JPH01158021A - Lignocellulose-phenolic resin composition - Google Patents

Lignocellulose-phenolic resin composition

Info

Publication number
JPH01158021A
JPH01158021A JP14050788A JP14050788A JPH01158021A JP H01158021 A JPH01158021 A JP H01158021A JP 14050788 A JP14050788 A JP 14050788A JP 14050788 A JP14050788 A JP 14050788A JP H01158021 A JPH01158021 A JP H01158021A
Authority
JP
Japan
Prior art keywords
parts
weight
adhesive
lignocellulose
formaldehyde
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14050788A
Other languages
Japanese (ja)
Other versions
JP2595307B2 (en
Inventor
Nobuo Shiraishi
信夫 白石
Seishin Fuu
夫 世進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honen Corp
New Oji Paper Co Ltd
Original Assignee
Honen Corp
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honen Corp, Oji Paper Co Ltd filed Critical Honen Corp
Priority to JP63140507A priority Critical patent/JP2595307B2/en
Publication of JPH01158021A publication Critical patent/JPH01158021A/en
Application granted granted Critical
Publication of JP2595307B2 publication Critical patent/JP2595307B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Abstract

PURPOSE:To obtain the title composition, containing an addition.condensation reaction product of a mixture containing a phenolic compound and a lignocellulosic material with formaldehyde, having excellent curability, coating properties and adhesive strength and useful as an adhesive. CONSTITUTION:The aimed composition containing an addition.condensation reaction product of (A) a mixture containing 100 pts.wt. phenolic compound and 10-1000 pts.wt. lignocellulosic material with (B) 30-1500 pts.wt. formaldehyde in the presence of a basic catalyst. Furthermore, 1-50 pts.wt. at least one selected from resorcinol compounds and precondensates of resorcinol compounds-formaldehyde is preferably contained in 100 pts.wt. resultant composition.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、リグノセルロース−フェノール樹脂組成物お
よびそれを主成分とする接着剤に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a lignocellulose-phenol resin composition and an adhesive containing the same as a main component.

更に詳しく述べるならば、本発明は、リグノセルロース
材料−フエノール化合物−ホルムアルデヒド付加・縮合
反応生成物を含み、すぐれた硬化性、塗布性および接着
強度を有するリグノセルロース−フェノール樹脂組成物
およびそれを主成分とする接着剤に関するものである。
More specifically, the present invention provides a lignocellulose-phenolic resin composition containing a lignocellulose material, a phenol compound, and a formaldehyde addition/condensation reaction product, and having excellent curability, coating properties, and adhesive strength, and a lignocellulose-phenolic resin composition mainly comprising the same. This relates to the adhesive used as a component.

〔従来の技術および発明が解決しようとする課題〕木材
などリグノセルロース材料は、その収率の高い高付加価
値利用という点では、必ずしも十分に利用されておらず
、そのため、その改善が望まれている。すなわち、これ
ら材料の利用されずに廃棄される部分、廃材となる部分
がかなり多(、それらは低級な用途に振り向けられるか
、あるいは焼却などにより棄却されているのが現状であ
る。
[Prior art and problems to be solved by the invention] Lignocellulosic materials such as wood are not necessarily fully utilized in terms of high-yield, high-value-added use, and therefore improvements are desired. There is. In other words, a considerable amount of these materials are discarded without being used or become waste materials (currently, they are used for low-grade uses or are discarded by incineration, etc.).

本発明は、これらリグノセルロース材料の高付加価値利
用法の一つであり、特にリグノセルロース材料を水溶性
・接着性樹脂組成物に利用しようとするものである。
The present invention is one of the high value-added utilization methods of these lignocellulose materials, and in particular, is intended to utilize lignocellulose materials in water-soluble adhesive resin compositions.

耐久性、耐水性などの高いことを要求される木材用接着
剤として、水溶性フェノール樹脂組成物(レゾール樹脂
組成物)が、広く用いられている。
Water-soluble phenolic resin compositions (resol resin compositions) are widely used as wood adhesives that are required to have high durability and water resistance.

その種の接着剤の問題点の一つは、接着時に十分な硬化
を起こさせるために、140℃以上、場合によっては1
70℃といった高い接着温度を必要とすることである。
One of the problems with this type of adhesive is that it must be heated at temperatures above 140°C to allow sufficient curing during bonding.
This requires a high bonding temperature of 70°C.

そのために、接着すべき木材の含水率を極端に低下させ
ておかないと、接着時の加熱により、いわゆるバンクと
呼ばれる致命的問題を生じることとなる。この問題は、
接着操作に大きな制約を与えることとなり、余分の操作
を要する結果になる。一方、従来からも、リグニン或は
リグノセルロース材料などバイオマスからの接着剤の開
発は試みられつつあり、その成果の一部は実用化もなさ
れている。この場合の大きな問題点は、リグニン変性接
着剤などバイオマス変性接着剤が対応の市販接着剤に比
べて、反応性、硬化性において劣り、このためより苛酷
な接着条件を要するという点にある。このような接着条
件は、工業的接着操作の能率を低下させ、かつ多量のエ
ネルギー消費を要するという結果を生ずることになる。
Therefore, unless the moisture content of the wood to be bonded is extremely reduced, heating during bonding will cause a fatal problem called "banking." This problem,
This places significant restrictions on the bonding operation, resulting in the need for extra operations. On the other hand, attempts have been made to develop adhesives from biomass such as lignin or lignocellulose materials, and some of the results have been put into practical use. The major problem in this case is that biomass-modified adhesives such as lignin-modified adhesives have inferior reactivity and curing properties compared to corresponding commercially available adhesives, and therefore require more severe bonding conditions. Such bonding conditions reduce the efficiency of industrial bonding operations and result in large amounts of energy consumption.

また、リグニン材料を利用した水溶性フェノール樹脂接
着剤の調製については数多くの試みがすでになされてお
り、これらの試みにおいて、耐水性接着剤としての性能
を有するものも多く報告されているが、前述のように、
これらの接着剤は、通常の水溶性接着剤よりも高い接着
温度、長い接着時間など苛酷な接着条件を必要とするも
のとなっている。たとえば、境ら(第28回リグニン化
学討論会(1983)’)はNa−ベースの高歩留sp
廃液を試料として、無機塩類の添加量およびフェノール
溶解・処理条件を変化させて得られた前処理物から塩基
性ホルムアルデヒド系樹脂接着剤を調製している。この
研究の結果、ptt : 2.0、フェノール配合比(
対50部濃度廃液):0.33〜0.50、温度:20
0℃、時間=120分の条件におけるリグニン材料のフ
ェノール処理・溶解物にホルムアルデヒドを配合し、p
H: 9.5〜11.5、温度:80〜90℃の条件下
゛で樹脂化して得られた水溶性リグニン・フェノール樹
脂接着剤は、耐水接着剤として有用な性能を有している
が、しかし、通常よりも幾分高い接着温度を必要とする
ことが知られた。また、何部う(林産試験場月報、Vo
l、15. tlk179.10(1966))は、苛
性ソーダ前処理(液比:1/3、NaOH添加率:20
%対リグニン、反応条件:140℃、3時間)されたク
ラフトリグニンの60部に、40部部のフェノールおよ
び42部のホルムアルデヒドを配合し、これらを共縮合
(80℃、60分)することによって、流動性、熱硬化
性の比較的良好な樹脂を調製している。しかし、この調
製方法において、高温、長時間のアルカリ前処理を要す
ること、および、得られた樹脂を用いて、接着性能の優
れた合板を得るためには、比較的高温度、長時間の条件
で熱圧接着する必要があることなどの問題点が指摘され
ている。また後者の問題点の改善のために、硬化促進剤
(レゾルシノール)の少量添加が有効であることも指摘
されている。
In addition, many attempts have already been made to prepare water-soluble phenolic resin adhesives using lignin materials, and many of these attempts have been reported to have performance as water-resistant adhesives, but the above-mentioned like,
These adhesives require harsher bonding conditions such as higher bonding temperatures and longer bonding times than normal water-soluble adhesives. For example, Sakai et al. (28th Lignin Chemistry Symposium (1983)') reported that Na-based high-yield sp.
A basic formaldehyde resin adhesive is prepared from a pretreated product obtained by using waste liquid as a sample and varying the amount of inorganic salts added and the phenol dissolution/treatment conditions. As a result of this study, PTT: 2.0, phenol blending ratio (
50 parts concentration of waste liquid): 0.33 to 0.50, temperature: 20
Phenol treatment of lignin material under the conditions of 0°C and time = 120 minutes, formaldehyde was blended with the dissolved product, and p
The water-soluble lignin/phenol resin adhesive obtained by resinizing under conditions of H: 9.5 to 11.5 and temperature: 80 to 90°C has useful performance as a water-resistant adhesive. , however, was known to require somewhat higher bonding temperatures than usual. Also, some copies (Monthly Report of the Forest Products Experiment Station, Vo
l, 15. tlk179.10 (1966)) uses caustic soda pretreatment (liquid ratio: 1/3, NaOH addition rate: 20
% to lignin, reaction conditions: 140°C, 3 hours), 40 parts of phenol and 42 parts of formaldehyde were blended with 60 parts of kraft lignin, and these were co-condensed (80°C, 60 minutes). We have prepared resins with relatively good fluidity and thermosetting properties. However, this preparation method requires high temperature and long alkali pretreatment, and in order to obtain plywood with excellent adhesive performance using the resulting resin, relatively high temperature and long time conditions are required. Problems have been pointed out, such as the need for heat-pressure bonding. It has also been pointed out that to improve the latter problem, it is effective to add a small amount of a curing accelerator (resorcinol).

