JPH04300559A - Composite artificial blood vessel - Google Patents

Composite artificial blood vessel

Info

Publication number
JPH04300559A
JPH04300559A JP3066071A JP6607191A JPH04300559A JP H04300559 A JPH04300559 A JP H04300559A JP 3066071 A JP3066071 A JP 3066071A JP 6607191 A JP6607191 A JP 6607191A JP H04300559 A JPH04300559 A JP H04300559A
Authority
JP
Japan
Prior art keywords
blood vessel
artificial blood
antithrombotic
compliance
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3066071A
Other languages
Japanese (ja)
Inventor
Yasuhiro Okuda
泰弘 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JINKOU KETSUKAN GIJUTSU KENKYU CENTER KK
Original Assignee
JINKOU KETSUKAN GIJUTSU KENKYU CENTER KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JINKOU KETSUKAN GIJUTSU KENKYU CENTER KK filed Critical JINKOU KETSUKAN GIJUTSU KENKYU CENTER KK
Priority to JP3066071A priority Critical patent/JPH04300559A/en
Publication of JPH04300559A publication Critical patent/JPH04300559A/en
Pending legal-status Critical Current

Links

Landscapes

  • Prostheses (AREA)
  • Materials For Medical Uses (AREA)

Abstract

PURPOSE:To provide the artificial blood vessel to be used as a substitute for a small- diameter blood vessel, such as coronary artery or peripheral blood vessel. CONSTITUTION:This artificial blood vessel is constituted by compounding a biotissue inductive material and an antithrombotic material with a porous tube consisting of a thermoplastic fluorine-containing elastomer without substantially contg. additives, except polymer components so as to cover the entire front surface of the pores of the porous tube to void closing the pores. This artificial blood vessel is formed by compounding the biotissue inductive material and the antithrombotic material with the thermoplastic fluorine-containing elastomer which has the compliance equal to the compliance of the bioblood vessel and is not deteriorated in the living body and, therefore, the excellent initial antithrombotic property after implantation is obtd. In addition, rapid internal membrane formation is induced, by which the antithrombotic property equal to the antithrombotic property of the bioblood vessel is imparted to this blood vessel. Since this blood vessel has the compliance equal to the compliance of the bioblood vessel, the hyperformation of the internal membrane in the anastomosia part does not arise even upon lapse of long period and the decomposition and deterioration do not arise. A good interstitial property is thus exhibited over a long period of time.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、冠状動脈や末梢血管な
どの小口径血管の代用として用いる人工血管に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an artificial blood vessel used as a substitute for small-diameter blood vessels such as coronary arteries and peripheral blood vessels.

【0002】0002

【従来の技術】従来より、ポリエステル繊維編物、織物
や、延伸ポリテトラフルオロエチレンチューブが人工血
管として用いられてきた。これらの高分子材料は内径4
mm以下の小口径人工血管には適用できないため、人工
血管の組織適合性や抗血栓性を高めるために、多孔質高
分子材料にコラーゲン等の生体組織誘導性の物質やヘパ
リン等の抗血栓物質を複合化した人工血管が提案されて
いる(特開昭63−46169号公報)。しかしながら
従来提案されてきたこれらの人工血管は、組織適合性や
抗血栓性には優れるものの、チューブの弾性率が高いた
めに縫合性が悪い他、コンプライアンスが生体血管と大
きく異なるため、生体に移植後長時間を経過すると吻合
部の内膜過形成により閉塞するという問題点が指摘され
ている。
BACKGROUND OF THE INVENTION Conventionally, polyester fiber knitted fabrics, woven fabrics, and stretched polytetrafluoroethylene tubes have been used as artificial blood vessels. These polymeric materials have an inner diameter of 4
Since it cannot be applied to small-diameter artificial blood vessels with a diameter of less than mm, in order to improve the tissue compatibility and antithrombotic properties of the artificial blood vessels, biological tissue-inducing substances such as collagen and antithrombotic substances such as heparin are added to the porous polymer material. An artificial blood vessel that is a composite of these has been proposed (Japanese Unexamined Patent Publication No. 46169/1983). However, although these artificial blood vessels that have been proposed in the past have excellent tissue compatibility and antithrombotic properties, they have poor suturing properties due to the high elastic modulus of the tube, and their compliance is significantly different from that of living blood vessels, making them difficult to implant in living organisms. It has been pointed out that after a long period of time, the anastomosis becomes occluded due to intimal hyperplasia.

