en) Resin composition for friction material
JPS61171758A (en) Production of phenolic resin composition
JP2005330320A (en) Ligneous resin material for molding car-mounted parts and car-mounted parts molded from the same