リグニン材料の利用に対して、木材な、どのリグノセル
ロース材料を利用した水溶性フェノール樹脂接着剤の調
製については、この1〜2年に行われた本発明者ら、お
よび小野ら(第31回リグニン討論会要旨集、p、13
3 (1986))の試み以外には知られていない。こ
れは、木材などリグノセルロース材料を、フェノールや
ホルマリン、ないしはフェノール樹脂溶液に溶解せしめ
るということが、本発明者らの発見(特開昭61−26
1358号)以前には知られていなかったためと思われ
る。
In contrast to the use of lignin materials, the preparation of water-soluble phenolic resin adhesives using lignocellulose materials such as wood has been reported in the past 1-2 years by the present inventors and Ono et al. Abstracts of the Lignin Discussion Conference, p. 13
3 (1986)). The inventors discovered that this method dissolves lignocellulosic materials such as wood in phenol, formalin, or phenolic resin solution (Japanese Unexamined Patent Publication No. 61-26
This is probably because it was not known before (No. 1358).

本発明者らおよび小野らが、これまで発表してきたリグ
ノセルロース・フェノール樹脂接着剤には、その硬化に
要する温度および時間が、対応する市販の水溶性フェノ
ール樹脂接着剤(アルカリレゾールタイプ)に比べ、そ
れぞれ高く、また長いという問題点があった。すなわち
、その硬化性にやや問題のある接着剤であった。
The lignocellulose phenolic resin adhesives that the present inventors and Ono et al. have announced so far have a lower temperature and time required for curing than the corresponding commercially available water-soluble phenolic resin adhesives (alkaline resol type). , each had the problem of being expensive and long. In other words, the adhesive had some problems in its curability.

前述のように、従来のアルカリレゾールタイプのフェノ
ール樹脂接着剤は、接着に際して、高温度、長時間の熱
圧条件が必要であり、使用時における単板含水率を低く
規制しなければならないという欠点を有している。そこ
で、尿素樹脂やメラミン樹脂と同じ条件で接着でき、J
AS特類親類規格格する接着性能を持つフェノール樹脂
に関心が持たれることとなる。すなわち、フェノール樹
脂接着剤を7ミノ樹脂接着剤と同じ条件で接着するとい
う命題が生じ、その解決のために、これまで様々な方法
が検討されてきている。その一つは、フェノール樹脂の
反応速度を改善した、高縮合樹脂接着剤を使用すること
であるが、この樹脂接着剤には、貯蔵性が著しく低いな
どの欠点がある。
As mentioned above, conventional alkaline resol type phenolic resin adhesives require high temperature and long-term heat-pressure conditions for bonding, and have the disadvantage that the moisture content of the veneer must be kept low during use. have. Therefore, it can be bonded under the same conditions as urea resin and melamine resin, and J
There has been interest in phenolic resins that have adhesive properties that meet the AS standards. That is, the proposition of bonding a phenolic resin adhesive under the same conditions as a 7-mino resin adhesive has arisen, and various methods have been studied to solve this problem. One method is to use a highly condensed resin adhesive with improved reaction rate of phenolic resin, but this resin adhesive has drawbacks such as extremely low storage stability.

また、他の方法として酸硬化型フェノール樹脂接着剤を
利用して高速硬化を得ることも試みられている。後者の
接着剤の場合、常温でも硬化するようになるが、接着剤
のpHを2以下にする必要があり、このような低いpi
は木材の缶化を引き起こす原因となる。フェノール樹脂
の高速硬化性化について、このようないくつかの試行錯
誤を経たのちに、フェノール・メラミン共縮合樹脂が上
記目的を達成し得ることが見出されてきている。すなわ
ち、フェノール・メラミン樹脂接着剤は、アミノ樹脂な
みの条件で接着出来ること、尿素樹脂と混合してJAS
特類から2類なみの任意の規格に合格する接着性能が得
られることなどの特徴を持つ −でおり、所期の目的を
達成し得るものであり、実用化もされている。
In addition, as another method, attempts have been made to obtain high-speed curing using acid-curable phenolic resin adhesives. In the case of the latter adhesive, it will harden even at room temperature, but the pH of the adhesive must be lower than 2, and
causes canning of the wood. After several trials and errors as described above, it has been discovered that a phenol-melamine cocondensation resin can achieve the above-mentioned objective in making a phenol resin harden faster. In other words, the phenol/melamine resin adhesive can be bonded under the same conditions as amino resin, and can be mixed with urea resin to meet the JAS standard.
It has characteristics such as being able to obtain adhesion performance that passes any standard from special class to class 2, and is able to achieve its intended purpose and has been put into practical use.

以上のように、これまで報告されたリグノセルロース・
フェノール樹脂、およびリグニン・フェノール樹脂の特
性には一長一短があり、総合的には不十分なものと言わ
ざるを得なかった。それと共に、水溶性フェノール樹脂
接着剤の熱圧硬化温度をアミノ樹脂のそれなみに低下さ
せるという目的は、従来のリグノセルロース・フェノー
ル樹脂接着剤では十分に達成されていない。
As mentioned above, the lignocellulose and
The properties of phenol resin and lignin/phenol resin have both advantages and disadvantages, and it has to be said that they are unsatisfactory overall. At the same time, the objective of lowering the heat-pressure curing temperature of water-soluble phenolic resin adhesives to the same level as that of amino resins has not been sufficiently achieved with conventional lignocellulose phenolic resin adhesives.

すなわち本発明は、従来のリグノセルロース−フェノー
ル樹脂組成物および接着剤における下記問題点: (イ)所要接着硬化温度が、所望温度より高いこと。
That is, the present invention addresses the following problems with conventional lignocellulose-phenolic resin compositions and adhesives: (a) The required adhesive curing temperature is higher than the desired temperature.

(ロ)所要接着硬化時間が、所望時間より長いこと。(b) The required adhesive curing time is longer than the desired time.

を解消し、比較的低温で高速硬化接着の可能な樹脂組成
物および接着剤を提供しようとするものである。
The purpose of the present invention is to provide a resin composition and an adhesive that can cure the problem at a relatively low temperature and at a high speed.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のリグノセルロース−フェノール樹脂組成物は、
100重量部のフェノール化合物と10〜1ooo重量
部のリグノセルロース材料とを含む混合物と、30〜1
500重量部のホルムアルデヒドとの、塩基性触媒の存
在下における付加・縮合反応生成物を含むことを特徴と
するものである。
The lignocellulose-phenolic resin composition of the present invention is
a mixture comprising 100 parts by weight of a phenolic compound and 10 to 100 parts by weight of lignocellulosic material;
It is characterized in that it contains an addition/condensation reaction product with 500 parts by weight of formaldehyde in the presence of a basic catalyst.

また、本発明の他のリグノセルロース−フェノール樹脂
組成物は、100重量部のフェノール化合物と10〜1
000重量部のリグノセルロース材料とを含む混合物と
、30〜1500重量部のホルムアルデヒドとの、塩基
性触媒の存在下における付加・縮合反応生成物の100
重量部と、レゾルシノール化合物およびレゾルシノール
化合物−ホルムアルデヒド初期縮合物から選ばれた少な
くとも1種の1〜50重量部とを含むことを特徴とする
ものである。
Further, another lignocellulose-phenolic resin composition of the present invention includes 100 parts by weight of a phenol compound and 10 to 1 part by weight of a phenol compound.
100 parts by weight of the addition/condensation reaction product of a mixture containing 1,000 parts by weight of lignocellulosic material with 30 to 1,500 parts by weight of formaldehyde in the presence of a basic catalyst.
parts by weight, and 1 to 50 parts by weight of at least one selected from a resorcinol compound and a resorcinol compound-formaldehyde initial condensate.

また、本発明は、前記リグノセルロース−フェノール樹
脂組成物を主成分として含む接着剤を包含するものであ
る。
The present invention also includes an adhesive containing the lignocellulose-phenol resin composition as a main component.

本発明の樹脂組成物の調製にあたり、先づ100重量部
のフェノール化合物と、10〜1000重量部のリグノ
セルロース材料とを含む混合物と、30〜1500重量
部のホルムアルデヒドとを、塩基性触媒の存在下で付加
・縮合反応させてリグノセルロース−レゾール樹脂が調
製される。
In preparing the resin composition of the present invention, first, a mixture containing 100 parts by weight of a phenol compound, 10 to 1000 parts by weight of lignocellulose material, and 30 to 1500 parts by weight of formaldehyde are mixed in the presence of a basic catalyst. Lignocellulose-resol resin is prepared by addition/condensation reaction below.

本発明に用いられるフェノール化合物は、フェノール、
クレゾール、キシレノール、アルキルフェノール、フェ
ニルフェノールおよびレゾルシノールなどから選ぶこと
ができる。
The phenolic compounds used in the present invention include phenol,
It can be selected from cresol, xylenol, alkylphenol, phenylphenol and resorcinol.

また、本発明に用いられるリグノセルロース材料は、木
材チップ、木材繊維(パルプ)、古紙バルブ、木粉、お
よび稲わらなどから選ぶことができ、そのさい樹種につ
いては格別の制約はない。
Furthermore, the lignocellulose material used in the present invention can be selected from wood chips, wood fibers (pulp), waste paper bulbs, wood flour, rice straw, etc., and there are no particular restrictions on the tree species.

本発明に用いられる前記付加・縮合反応用塩基性触媒と
しては、苛性ソーダ、水酸化カリウム、アンモニア、有
機アミン類並びに、亜鉛、カルシウム、マグネシウムお
よびアルミニウムの水酸化物などから選ばれた少なくと
も1種を含むものを用いることができる。
The basic catalyst for the addition/condensation reaction used in the present invention includes at least one selected from caustic soda, potassium hydroxide, ammonia, organic amines, and hydroxides of zinc, calcium, magnesium, and aluminum. can be used.