【0003】0003

【発明が解決しようとする課題】この問題点を解決する
手段として、多孔質ポリウレタンやこれにアスピリン−
ポリ乳酸等の生体材料を複合化した人工血管が提案され
ている(特開平2−54102号公報、ウィルデフィー
ア(Wildefia)ら、サージェリ(Surger
y)、101(4)、459(1987))。この人工
血管は生体血管に近いコンプライアンスを有するため、
移植長期においても吻合部における内膜の過形成が起き
ないとされている。しかしながらポリウレタンは、生体
内に長期に滞在すると徐々に分解されるといった問題点
(ストークス(Storks)ら、ライフ・サポート・
システム(Life Support System)
、5、25、(1987))が指摘されており、長期移
植に適用することはできない。
[Problems to be Solved by the Invention] As a means to solve this problem, porous polyurethane and aspirin-coated polyurethane have been developed.
Artificial blood vessels made of composite biomaterials such as polylactic acid have been proposed (Japanese Unexamined Patent Publication No. 2-54102, Wildefia et al., Surgery
y), 101(4), 459 (1987)). This artificial blood vessel has compliance close to that of biological blood vessels, so
It is said that hyperplasia of the intima at the anastomotic site does not occur even during long-term transplantation. However, polyurethane has the problem that it gradually decomposes when it stays in the body for a long time (Stokes et al.
System (Life Support System)
, 5, 25, (1987)) and cannot be applied to long-term transplantation.

【0004】また、最近、含フッ素熱可塑性ゴムからな
る人工血管が提案されている(実開昭63−77048
号公報)が、該実用新案明細書では、フッ素ゴムの特徴
である無毒性、耐劣化性、抗血栓性、良好な吻合性、形
態保持性については記されているが、生体に移植後の内
膜化のために必要な機能、すなわち物理的構造や、生体
組織誘導性物質や抗血栓性物質の復合化及びその効果に
ついては記述されていない。
[0004] Recently, an artificial blood vessel made of fluorine-containing thermoplastic rubber has been proposed (Utility Model Application Publication No. 63-77048).
Although the utility model specification mentions the characteristics of fluororubber, such as non-toxicity, resistance to deterioration, antithrombotic properties, good anastomotic properties, and shape retention, There is no description of the functions necessary for intimalization, that is, the physical structure, the combination of biological tissue-inducing substances and antithrombotic substances, and their effects.

【0005】このように、従来のいかなる材料を用いて
も、抗血栓性、内膜形成性、生体内耐劣化性にすぐれ、
かつ移植長期において吻合部での内膜の過形成が起こら
ないというすべての要求特性を満足する人工血管を得る
ことはできなかった。
[0005] As described above, no matter what conventional materials are used, they have excellent antithrombotic properties, intimal formation properties, and in vivo deterioration resistance.
Furthermore, it has not been possible to obtain an artificial blood vessel that satisfies all the required characteristics, such as not causing intimal hyperplasia at the anastomotic site during a long period of transplantation.

【0006】[0006]

【課題を解決するための手段】本発明者は、実質的にポ
リマー成分以外の添加剤を含まない熱可塑性含フッ素エ
ラストマーよりなる多孔質チューブに、多孔質チューブ
の孔が塞がらないように、しかも孔の表面を被覆するよ
うに生体組織誘導性物質と抗血栓性物質を複合化するこ
とにより、上記の必要特性をすべて満足する人工血管が
得られることを発見し、本発明を完成するに至った。
[Means for Solving the Problems] The present inventor has provided a porous tube made of a thermoplastic fluorine-containing elastomer containing substantially no additives other than the polymer component, and in which the pores of the porous tube are not blocked. The inventors discovered that by combining a biological tissue-inducing substance and an antithrombotic substance so as to coat the surface of the pores, an artificial blood vessel that satisfies all of the above-mentioned necessary properties could be obtained, and the present invention was completed. Ta.