マタ、フェノール化合物−リグノセルロース材料混合物
とホルムアルデヒドとの付加・縮合反応は、60℃〜1
50℃の温度で、行われることが好ましく、一般に反応
所要時間は30〜360分である。
The addition/condensation reaction between the phenolic compound-lignocellulose material mixture and formaldehyde is carried out at 60°C to 1°C.
Preferably, the reaction is carried out at a temperature of 50°C, and the reaction time generally ranges from 30 to 360 minutes.

リグノセルロース材料は、その構成成分、特にリグニン
をフェノリシスすることにより、リグニン、セルロース
、ヘミセルロースなどの分子内結合の種々の度合の開裂
と種々の度合のリグニン側鎖α位などへのフェノールの
導入をはかり、それにより、リグノセルロース材料の溶
解を容易にし、その溶液の性能、性質を優れたものとす
ることができる。また、これによってリグニンなどリグ
ノセルロース構成成分の反応性を高め、その後の反応を
行いやすいものとすることもできる。そして、その結果
、接着剤の物性および接着性などの特性が高められるこ
ととなる。
Lignocellulosic materials can be produced by phenolysing their constituent components, especially lignin, to achieve various degrees of cleavage of intramolecular bonds in lignin, cellulose, hemicellulose, etc. and various degrees of phenol introduction into the α-position of the lignin side chain. The scale can facilitate the dissolution of lignocellulosic material and improve the performance and properties of the solution. In addition, this increases the reactivity of lignocellulose constituents such as lignin, making it easier to carry out subsequent reactions. As a result, the physical properties and adhesive properties of the adhesive are improved.

また、セルロース、およびヘミセルロースなどの多糖成
分も、本発明の樹脂生成反応の際に部分的に加水分解さ
れて、オキシメチルフルフラールを含む反応性の高い反
応生成物となり、これが得られる接着剤の性能を高める
ことができる。
In addition, polysaccharide components such as cellulose and hemicellulose are also partially hydrolyzed during the resin production reaction of the present invention, resulting in highly reactive reaction products including oxymethylfurfural, and the performance of the resulting adhesive. can be increased.

フェノール化合物−リグノセルロース材料を含む混合物
は、リグノセルロース材料のフェノール化合物によるフ
ェノール化反応生成物を含んでいてもよい。リグノセル
ロース材料の、特に、そのリグニン成分などのフェノー
ル化は、触媒なしで単に加熱することによっても進行す
るが、この場合は140℃〜220℃にも達するがなり
高い温度が4・要である。リグノセルロース材料のフェ
ノール化をより容易に進行させるためには、塩酸、硫酸
、および硝酸、などの鉱酸、ギ酸、酢酸、シュウ酸、ベ
ンゼンスルホン酸、トルエンスルホン酸、フェノールス
ルホン酸、およびトリフルオロ酢酸等の有機酸、並びに
塩化アルミニウム、塩化亜鉛、および三フッ化ホウ素等
のルイス酸などから選ばれた少なくとも1種からなる酸
性触媒、または、第四級アルミニウム塩や苛性ソーダな
どの少なくとも1種からなるアルカリ触媒の存在下で1
50”C以下の温度で加熱処理を行うことが特に好適で
ある。
The phenolic compound-lignocellulosic material-containing mixture may include a phenolization reaction product of the lignocellulosic material with the phenolic compound. Phenolization of lignocellulosic materials, especially their lignin components, can also proceed by simply heating without a catalyst, but in this case, a fairly high temperature is required, reaching 140°C to 220°C. . To facilitate the phenolation of lignocellulosic materials, mineral acids such as hydrochloric, sulfuric, and nitric acids, formic acid, acetic acid, oxalic acid, benzenesulfonic acid, toluenesulfonic acid, phenolsulfonic acid, and trifluorocarbon An acidic catalyst consisting of at least one selected from organic acids such as acetic acid, and Lewis acids such as aluminum chloride, zinc chloride, and boron trifluoride, or at least one selected from quaternary aluminum salts and caustic soda. 1 in the presence of an alkali catalyst of
It is particularly preferred to carry out the heat treatment at a temperature of 50''C or less.

リグノセルロース材料を、酸触媒の存在下においてフェ
ノール化した場合、必要に応じて、この酸触媒を中和す
る。しかし、次のホルムアルデヒドによる付加・縮合反
応においては、好ましくは苛性ソーダからなる塩基性触
媒を用いるので、上記の中和にあたり苛性ソーダを用い
ると便利である。
If the lignocellulosic material is phenolated in the presence of an acid catalyst, the acid catalyst is optionally neutralized. However, in the subsequent addition/condensation reaction using formaldehyde, a basic catalyst preferably consisting of caustic soda is used, so it is convenient to use caustic soda for the above neutralization.

しかしながら、無触媒でフェノール化溶解を進めておく
と、この中和の問題が生ずることがなく、中和による塩
の生成などを考えると、無触媒フェノール化がより好適
である。また、フェノール化反応において三フッ化ホウ
素のようなルイス酸や第四級アンモニウム塩を触媒とし
て使用した場合、それらをその後の樹脂化の触媒として
用いるとか、塩酸やトリフルオロ酢酸のような触媒を蒸
溜などにより回収することができることもあり、それら
の場合には触媒の中和の必要はない。
However, if the phenolization and dissolution proceed without a catalyst, this problem of neutralization will not occur, and in consideration of the formation of salts due to neutralization, non-catalytic phenolization is more suitable. In addition, when Lewis acids such as boron trifluoride or quaternary ammonium salts are used as catalysts in the phenolization reaction, they may be used as catalysts for subsequent resin formation, or catalysts such as hydrochloric acid or trifluoroacetic acid may be used as catalysts. In some cases, it can be recovered by distillation, etc., and in those cases there is no need to neutralize the catalyst.

リグノセルロース材料−フエノール化合物−ホルムアル
デヒド付加・縮合反応生成物の調製にあたっては、フェ
ノール化合物の100重量部に対し、リグノセルロース
材料を10〜1000重量部の割合で加える。低濃度溶
液は容易に調製できるが、リグノセルロース材料利用の
接着剤としては、その含有量が10重量部以上でなけれ
ば無意味であり、その使用量は1000重量部以上であ
ってもよいが、1000重量部以下の使用量で性能上十
分意味のある接着剤を得ることができる。リグノセルロ
ース材料はフェノール100重量部に対して1000重
量部以上の大量で用いてもよいが、このような高濃度で
溶解させるためには、メタノール、アセトンなどの低沸
点の溶媒とフェノールの混合溶媒を用い、ソルボリシス
を施した後前記溶媒を情夫するなどの手法を用いてもよ
い。
In preparing the lignocellulose material-phenol compound-formaldehyde addition/condensation reaction product, 10 to 1000 parts by weight of the lignocellulose material is added to 100 parts by weight of the phenol compound. A low concentration solution can be easily prepared, but as an adhesive using lignocellulose materials, it is meaningless unless the content is 10 parts by weight or more, and the amount used may be 1000 parts by weight or more. , an adhesive having sufficient performance significance can be obtained with a usage amount of 1000 parts by weight or less. The lignocellulose material may be used in a large amount of 1000 parts by weight or more per 100 parts by weight of phenol, but in order to dissolve it at such a high concentration, a mixed solvent of phenol and a low boiling point solvent such as methanol or acetone is required. Alternatively, a method may be used in which the solvent is removed after solvolysis.

また、リグノセルロース材料−フエノール化合物−ホル
ムアルデヒド付加・縮合反応生成物の調製にあたり、ホ
ルムアルデヒドの使用量は、リグノセルロース材料およ
びフェノール材料の使用量の合計量の100重量部当り
10〜100重量部であることが好ましい。ホルムアル
デヒドの使用量が10重量部より少ないと、得られる反
応生成物の硬化性が不満足なものになることがあり、ま
た、100重量部より多くなると、得られる反応生成物
の保存安定性が実用上不満足なものになることがある。
Further, in preparing the lignocellulose material-phenol compound-formaldehyde addition/condensation reaction product, the amount of formaldehyde used is 10 to 100 parts by weight per 100 parts by weight of the total amount of the lignocellulose material and the phenol material used. It is preferable. If the amount of formaldehyde used is less than 10 parts by weight, the curing properties of the resulting reaction product may be unsatisfactory, while if it is more than 100 parts by weight, the storage stability of the resulting reaction product may be insufficient for practical use. It may turn out to be unsatisfactory.

本発明の他の樹脂組成物の調製において、フェノール化
合物−リグツセルロース材料−ホルムアルデヒド付加・
縮合反応により生成したリグノセルロース−フェノール
樹脂の100重量部と、レゾルシノール化合物およびレ
ゾルシノール化合物−ホルムアルデヒド初期縮合物から
選ばれた少なくとも1種の1〜50重量部とが混合せし
められる。
In the preparation of other resin compositions of the present invention, phenolic compound - cellulose material - formaldehyde addition/
100 parts by weight of the lignocellulose-phenol resin produced by the condensation reaction and 1 to 50 parts by weight of at least one selected from resorcinol compounds and resorcinol compound-formaldehyde initial condensates are mixed.

上記両成分は混合され反応せしめられてもよい。Both of the above components may be mixed and reacted.

本発明に用いられるレゾルシノール化合物は、レゾルシ
ノール、アルキルレゾルシノール(例えば、メチル−、
ジメチル−、トリメチル−レゾルシノールおよびこれら
の混合物)、メタクレゾール、メタアミノフェノール、
およびタンニンなどから選ばれる。
The resorcinol compounds used in the present invention include resorcinol, alkylresorcinol (for example, methyl-,
dimethyl-, trimethyl-resorcinol and mixtures thereof), meta-cresol, meta-aminophenol,
and tannins.

本発明に用いられるレゾルシノール化合物−ホルムアル
デヒド初期縮合物は、上記レゾルシノール化合物の少な
くとも1種とホルムアルデヒドとを適当な触媒、例えば
、苛性ソーダ、水酸化カリウム、アンモニア、有機アミ
ン、水酸化カルシウム、および水酸化マグネシウムなど
のような塩基性触媒、又は、塩酸、硫酸、ギ酸、酢酸、
フェノールスルホン酸などのような酸性触媒の存在下で
、縮合させて、製造することができる。このとき、レゾ
ルシノール化合物と、ホルムアルデヒドとのモル比は通
常のレゾルシにル樹脂に用いられている割合でよいが、
特に、1:0.5〜t:t、Sであることが好ましい。
The resorcinol compound-formaldehyde initial condensate used in the present invention is prepared by combining at least one of the above resorcinol compounds and formaldehyde with a suitable catalyst, such as caustic soda, potassium hydroxide, ammonia, organic amine, calcium hydroxide, and magnesium hydroxide. Basic catalysts such as hydrochloric acid, sulfuric acid, formic acid, acetic acid,
It can be produced by condensation in the presence of an acidic catalyst such as phenolsulfonic acid. At this time, the molar ratio of the resorcinol compound and formaldehyde may be the same as that used in ordinary resorcinol resins, but
In particular, it is preferable that the ratio is 1:0.5 to t:t, S.

ホルムアルデヒドの使用量が0.5モルより少ないと、
得られる樹脂組成物の硬化性が不満足なものになること
があり、また、1.5モルより多くなると、得られる初
期縮合物および樹脂組成物の保存安定性が、不満足なも
の、になることがある。
If the amount of formaldehyde used is less than 0.5 mol,
The resulting resin composition may have unsatisfactory curability, and if the amount exceeds 1.5 mol, the resulting initial condensate and resin composition may have unsatisfactory storage stability. There is.

本発明の樹脂組成物において、リグノセルロース材料−
フエノール化合物−ホルムアルデヒド付加・縮合生成物
100重量部に対し、レゾルシノール化合物およびレゾ
ルシノール化合物−ホルムアルデヒド初期縮合物から選
ばれた少なくとも1種からなるレゾルシノール化合物成
分を、1〜50重量部、好ましくは、5〜25重量部の
添加量で用いる。
In the resin composition of the present invention, lignocellulose material-
1 to 50 parts by weight, preferably 5 to 50 parts by weight of a resorcinol compound component consisting of at least one selected from a resorcinol compound and a resorcinol compound-formaldehyde initial condensate, per 100 parts by weight of the phenol compound-formaldehyde addition/condensation product. It is used in an amount of 25 parts by weight.

本発明に用いられるレゾルシノール化合物−ホルムアル
デヒド初期縮合物は、レゾルシノール化合物1モルに対
し、10モル以下の共重合成分、例えば、フェノール、
クレゾールなどを含んでいてもよい。
The resorcinol compound-formaldehyde initial condensate used in the present invention contains copolymerized components of 10 moles or less per mole of the resorcinol compound, such as phenol,
It may also contain cresol or the like.

レゾルシノール化合物又はレゾルシノール化合物−ホル
ムアルデヒド初期縮合物の量が、1重量部より少量の場
合、所望のレゾルシノール強化の効果が不満足なものと
なり、また50重量%より多量になると、得られる組成
物又は接着剤の有効貯蔵時間および可使時間が短縮し、
経済的に不利になる、という不都合を生ずる。
If the amount of the resorcinol compound or resorcinol compound-formaldehyde initial condensate is less than 1 part by weight, the desired effect of reinforcing resorcinol will be unsatisfactory, and if the amount is more than 50% by weight, the resulting composition or adhesive The effective storage time and pot life of
This results in the inconvenience of being economically disadvantaged.

レゾルシノール化合物又はレゾルシノール化合物−ホル
ムアルデヒド初期縮合物とりグツセルロース−レゾール
樹脂との反応(又は共重合反応)は、100℃以下、好
ましくは室温〜80℃の温度で行われることが好ましく
、反応所要時間は、−般に1分〜20時間である。
The reaction (or copolymerization reaction) between the resorcinol compound or the resorcinol compound-formaldehyde initial condensate and the cellulose-resole resin is preferably carried out at a temperature of 100°C or lower, preferably between room temperature and 80°C, and the reaction time is , - generally from 1 minute to 20 hours.

本発明の樹脂組成物において、リグノセルロース材料−
フエノール化合物−ホルムアルデヒド付加・縮合反応生
成物に、レゾルシノール化合物および/又はレゾルシノ
ール化合物−ホルムアルデヒド初期縮合物を添加するこ
とにより、樹脂組成物の高速硬化性、および保存安定性
を向上させるのみならず、更に、被接着面に対する浸透
性および転写性を向上させ、かつ乾燥接着現像の発生を
防止することができる。
In the resin composition of the present invention, lignocellulose material-
By adding a resorcinol compound and/or a resorcinol compound-formaldehyde initial condensate to the phenol compound-formaldehyde addition/condensation reaction product, not only the rapid curing properties and storage stability of the resin composition are improved, but also the , it is possible to improve the permeability and transferability to the surface to be adhered, and to prevent the occurrence of dry adhesive development.

本発明の樹脂組成物は、接着剤の主成分として有用なも
のであり、その使用の際に樹脂組成物にさらに、必要に
応じ、パラホルムアルデヒドホルマリン、又はヘキサメ
チレンテトラミンなどの硬化側を加えてもよく、更に充
填剤および増量剤などを加えてもよい。
The resin composition of the present invention is useful as a main component of an adhesive, and when used, a curing agent such as paraformaldehyde formalin or hexamethylenetetramine may be added to the resin composition as necessary. Furthermore, fillers, extenders, etc. may be added.

本発明の組成物において、リグノセルロース材料−フエ
ノール化合物−ホルムアルデヒド付加・縮合生成物と、
レゾルシノール化合物およびまたはレゾルシノール化合
物−ホルムアルデヒド初期縮合物との共重合反応におい
て、レゾルシノール化合物成分およびパラホルムアルデ
ヒド、ホルマリンなどホルムアルデヒドの添加量の増加
と共に、得られる樹脂組成物の硬化特性、および接着物
の耐水性は高まるが、可使時間が短くなり、従って、こ
れらの特性のバランスを適切なものにすることが重要で
ある。ホルマリンなどのようにホルムアルデヒドを含み
、反応系に直接供給し得る成分を、ある限界量以上の量
で後添加する場合、あるいはこのような成分が予め反応
系中に多量に存在する場合は、樹脂組成物の硬化性を著
しく高め、可使時間を著しく短縮させる。このように、
硬化時間を短くし、しかも可使時間を縮めないという目
的には、ヘキサメチレンテトラミンの使用が良い結果を
与えている。なお、リグノセルロース−レゾール樹脂調
製の際に、添加するホルムアルデヒド量を、フェノール
化合物1モルに対し、2.5モル程度としておき、ホル
ムアルデヒドを生成する化学種を後添加しない場合、レ
ゾルシノール化合物を、得られる樹脂組成物重量に対し
10%以上という過剰量で添加すると、その添加量の増
加と共に硬化性が、逆に低下するという結果を生ずる。
In the composition of the present invention, a lignocellulose material-phenol compound-formaldehyde addition/condensation product,
In the copolymerization reaction with a resorcinol compound and/or a resorcinol compound-formaldehyde initial condensate, as the amount of the resorcinol compound component and formaldehyde such as paraformaldehyde and formalin increases, the curing characteristics of the resulting resin composition and the water resistance of the adhesive increase. Although the pot life is increased, it is important to get the balance of these properties right. When a component such as formalin that contains formaldehyde and can be directly supplied to the reaction system is added later in an amount exceeding a certain limit, or when such a component is already present in a large amount in the reaction system, the resin It significantly increases the curability of the composition and significantly shortens its pot life. in this way,
For the purpose of shortening the curing time without shortening the pot life, the use of hexamethylenetetramine has given good results. In addition, when preparing the lignocellulose-resole resin, the amount of formaldehyde added is set at about 2.5 mol per 1 mol of the phenol compound, and if a chemical species that generates formaldehyde is not added afterwards, the resorcinol compound can be obtained. If it is added in an excessive amount of 10% or more based on the weight of the resin composition, the curability will conversely decrease as the amount added increases.

これは、反応系中におけるホルムアルデヒドの不足によ
り、遊離のレゾルシノール化合物が溶融効果を呈するも
のと思われる。上記のようなレゾルシノール化合物の後
添加に引き続いて、その反応混合物を、例えば室温で1
分から20時間放置するとか、或1ま35℃で30分反
応させるなどのように、中温までの温度で、反応生成物
の硬化にまで至らない範囲で、あるいは、生成した樹脂
組成物の可使時間を著しく短くすることの生じない範囲
で、適宜の条件で反応させる。すなわち、100℃以下
、好ましくは室温〜80℃の温度で、例えば1分〜20
時間反応させるのが一般である。
This is thought to be because the free resorcinol compound exhibits a melting effect due to the lack of formaldehyde in the reaction system. Following the post-addition of the resorcinol compound as described above, the reaction mixture is heated, e.g.
The reaction product may be left to stand for a minute to 20 hours, or the resulting resin composition may be usable at moderate temperatures, such as by leaving the reaction product for 30 minutes at 1 to 35°C. The reaction is carried out under appropriate conditions within a range that does not significantly shorten the reaction time. That is, at a temperature of 100°C or less, preferably room temperature to 80°C, for example, 1 minute to 20 minutes.
Generally, the reaction is carried out over a period of time.