【0007】本発明の人工血管は、多孔質含フッ素エラ
ストマーチューブに生体組織誘導作用を有する物質と抗
血栓作用を有する物質を複合化したものである。多孔質
含フッ素エラストマーチューブは、チューブの内面から
外面まで貫通する直径1〜500μmの孔を有しており
、この多孔質チューブに、孔が塞がらないように、しか
も孔表面全面に生体組織誘導性物質と抗血栓性物質が複
合化されている。すなわち、本発明の人工血管は、これ
らの物質に被覆された多孔質構造を有する。本発明の人
工血管においては、生体組織誘導性物質の作用により、
移植後に速やかに多孔質内に生体組織や毛細血管が侵入
し、内膜が形成される。内膜が形成されるまでの間は複
合化した抗血栓物質の作用により抗血栓性が保たれる。
The artificial blood vessel of the present invention is a porous fluorine-containing elastomer tube in which a substance having a biological tissue-inducing effect and a substance having an antithrombotic effect are combined. The porous fluorine-containing elastomer tube has pores with a diameter of 1 to 500 μm that penetrate from the inner surface to the outer surface of the tube, and in order to prevent the pores from being blocked, the entire surface of the pores is designed to be inductive to living tissue. Substances and antithrombotic substances are combined. That is, the artificial blood vessel of the present invention has a porous structure coated with these substances. In the artificial blood vessel of the present invention, due to the action of the biological tissue-inducing substance,
After transplantation, living tissues and capillaries quickly invade the pores and an endometrium is formed. Until the intima is formed, antithrombotic properties are maintained by the action of the combined antithrombotic substances.

【0008】本発明者は、多孔質含フッ素エラストマー
チューブに、多孔質チューブの孔が塞がらないように、
しかも孔の表面全面が被覆されるように生体組織誘導性
物質と抗血栓性物質を複合化してなる人工血管では、従
来の複合化人工血管で指摘されているように、せっかく
早期に内膜が形成しても長期間安定に存在できなかった
り、吻合部で狭搾、閉塞がおきる、ということはなく、
長期間にわたって安定な内膜を維持することができるこ
とを発見した。
[0008] The present inventor has developed a porous fluorine-containing elastomer tube so that the pores of the porous tube are not clogged.
Moreover, in artificial blood vessels that are made by combining a biological tissue-inducing substance and an antithrombotic substance so that the entire surface of the pore is covered, as has been pointed out in the case of conventional composite artificial blood vessels, the intima may deteriorate at an early stage. Even if it is formed, it will not remain stable for a long period of time, and it will not cause narrowing or occlusion at the anastomotic site.
It was discovered that a stable endometrium can be maintained for a long period of time.

【0009】これは、本発明に用いる多孔質含フッ素エ
ラストマーチューブは、生体血管と同等のコンプライア
ンスを有しているので、血流に伴う脈動により生体血管
と同様に拡張、収縮をくり返すことができるために、孔
内に侵入した組織は、生体血管側の組織成分と同等の物
理的環境におかれるので生体血管との組織の結合性が良
く、長期間にわたって侵入した組織及び内膜が安定に存
在するためであると考えられる。また、本発明の人工血
管は、血流に伴う脈動により生体血管と同様に拡張、収
縮をくり返すことができるので吻合部に段差が生じない
ため、吻含部での閉塞が起きにくい。また、含フッ素エ
ラストマーは、ポリウレタンで指摘されているように長
期間を経過しても劣化分解を起こすことがないため、移
植後に長期間にわたって移植後の構造、物理特性を維持
することができるので、長期にわたって安定な人工血管
として機能することができる。
[0009] This is because the porous fluorine-containing elastomer tube used in the present invention has the same compliance as a living blood vessel, so it can repeatedly expand and contract like a living blood vessel due to pulsation caused by blood flow. Because of this, the tissue that has invaded the pore is placed in a physical environment equivalent to the tissue components on the biological blood vessel side, so the tissue has good connectivity with the biological blood vessel, and the tissue that has invaded and the intima remain stable for a long period of time. This is thought to be due to the presence of Furthermore, the artificial blood vessel of the present invention can repeatedly expand and contract like a biological blood vessel due to the pulsation associated with blood flow, so no step is created at the anastomosis, and occlusion at the anastomotic part is less likely to occur. In addition, fluorine-containing elastomers do not deteriorate or decompose even after a long period of time, as has been pointed out with polyurethane, so they can maintain their structure and physical properties after transplantation for a long period of time. , can function as a stable artificial blood vessel over a long period of time.