なお、本発明は、その樹脂組成物の主成分の一つとして
、フェノール化合物よりかなり廉価なリグノセルロース
材料を多量に用いる(フェノール化合物の50〜60%
をリグノセルロースで置き換えても、得られる接着剤の
性能を低下させない)ものであり、得られる樹脂組成物
および接着剤のコスト低減が期待し得るものである。こ
のように原料費の低下分だけ経済的にもフェノールより
高価な強化剤の使用が可能となる。本発明において、ア
ルキルレゾルシノールをその範囲で用いた場合にも、十
分な効果が認められている。なおアルキルレゾルシノー
ル、例えばメチル−およびジメチル−レゾルシノール、
の価格は、フェノールの4倍であるが、レゾルシノール
の1/2であるともいわれている。
The present invention uses a large amount of lignocellulose material, which is considerably cheaper than phenolic compounds, as one of the main components of the resin composition (50 to 60% of phenolic compounds).
Even if lignocellulose is used to replace lignocellulose, the performance of the resulting adhesive will not deteriorate), and a reduction in the cost of the resulting resin composition and adhesive can be expected. In this way, it is economically possible to use a toughening agent that is more expensive than phenol due to the reduction in raw material costs. In the present invention, sufficient effects have been observed even when alkylresorcinol is used within this range. Additionally, alkylresorcinols, such as methyl- and dimethyl-resorcinol,
The price of resorcinol is said to be four times that of phenol, but half that of resorcinol.

本発明の樹脂組成物接着剤の性能をより改善するために
、その使用する前に、各種の添加剤を添加することが出
来る。たとえば、接着剤の粘度の調節、コスト低減、熱
膨潤率の低下、硬化収縮率の減少、硬化時の発熱の抑制
、接着性の改善などの目的で増量剤、もしくは充填剤を
加えることが望ましい。増量剤としては、小麦粉、大麦
粉、米粉、トーモロコシ粉などのような穀物粉、並びに
、脱脂大豆粉、血粉、カゼイン粉末などの動植物性蛋白
質粉末のような、通常フェノール樹脂接着剤において使
用されている増量剤を使用することができる。また、充
填剤の好適例としては、無機質のものでは、砕石、砂、
シリカ、タルク、炭酸カルシウムクレー、炭酸ナトリウ
ム、消石灰などがあり、更に、マイカ、アスベスト、ガ
ラス細片などの補強性充填剤のほか、その目的に応じて
、石英粉、グラファイト、陶磁器粉、アルミナ、シリカ
ゲル(と(に、シキソトロピフクな性質を与えるのに有
効)、アルミニウム、酸化アルミ、鉄、酸化鉄、など、
および銅などのように熱膨潤係数、熱伝導性、接着性に
寄与する金属、および酸化アンチモンなどのように難燃
性を与える無機材料などを挙げることが出来る。また、
有機、質の充填剤としては、小麦粉、クルジ、やココナ
ツの穀粉末木粉、モミガラ粉などの他、微細なプラスチ
ック粉末(フェノール樹脂、尿素樹脂など)、ガラス繊
維、ロックウール、炭素繊維のような軽量化用充填剤と
しての機能をもったものなどを使用することが出来る。
In order to further improve the performance of the resin composition adhesive of the present invention, various additives can be added before its use. For example, it is desirable to add an extender or filler to adjust the viscosity of the adhesive, reduce cost, reduce thermal expansion rate, reduce curing shrinkage rate, suppress heat generation during curing, and improve adhesive properties. . As fillers, grain flours such as wheat flour, barley flour, rice flour, corn flour, etc., as well as animal and vegetable protein powders such as defatted soybean flour, blood meal, casein powder, etc. are commonly used in phenolic adhesives. Bulking agents can be used. In addition, suitable examples of inorganic fillers include crushed stone, sand,
These include silica, talc, calcium carbonate clay, sodium carbonate, slaked lime, etc. In addition to reinforcing fillers such as mica, asbestos, and glass chips, depending on the purpose, quartz powder, graphite, ceramic powder, alumina, Silica gel (effective for imparting sixotropic properties), aluminum, aluminum oxide, iron, iron oxide, etc.
Examples include metals such as copper that contribute to thermal expansion coefficient, thermal conductivity, and adhesive properties, and inorganic materials that provide flame retardancy such as antimony oxide. Also,
Organic, quality fillers include wheat flour, kurji, coconut grain powder, wood flour, and rice hull powder, as well as fine plastic powders (phenolic resin, urea resin, etc.), glass fiber, rock wool, carbon fiber, etc. It is possible to use materials that have the function of a weight-reducing filler.

さらに、接着剤の性能を改善するためには、プレオリゴ
マー溶液状接着剤に、従来使用されている尿素樹脂、メ
ラミン樹脂等のアミノ樹脂、その他に天然および合成高
分子類、オリゴマー類、低分子可塑剤、およびその他公
知の添加剤(耐熱剤、耐候剤、滑剤、繊維状補強剤など
)などを添加することが出来る。
Furthermore, in order to improve the performance of adhesives, pre-oligomer solution adhesives should be combined with conventionally used amino resins such as urea resins and melamine resins, as well as natural and synthetic polymers, oligomers, and small molecules. Plasticizers and other known additives (heat resistant agents, weather resistant agents, lubricants, fibrous reinforcing agents, etc.) can be added.

本発明の接着剤は、通常は、溶液ないしペースト状で被
接着面に塗布することにより使用される。
The adhesive of the present invention is usually used by applying it to a surface to be bonded in the form of a solution or paste.

接着操作における接着温度、接着時間、接着圧などの接
着条件は、従来の水溶性フェノール樹脂接着剤で用いら
れている条件に準じて設定することができる。と(に、
接着温度については、むしろ従来のフェノール樹脂接着
剤よりも低減しうる。
Adhesion conditions such as adhesion temperature, adhesion time, and adhesion pressure in the adhesion operation can be set according to conditions used for conventional water-soluble phenolic resin adhesives. and(ni,
In fact, the bonding temperature can be lower than that of conventional phenolic resin adhesives.

すなわち、接着温度:120℃〜140℃、接着時間:
0.5〜1 (分/fi厚・合板)、接着圧ニア〜15
kgf/cdなどの接着条件で耐水接着性を含めたすぐ
れた接着を行うことが出来る。
That is, bonding temperature: 120°C to 140°C, bonding time:
0.5~1 (min/fi thickness/plywood), adhesive pressure near~15
Excellent adhesion including water-resistant adhesion can be achieved under adhesion conditions such as kgf/cd.

本発明の接着剤を用いる接着操作は、常温での圧締、ホ
ットプレスによる加熱圧着によるほか、高周波加熱、マ
イクロ波加熱、低電圧加熱による熱圧法を用いて、適宜
実施することができる。
The bonding operation using the adhesive of the present invention can be carried out as appropriate by pressing at room temperature, heating and pressing using a hot press, or by using a thermopressing method using high-frequency heating, microwave heating, or low-voltage heating.

本発明の接着剤は、木質建材用、窯業建材用、一般木工
用、木材と他材料との接着の一部に用いることができる
他、金属材料、プラスチック材料、および繊維材料など
を包含する各種の材料の接着に用いることが出来る。ま
た、本発明の組成物は、複合材料用マトリックス樹脂、
或は、成形材料用樹脂として、通常フェノール樹脂が使
用されている用途にも利用することができる。
The adhesive of the present invention can be used for wood building materials, ceramic building materials, general woodworking, and for bonding wood with other materials, as well as various types of adhesives including metal materials, plastic materials, fiber materials, etc. It can be used to bond materials. The composition of the present invention also includes matrix resin for composite materials,
Alternatively, it can also be used in applications where phenolic resins are normally used as resins for molding materials.

〔実施例〕〔Example〕

以下に実施例を挙げて本発明を、さらに説明する。 The present invention will be further explained below with reference to Examples.

スm マカンバ木材チップ100重量部とフェノール80重量
部とをステンレススチール製耐圧反応缶に秤り取り、2
50℃オイルバス中で2時間加熱して、木材チップのフ
ェノール化も併起させながら溶解した。この溶液にジオ
キサンを40重量部加えたのち、35%ホルムアルデヒ
ド水溶液をフェノール1モルに対して、ホルムアルデヒ
ドが2.5モルとなるように秤り取り、上記のフェノー
ル化の終了したマカンバ木材−フエノール溶液に加え、
さらに40%の苛性ソーダ水溶液を添加し、溶液のpH
を9に調整した。この反応混合液を攪拌機および冷却管
の付いた500d容二口フラスコに移し、攪拌下に、9
0℃で1時間反応させ、リグノセルロース−レゾール樹
脂の製造を行った。この反応中、約20分ごとに反応混
合液のpoを測定し、それがpH9を保つように、必要
に応じて40%苛性ソーダ水溶液を加えた。反応終了後
、ジオキサンを含む区分40重量部を留去し、得られた
リグノセルロース−レゾール樹脂組成物にヤシガラ粉5
部を加え、この組成物について下記の接着力試験を行っ
た。
Weigh out 100 parts by weight of Macamba wood chips and 80 parts by weight of phenol into a stainless steel pressure-resistant reaction can, and
The wood chips were heated in an oil bath at 50° C. for 2 hours to dissolve them while also causing phenolization of the wood chips. After adding 40 parts by weight of dioxane to this solution, a 35% formaldehyde aqueous solution was weighed out so that formaldehyde was 2.5 moles per mole of phenol, and the above phenolized Macamba wood-phenol solution was prepared. In addition to
Furthermore, 40% aqueous caustic soda solution was added to adjust the pH of the solution.
was adjusted to 9. This reaction mixture was transferred to a 500 d two-necked flask equipped with a stirrer and condenser, and while stirring,
A reaction was carried out at 0° C. for 1 hour to produce a lignocellulose-resol resin. During this reaction, the po of the reaction mixture was measured approximately every 20 minutes, and 40% aqueous sodium hydroxide solution was added as necessary to maintain the pH at 9. After the reaction, 40 parts by weight of the fraction containing dioxane was distilled off, and 5 parts of coconut shell powder was added to the resulting lignocellulose-resol resin composition.
The composition was subjected to the following adhesion test.

攪塁拭駿 接着試片としては、厚さ約2鶴のカバ柾目単板(11X
11cm)を用い、これに接着剤を片面塗布し、−接着
面あたりの塗布量を120g/rrrとした。この際、
接着試片を、その木理方向が直交するように、かつ、3
プライ合板となるように重ね合わせ、この積層物を13
 kgf /crJの圧力下での冷圧圧締を30分施し
、更に、120℃、13 kgf /dの加熱圧締を6
分間施した。接着後、積層物を一夜室内に放置したのち
、常法に従って引張剪断試験用の試片を切り出した。こ
のようにして、それぞれの接着剤ごとに、常態接着力測
定用の試片を4枚、耐水接着力測定用の試片を4枚用意
した。常態接着力の測定は、常法に従い、引張速度1.
0 mm/sinで、島津オートグラフDO3−R−5
00を用いて行った。
As a test piece for the adhesive bonding, we used birch straight-grained veneer (11X
11 cm), one side of which was coated with adhesive, and the coating amount per adhesive surface was 120 g/rrr. On this occasion,
Place the adhesive specimen so that the wood grain directions are perpendicular to each other, and
Lay them together to form ply plywood, and add 13 pieces of this laminate.
Cold compaction was performed under a pressure of kgf/crJ for 30 minutes, and then heat compaction was performed at 120°C and 13 kgf/d for 6 hours.
It was applied for a minute. After adhesion, the laminate was left indoors overnight, and then specimens for tensile shear tests were cut out according to a conventional method. In this way, for each adhesive, four test pieces were prepared for measuring normal adhesive strength, and four test pieces were prepared for measuring water-resistant adhesive strength. The normal adhesive strength was measured according to the usual method at a tensile rate of 1.
At 0 mm/sin, Shimadzu Autograph DO3-R-5
This was done using 00.

耐水接着能の評価は煮沸繰り返し試験(4時間煮沸−6
0℃で20時間乾燥−4時間煮沸−冷水中に投入、約1
5分放置後、湿潤状態で接着力測定)により行い、この
接着力の測定は、上記と同じく、引張速度1.0 m/
1IIinで、島津オートグラフDC5−R−500を
用いて行った。得られた接着物の接着強度特性は下記の
通りであった。
Water-resistant adhesive ability was evaluated by repeated boiling test (4 hours boiling - 6
Dry at 0℃ for 20 hours - Boil for 4 hours - Pour into cold water, approx.
After standing for 5 minutes, the adhesive force was measured in a wet state), and the adhesive force was measured at a tensile speed of 1.0 m/m as above.
The test was carried out using a Shimadzu Autograph DC5-R-500. The adhesive strength characteristics of the obtained adhesive were as follows.

常態の接着強さ平均値: 13.6kg/cj、木破率
:10%、 湿潤状態接着強さ平均値:11.3kg/cJ、木破率
:33% 実施1にエ マカンバ木材チップ100重量部とフェノール80重量
部とをステンレススチール製耐圧反応缶に秤り取り、2
50℃オイルバス中で2時間加熱して、木材チップのフ
ェノール化も併起させながら溶解した。この溶液にジオ
キサンを40重量部加えたのち、35%ホルムアルデヒ
ド水溶液をフェノール1モルに対して、ホルムアルデヒ
ドが2.5モルとなるように秤り取り、上記のフェノー
ル化の終了したマカンバ木材−フエノール溶液に加え、
さらに40%の苛性ソーダ水溶液を添加し、溶液のpH
を9に調整した。この反応混合液を攪拌機および冷却管
の付いた50〇−容二口フラスコに移し、攪拌下に90
℃で1時間反応させ、リグノセルロース−レゾール樹脂
の製造を行った。この反応中、約20分ごとに反応混合
液のpHを測定し、それがp119を保つように、必要
に応じて40%苛性ソーダ水溶液を加えた。反応終了後
、ジオキサンを含む区分40重量部を留去後、得られた
レゾール樹脂液に、40%苛性ソーダ水溶液を加え、そ
のpHを11に調節した。
Average value of adhesive strength in normal state: 13.6 kg/cJ, wood breakage rate: 10%, average value of adhesive strength in wet state: 11.3kg/cJ, wood breakage rate: 33% 100 parts by weight of Emma birch wood chips in Example 1 and 80 parts by weight of phenol were weighed into a stainless steel pressure-resistant reaction vessel, and
The wood chips were heated in an oil bath at 50° C. for 2 hours to dissolve them while also causing phenolization of the wood chips. After adding 40 parts by weight of dioxane to this solution, a 35% formaldehyde aqueous solution was weighed out so that formaldehyde was 2.5 moles per mole of phenol, and the above phenolized Macamba wood-phenol solution was prepared. In addition to
Furthermore, 40% aqueous caustic soda solution was added to adjust the pH of the solution.
was adjusted to 9. The reaction mixture was transferred to a 500-capacity two-necked flask equipped with a stirrer and condenser, and heated for 90 mL while stirring.
The mixture was reacted at ℃ for 1 hour to produce lignocellulose-resol resin. During this reaction, the pH of the reaction mixture was measured approximately every 20 minutes, and 40% aqueous sodium hydroxide solution was added as necessary to maintain it at p119. After the reaction was completed, 40 parts by weight of the fraction containing dioxane was distilled off, and a 40% aqueous solution of caustic soda was added to the obtained resol resin liquid to adjust its pH to 11.

得られたりグツセルロース−レゾール樹脂液100部に
対して、第1表に示す量で、アルキルレゾルシノール(
名古屋油化社製)を加え、この反応混合物を35℃で3
0分間攪拌しながら反応させた。反応終了後、室温まで
冷却し、直ちに第1表に示す量で、パラホルムアルデヒ
ド、ヘキサメチレンテトラミンおよびヤシガラ粉を加え
、攪拌して、得られた樹脂接着剤を実施例1記載と同様
の接着試験に供した。得られた結果を第2表に示す。
For 100 parts of the cellulose-resol resin solution obtained, alkyl resorcinol (
(manufactured by Nagoya Yuka Co., Ltd.) was added, and the reaction mixture was heated at 35°C for 3 hours.
The reaction was allowed to proceed with stirring for 0 minutes. After the reaction was completed, it was cooled to room temperature, and immediately paraformaldehyde, hexamethylenetetramine, and coconut shell powder were added in the amounts shown in Table 1, stirred, and the resulting resin adhesive was subjected to the same adhesion test as described in Example 1. Served. The results obtained are shown in Table 2.

引張剪断試験による水溶性フェノール樹脂(レゾール樹
脂)接着剤の接着力に対する従来のJIS規格の要求値
は、常態接着力で12.0kgf /cd、また、耐水
接着力で10.01gf /aである。この点からみる
と、実施例3を除き、本発明の接着剤はすべて、規格を
満たしている。すなわち、接着操作が120℃、6分と
いう、フェノール樹脂接着剤としては格段に穏やかな接
着条件を用いたにもかかわらず、第2表記載のようなす
ぐれた結果が得られたということは、尿素樹脂、メラミ
ン樹脂と同様の接着条件で接着可能な水溶性フェノール
樹脂接着剤が得られたということであって、そめ技術的
工業的意義の大きいものである。
The conventional JIS standard requirements for the adhesive strength of water-soluble phenolic resin (resol resin) adhesives determined by a tensile shear test are 12.0 kgf/cd for normal adhesive strength and 10.01 gf/a for water-resistant adhesive strength. . From this point of view, all the adhesives of the present invention, except for Example 3, meet the specifications. In other words, the excellent results shown in Table 2 were obtained even though the bonding operation was performed at 120°C for 6 minutes, which is much milder for a phenolic resin adhesive. This means that a water-soluble phenolic resin adhesive that can be bonded under the same bonding conditions as urea resins and melamine resins has been obtained, which is of great technical and industrial significance.

実施■エニ上エ アカンバ木材チップ100重量部と、フェノール60重
量部とをステンレススチール製耐圧反応缶に秤り取り、
この混合物を、250℃のオイルバスの中で2時間加熱
することにより、木材チップのフェノール化も併起させ
ながら溶解した。得られたマカンバ木材・フェノール溶
液を、500mff1容20フラスコに移し、これに4
0%水酸化ナトリウム水・溶液を55重量部加えてかき
混ぜ溶解させた。
Implementation: Weigh out 100 parts by weight of Enigami Air Camba wood chips and 60 parts by weight of phenol into a stainless steel pressure-resistant reaction can.
This mixture was heated in an oil bath at 250° C. for 2 hours to dissolve the wood chips while also causing phenolization of the wood chips. The obtained Macamba wood/phenol solution was transferred to a 500 mff 1 volume 20 flask, and 4
55 parts by weight of 0% aqueous sodium hydroxide solution was added and stirred to dissolve.