【0010】したがって、本発明の複合化人工血管は、
従来のいかなる材料をもってしても達成できなかった、
移植初期の抗血栓性、中長期の内膜安定性、耐劣化・分
解性にすぐれた総合的にすぐれた人工血管である。
[0010] Therefore, the composite artificial blood vessel of the present invention is
This could not be achieved with any conventional material.
It is a comprehensively superior artificial blood vessel with excellent antithrombotic properties in the initial stage of transplantation, mid- to long-term intimal stability, and resistance to deterioration and decomposition.

【0011】多孔質含フッ素エラストマーチューブの素
材としては、含フッ素オレフィンおよび/またはオレフ
ィンとの共重合体があげられる。含フッ素オレフィンと
しては、テトラフルオロエチレン、ヘキサフルオロプロ
ピレン、フッ化ビニリデン、パーフルオロアルキルビニ
ルエーテルがあげられる。非含フッ素オレフィンとして
は、エチレン、プロピレンがあげられる。これらの共重
合体に造孔剤を混合し、押出成形後に、造孔剤を抽出し
、多孔質構造を得ることが出来る。造孔剤としては、食
塩、炭酸カルシウム等の無機塩類やシリカゲル等の無機
高分子材料、パラフィン等の高分子材料やデンプン等の
水溶性高分子材料が使用できる。
Examples of the material for the porous fluorine-containing elastomer tube include fluorine-containing olefins and/or copolymers with olefins. Examples of the fluorine-containing olefin include tetrafluoroethylene, hexafluoropropylene, vinylidene fluoride, and perfluoroalkyl vinyl ether. Examples of non-fluorine-containing olefins include ethylene and propylene. A porous structure can be obtained by mixing a pore-forming agent with these copolymers and extracting the pore-forming agent after extrusion molding. As the pore-forming agent, inorganic salts such as common salt and calcium carbonate, inorganic polymer materials such as silica gel, polymer materials such as paraffin, and water-soluble polymer materials such as starch can be used.

【0012】多孔質構造は、孔径が1〜500μmで、
孔が壁内面から外面まで貫通していることが望ましい。 気孔率は50から90%、好ましくは70から90%の
間にあることが望ましい。また、チューブのコンプライ
アンスは生体血管のそれに近似し、0.1〜0.8の間
にあることが望ましい。
[0012] The porous structure has a pore diameter of 1 to 500 μm,
Preferably, the holes extend through the wall from the inner surface to the outer surface. It is desirable that the porosity is between 50 and 90%, preferably between 70 and 90%. Further, the compliance of the tube is preferably similar to that of a biological blood vessel, and is between 0.1 and 0.8.

【0013】これらの多孔質含フッ素エラストマーチュ
ーブを、生体組織誘導性物質や抗血栓物質の溶液に浸漬
するか、または溶液をチューブの管壁内に加圧または減
圧により注入することにより、複合化人工血管を作製す
ることができる。生体組織誘導性物質や抗血栓性物質は
、単独でべつべつに複合化してもよいし、予め両者を混
合したり、必要に応じて第三の高分子材料と混合してか
ら複合化してもよいが、先にも述べたように、多孔質チ
ューブの孔が塞がらないように、しかも孔表面全面に複
合化することが重要である。孔を充てんしてしまったり
、チューブ内腔面だけに複合化物質の層を形成すると、
複合化物質と含フッ素エラストマーチューブの弾性率が
大きく異なるため、移植時のハンドリングや移植後の脈
動により、複合化物質が剥離してしまう。したがって、
必要に応じチューブ内腔面に層を形成する場合にも、孔
表面全面に複合化することによって形成層の物理的安定
化を計る必要がある。
[0013] These porous fluorine-containing elastomer tubes can be composited by immersing them in a solution of a biological tissue-inducing substance or an antithrombotic substance, or by injecting the solution into the wall of the tube under pressure or vacuum. Artificial blood vessels can be created. The biological tissue-inducing substance and the antithrombotic substance may be composited individually, or they may be mixed in advance, or if necessary, mixed with a third polymeric material before being composited. However, as mentioned above, it is important to prevent the pores of the porous tube from being blocked and to coat the entire surface of the pores. If the pores are filled or a layer of composite material is formed only on the inner surface of the tube,
Since the elastic modulus of the composite material and the fluorine-containing elastomer tube are significantly different, the composite material may peel off due to handling during implantation or pulsation after implantation. therefore,
Even when a layer is formed on the inner surface of the tube as necessary, it is necessary to physically stabilize the forming layer by compounding the entire surface of the pore.