次いで35%ホルムアルデヒド水溶液を100重量部(
フェノールに対するホルムアルデヒドのモル比は約2.
1)加え、90℃で40分間、攪拌、還流下で反応し、
リグノセルロース−レゾール樹脂の調整を行った0反応
終了後、生成した樹脂液に、40%苛性ソーダ水溶液を
加え、そのpHを11に調節した。このリグノセルロー
ス−レゾール樹脂液に、原料フェノール100重量部に
対して10重量部ないし25重量部(樹脂液に対しては
約1.6部ないし4部)のアルキルレゾルシノールを加
え、この混合物を室温(20℃)で10時間放置した。
Next, 100 parts by weight of 35% formaldehyde aqueous solution (
The molar ratio of formaldehyde to phenol is approximately 2.
1) Add and react at 90°C for 40 minutes under stirring and reflux,
After the completion of the 0 reaction in which the lignocellulose-resol resin was prepared, a 40% aqueous solution of caustic soda was added to the resulting resin liquid to adjust its pH to 11. To this lignocellulose-resole resin liquid, 10 to 25 parts by weight of alkylresorcinol was added to 100 parts by weight of raw material phenol (approximately 1.6 to 4 parts to the resin liquid), and the mixture was stirred at room temperature. (20°C) for 10 hours.

この樹脂組成物100部に対し、ヤシガラ粉と小麦粉を
重量比2:1で混合したものを充填剤として、10重量
部加え、かき混ぜて得られた接着剤を接着実験に供した
。接着実験は、実施例1と同様に行い、煮沸繰り返し試
験による耐水接着性のみを評価した。結果を第3表に示
す。第3表から明らかなように、アルキルレゾルシノー
ル添加量を実施例2〜7の場合の2/25〜4/15程
度と少なくしても、その添加後室温での約10時間の反
応を行えば、120℃、6分という、フェノール樹脂接
着剤として格段に穏やかな接着条件で接着しても、十分
な接着結果を得うることができた。
To 100 parts of this resin composition, 10 parts by weight of a mixture of coconut shell powder and wheat flour at a weight ratio of 2:1 was added as a filler, and the resulting adhesive was stirred and subjected to an adhesion experiment. The adhesion experiment was conducted in the same manner as in Example 1, and only the water-resistant adhesion was evaluated by the repeated boiling test. The results are shown in Table 3. As is clear from Table 3, even if the amount of alkylresorcinol added is reduced to about 2/25 to 4/15 of that in Examples 2 to 7, if the reaction is carried out at room temperature for about 10 hours after the addition, , 120° C. for 6 minutes, which is a much gentler bonding condition for a phenolic resin adhesive, and sufficient bonding results could be obtained.

実施■土工 実施例2と同様の操作を行った。但し、アルキルレゾル
シノールを加えて35℃で30分間反応させる操作を施
さなかった。また、リグノセルロース−レゾール樹脂液
100重量部に対してアルキルレゾルシノール10重量
部を接着試験の際にヤシガラ粉5重量部と混合して添加
した。結果を第1表および第2表に示す。
Implementation ■Earthwork The same operation as in Example 2 was performed. However, the operation of adding alkylresorcinol and reacting at 35° C. for 30 minutes was not performed. Furthermore, 10 parts by weight of alkylresorcinol was mixed with 5 parts by weight of coconut shell powder and added to 100 parts by weight of the lignocellulose-resol resin liquid during the adhesion test. The results are shown in Tables 1 and 2.

災施適上主 実施例2と同様の操作を行った。但し、アルキルレゾル
シノールの代わりにタンニンを15重量部用いた。
For disaster relief purposes, the same operations as in Main Example 2 were performed. However, 15 parts by weight of tannin was used instead of alkylresorcinol.

このタンニンはカラマツタンニンであった。結果を第1
表および第2表に示す。
This tannin was larch tannin. Results first
Shown in Table and Table 2.

実施班土工 実施例2と同様の操作を行った。但しアルキルレゾルシ
ノールの代りに5重量部のレゾルシノールを用いた。結
果を第1表および第2表に示す。
Implementation group carried out the same operations as in Earthwork Example 2. However, 5 parts by weight of resorcinol was used instead of alkylresorcinol. The results are shown in Tables 1 and 2.

以下余日 第1表 アルキルレゾルシノールなどの添加量 (対マカンバ木材・フェノール樹脂接着剤溶液100部
)第2表 常態および湿潤接着力測定結果 注 接着強さ単位 kg / cd 第3表 少量のアルキルレゾルシノールを添加し、室温で長時間
反応させたアルキルレゾルシノール強化マカンバ木材・
フェノール樹脂接着剤のW潤接着力測定結果 (注)接着強さ単位kg / cd 去施透旦二且 実施例14〜17の各々において、実施例1記載と同様
の操作によって得られたリグノセルロース・フェノール
樹脂液100重量部に対して、第4表に示す量のアルチ
ルレゾルシノール樹脂液(名古屋油化KK製DFX−I
NS)を混合し、さらにヤシ穀粉を加えてかくはんして
糊液を調製した。この糊液を厚さ約2鶴、15 X 1
5csのカバ柾目単板の両面に一接着面あたり塗付量1
50 g / cdの割合で塗付した。
Table 1 Addition amount of alkyl resorcinol etc. (to Macamba wood/phenolic resin adhesive solution 100 parts) Table 2 Normal and wet adhesive strength measurement results Note Adhesive strength unit kg/cd Table 3 Small amount of alkyl resorcinol Alkylresorcinol-enriched Macamba wood is made by adding and reacting for a long time at room temperature.
Measurement results of W wet adhesive strength of phenolic resin adhesive (Note) Adhesive strength unit kg/cd In each of Examples 14 to 17, lignocellulose obtained by the same operation as described in Example 1.・To 100 parts by weight of the phenolic resin liquid, the amount of alkylresorcinol resin liquid (DFX-I manufactured by Nagoya Yuka KK) shown in Table 4 was added.
NS) and further added coconut flour and stirred to prepare a paste. Apply this glue to a thickness of about 2 cranes, 15 x 1
Apply 1 coat per adhesive surface on both sides of 5cs birch straight grain veneer.
It was applied at a rate of 50 g/cd.

さらにその両面に、同じ厚さとサイズのカバ柾目単板を
その木理方向が互いに直交するように重ね合わせ、13
kg/aiの圧力で30分間仮圧締した。
Furthermore, birch straight-grain veneers of the same thickness and size are stacked on both sides so that the grain directions are perpendicular to each other, and 13
Temporary compression was carried out for 30 minutes at a pressure of kg/ai.

そののち120℃の温度に保持したホットプレスにて1
3kg/cdの圧力を加えて3分間熱圧した。こ4のよ
うにして調製された3プライの試料合板の接着強さをJ
ASI:11合板の試験方法に従って測定した。その結
果を第4表にまとめて示した。
After that, 1 in a hot press maintained at a temperature of 120℃.
A pressure of 3 kg/cd was applied and hot pressure was applied for 3 minutes. The adhesion strength of the 3-ply sample plywood prepared in this way is J
Measured according to ASI:11 plywood test method. The results are summarized in Table 4.

第4表 (注)接着強さ単位:kg/cIi!、木破率:%〔発
明の効果〕 本発明のリグノセルロース−フェノール樹脂組成物およ
び接着剤は、多量のリグノセルロース材料を原料として
含み、し、かも通常の尿素樹脂およびメラミン樹脂と同
様の比較的緩徐な接着条件(温度、時間)で、強固な接
着強度を発現することができる。
Table 4 (Note) Adhesive strength unit: kg/cIi! , Wood breakage rate: % [Effect of the invention] The lignocellulose-phenolic resin composition and adhesive of the present invention contain a large amount of lignocellulose material as a raw material, and have a similar comparison with ordinary urea resin and melamine resin. Strong adhesive strength can be developed under moderate adhesive conditions (temperature, time).

Claims (1)

【特許請求の範囲】 1、100重量部のフェノール化合物と、10〜100
0重量部のリグノセルロース材料とを含む混合物と、3
0〜1500重量部のホルムアルデヒドとの、塩基性触
媒の存在下における付加・縮合反応生成物を含む、リグ
ノセルロース−フェノール樹脂組成物。 2、前記フェノール化合物とリグノセルロース材料とを
含む混合物が、前記フェノール化合物と前記リグノセル
ロース材料との反応生成物を含む、特許請求の範囲第1
項記載の樹脂組成物。 3、前記特許請求の範囲第1項記載のリグノセルロース
−フェノール樹脂を主成分とする接着剤。 4、100重量部のフェノール化合物と、10〜100
0重量部のリグノセルロース材料とを含む混合物と、3
0〜1500重量部のホルムアルデヒドとの、塩基性触
媒の存在下における付加・縮合反応生成物の100重量
部と、レゾルシノール化合物およびレゾルシノール化合
物−ホルムアルデヒド初期縮合物から選ばれた少なくと
も1種の1〜50重量部とを含むリグノセルロース−フ
ェノール樹脂組成物。 5、前記特許請求の範囲第4項記載のリグノセルロース
−フェノール樹脂組成物を主成分とする接着剤。
[Claims] 1,100 parts by weight of a phenol compound, and 10 to 100 parts by weight of a phenol compound;
0 parts by weight of lignocellulosic material;
A lignocellulose-phenolic resin composition comprising an addition/condensation reaction product with 0 to 1500 parts by weight of formaldehyde in the presence of a basic catalyst. 2. Claim 1, wherein the mixture containing the phenolic compound and the lignocellulosic material includes a reaction product of the phenolic compound and the lignocellulosic material.
The resin composition described in . 3. An adhesive containing the lignocellulose-phenol resin as described in claim 1 as a main component. 4, 100 parts by weight of a phenol compound, and 10 to 100 parts by weight
0 parts by weight of lignocellulosic material;
100 parts by weight of an addition/condensation reaction product with 0 to 1500 parts by weight of formaldehyde in the presence of a basic catalyst, and 1 to 50 parts by weight of at least one selected from resorcinol compounds and resorcinol compound-formaldehyde initial condensates. A lignocellulose-phenolic resin composition comprising parts by weight. 5. An adhesive containing the lignocellulose-phenol resin composition according to claim 4 as a main component.
JP63140507A 1987-09-04 1988-06-09 Lignocellulose-phenolic resin composition Expired - Lifetime JP2595307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63140507A JP2595307B2 (en) 1987-09-04 1988-06-09 Lignocellulose-phenolic resin composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-220439 1987-09-04
JP22043987 1987-09-04
JP63140507A JP2595307B2 (en) 1987-09-04 1988-06-09 Lignocellulose-phenolic resin composition

Publications (2)

Publication Number Publication Date
JPH01158021A true JPH01158021A (en) 1989-06-21
JP2595307B2 JP2595307B2 (en) 1997-04-02

Family

ID=26472990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63140507A Expired - Lifetime JP2595307B2 (en) 1987-09-04 1988-06-09 Lignocellulose-phenolic resin composition

Country Status (1)

Country Link
JP (1) JP2595307B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0331384A (en) * 1989-06-28 1991-02-12 Aica Kogyo Co Ltd Resorcinol-based resin adhesive of two-pack type
EP0472474A1 (en) 1990-08-24 1992-02-26 Rengo Co., Ltd. Method for preparing a liquefied solution of ligno-cellulose substance with polyhydric alcohols
WO2001074949A1 (en) * 2000-03-31 2001-10-11 Masamitsu Hunaoka Lignocellulosic composition comprising lignophenol derivative and cellulose ingredient
JP3361819B2 (en) * 1997-05-05 2003-01-07 剛 河野 Adhesive and board using it
JP2008050542A (en) * 2006-08-28 2008-03-06 Lignyte Co Ltd Polysaccharide-modified phenol resin, method for producing polysaccharide-modified phenol resin, resin coated sand, polysaccharide-modified phenol resin carbonized material, electroconductive resin composition, carbon material for electrode, electrode for secondary battery and electric double layer capacitor polarizable electrode
JP2008050543A (en) * 2006-08-28 2008-03-06 Lignyte Co Ltd Polysaccharide-modified phenol resin, method for producing polysaccharide-modified phenol resin, resin coated sand, polysaccharide-modified phenol resin carbonized material, electroconductive resin composition, carbon material for electrode, electrode for secondary battery and electric double layer capacitor polarizable electrode
JP2009221279A (en) * 2008-03-14 2009-10-01 Panasonic Electric Works Co Ltd Thermosetting biomass phenolic resin molding material and molded article
WO2015142158A1 (en) * 2014-03-18 2015-09-24 Universiti Kebangsaan Malaysia Bio-based resole type phenolic resin adhesive
WO2018179820A1 (en) * 2017-03-28 2018-10-04 ハリマ化成株式会社 Sliding material
CN114456754A (en) * 2022-03-28 2022-05-10 石河子大学 Biomass-based phenolic resin adhesive and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114994A (en) * 1974-07-30 1976-02-05 Eidai Co Ltd RIGUNINN FUENOORUSETSUCHAKUZAINO SEIZOHO
JPS5192892A (en) * 1975-02-14 1976-08-14 RIGUNINNFUENOORUKYOSHUKUGOJUSHISETSUCHAKUZAINO SEIZOHO
JPS51148731A (en) * 1975-06-17 1976-12-21 Eidai Co Ltd A process for preparing lignin-phenol co-condensation resin adhesive
JPS528042A (en) * 1975-07-10 1977-01-21 Eidai Co Ltd Process for preparing powder of lignin- phenol cocondensation adhesive
JPS5296444A (en) * 1976-02-09 1977-08-13 Toshiba Corp Defrozing method and apparatus
JPS60206883A (en) * 1984-03-30 1985-10-18 Oji Paper Co Ltd Production of adhesive
JPS6164708A (en) * 1984-08-28 1986-04-03 ライヒホ−ルド、リミテツド Lignin modified phenol resin adhesive for compressed wood product

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114994A (en) * 1974-07-30 1976-02-05 Eidai Co Ltd RIGUNINN FUENOORUSETSUCHAKUZAINO SEIZOHO
JPS5192892A (en) * 1975-02-14 1976-08-14 RIGUNINNFUENOORUKYOSHUKUGOJUSHISETSUCHAKUZAINO SEIZOHO
JPS51148731A (en) * 1975-06-17 1976-12-21 Eidai Co Ltd A process for preparing lignin-phenol co-condensation resin adhesive
JPS528042A (en) * 1975-07-10 1977-01-21 Eidai Co Ltd Process for preparing powder of lignin- phenol cocondensation adhesive
JPS5296444A (en) * 1976-02-09 1977-08-13 Toshiba Corp Defrozing method and apparatus
JPS60206883A (en) * 1984-03-30 1985-10-18 Oji Paper Co Ltd Production of adhesive
JPS6164708A (en) * 1984-08-28 1986-04-03 ライヒホ−ルド、リミテツド Lignin modified phenol resin adhesive for compressed wood product

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0331384A (en) * 1989-06-28 1991-02-12 Aica Kogyo Co Ltd Resorcinol-based resin adhesive of two-pack type
EP0472474A1 (en) 1990-08-24 1992-02-26 Rengo Co., Ltd. Method for preparing a liquefied solution of ligno-cellulose substance with polyhydric alcohols
JP3361819B2 (en) * 1997-05-05 2003-01-07 剛 河野 Adhesive and board using it
WO2001074949A1 (en) * 2000-03-31 2001-10-11 Masamitsu Hunaoka Lignocellulosic composition comprising lignophenol derivative and cellulose ingredient
JP2008050542A (en) * 2006-08-28 2008-03-06 Lignyte Co Ltd Polysaccharide-modified phenol resin, method for producing polysaccharide-modified phenol resin, resin coated sand, polysaccharide-modified phenol resin carbonized material, electroconductive resin composition, carbon material for electrode, electrode for secondary battery and electric double layer capacitor polarizable electrode
JP2008050543A (en) * 2006-08-28 2008-03-06 Lignyte Co Ltd Polysaccharide-modified phenol resin, method for producing polysaccharide-modified phenol resin, resin coated sand, polysaccharide-modified phenol resin carbonized material, electroconductive resin composition, carbon material for electrode, electrode for secondary battery and electric double layer capacitor polarizable electrode
JP2009221279A (en) * 2008-03-14 2009-10-01 Panasonic Electric Works Co Ltd Thermosetting biomass phenolic resin molding material and molded article
WO2015142158A1 (en) * 2014-03-18 2015-09-24 Universiti Kebangsaan Malaysia Bio-based resole type phenolic resin adhesive
WO2018179820A1 (en) * 2017-03-28 2018-10-04 ハリマ化成株式会社 Sliding material
CN114456754A (en) * 2022-03-28 2022-05-10 石河子大学 Biomass-based phenolic resin adhesive and preparation method thereof
CN114456754B (en) * 2022-03-28 2023-05-12 石河子大学 Biomass-based phenolic resin adhesive and preparation method thereof
CN116285804A (en) * 2022-03-28 2023-06-23 石河子大学 Biomass-based phenolic resin adhesive and preparation method thereof
CN116285804B (en) * 2022-03-28 2024-03-29 石河子大学 Biomass-based phenolic resin adhesive and preparation method thereof

Also Published As

Publication number Publication date
JP2595307B2 (en) 1997-04-02

Similar Documents

Publication Publication Date Title
JP2595308B2 (en) Lignin-phenol resin composition
EP0062389B1 (en) Manufacture of particle board and a novel suitable bonding agent
AU1680792A (en) Improved lignin-based wood adhesives
US5646219A (en) Method of preparing binder system and product thereof
EP1288237A2 (en) Process for preparing a black liquor-phenol formaldehyde thermoset resin
CN103865018B (en) A kind of matrix resin and a kind of structure laminated wood stick with glue agent
JP2595307B2 (en) Lignocellulose-phenolic resin composition
US5847058A (en) Alkylresorcinol modified phenol-aldehyde resol resin and binder system, and method of making same
Li et al. Investigation of formaldehyde-free wood adhesives from kraft lignin and a polyaminoamide–epichlorohydrin resin
JPH054429B2 (en)
US5681916A (en) Process for producing urea-modified, highly reactive phenolic resins useful as bonding agents for center-layer particles in the manufacture of particleboard
JP2732010B2 (en) Two-part separation adhesive for wood
US2620321A (en) Method of making phenol-formaldehyde resin and products thereof
CA1068426A (en) Adhesive for the manufacture of plywood particle boards, fiber boards and similar products
US3701743A (en) Modified urea-formaldehyde plywood adhesive
US3285805A (en) Polyvalent metal carbonate-extended phenolic resins
CA2399171C (en) Process for preparing a black liquor-phenol formaldehyde thermoset resin
WO1998050467A1 (en) Resin composition and board made by using the same
JP2001164228A (en) Adhesive composition for wood
CA2042476C (en) Fast cure and pre-cure resistant cross-linked phenol-formaldehyde adhesives and methods of making same
JP2001254065A (en) Wood adhesive composition
US3755067A (en) Asbestos fiber extended phenolic adhesives
JPS6241988B2 (en)
JP2002137201A (en) Method for forming plywood
JPH02269173A (en) Plywood adhesive