【0014】多孔質フッ素チューブに複合化する物質の
うち、生体組織誘導作用を有する物質としては、細胞接
着性蛋白や、内皮細胞増殖因子、血管増殖因子等の成長
因子類があげられる。これらの中でコラーゲン、ゼラチ
ン、アルブミン、ラミニンが望ましい。いずれにしても
、これらの物質を複合化することにより人工血管外壁か
らの生体組織の侵入と、人工血管両側の生体血管からの
内皮細胞の伸展が促進される。
[0014] Among the substances compounded into the porous fluorine tube, substances having a biological tissue-inducing effect include cell adhesion proteins and growth factors such as endothelial cell growth factors and vascular growth factors. Among these, collagen, gelatin, albumin, and laminin are preferred. In any case, by combining these substances, the invasion of living tissue from the outer wall of the artificial blood vessel and the extension of endothelial cells from the living blood vessels on both sides of the artificial blood vessel are promoted.

【0015】複合化する物質のうち、抗血栓性材料は、
移植後に人工血管内面が抗血栓性を有する内皮細胞で覆
われる迄の間、人工血管に抗血栓性を付与するために複
合化される。これらの物質としては、ヘパリン等の抗血
液凝固物質、アスピリン、プロスタグランジンE1、同
I2等の抗血小板凝集物質、ウロキナーゼ等の血栓溶解
物質があげられる。これらの物質を単独で塗布するだけ
でも良いし、別の高分子材料に混合して塗布しても良い
し、必要に応じて共有結合やイオン結合固定しても良い
が、いずれにしても移植後に形成される内皮細胞によっ
て抗血栓性が付与されるまでの間、人工血管内面を抗血
栓性にしておくために必要なだけの量を複合化すること
が必要である。
Among the substances to be combined, the antithrombotic material is
After transplantation, until the inner surface of the artificial blood vessel is covered with endothelial cells having antithrombotic properties, the composite is used to impart antithrombotic properties to the artificial blood vessel. These substances include anti-blood coagulation substances such as heparin, anti-platelet aggregation substances such as aspirin, prostaglandin E1 and prostaglandin I2, and thrombolytic substances such as urokinase. These substances can be applied alone, mixed with another polymeric material, or fixed with covalent or ionic bonds as necessary, but in any case, the It is necessary to compound the amount necessary to keep the inner surface of the artificial blood vessel antithrombotic until the antithrombotic properties are imparted by endothelial cells that are formed later.

【0016】この複合化人工血管は、先にも述べたよう
に、従来のいかなる材料を用いても達成できなかった抗
血栓性、内膜形成性、生体内耐分解劣化性にすぐれ、か
つ移植後長期にわたって吻合部における内膜過形成の生
じないすぐれた人工血管であることを発見した。
As mentioned earlier, this composite artificial blood vessel has excellent antithrombotic properties, intimal formation properties, and resistance to decomposition and deterioration in vivo, which could not be achieved using any conventional material, and is highly resistant to implantation. We discovered that this is an excellent vascular graft that does not cause intimal hyperplasia at the anastomotic site for a long period of time.

【0017】[0017]

【実施例】以下に具体例により本発明を詳細に説明する
が、本発明はこれら具体例によって制限されるものでは
ない。
EXAMPLES The present invention will be explained in detail below using specific examples, but the present invention is not limited to these specific examples.

【0018】実施例1 含フッ素エラストマー(ダイキン工業株式会社製、ダイ
エルサーモプラスチックT−530)の粉末(110μ
m以下)300mlに塩化ナトリウム粉末(100μm
以下)700mlを混合し、抽出成形により内径1.5
mm、外径2.5mmのチューブを得た。このチューブ
から塩化ナトリウムを熱湯により抽出し、チューブ内面
から外面までの貫通孔を有し、気孔率70%、平均孔径
が70μm、コンプライアンスが0.3の多孔質チュー
ブを得た。このチューブの内側から0.5%牛腱由来I
型コラーゲン水溶液を真空注入し、グルタールアルデヒ
ドで架橋した後、10%ヘパリン水溶液に含浸し、真空
乾燥した。コラーゲン及びヘパリンの複合化量はそれぞ
れ0.2mg/cm、1.6mg/cm(300UNI
T/cm)であった。走査電顕で観察したところ、コラ
ーゲン及びヘパリンは孔表面全面にうすく複合化されて
おり、多孔質構造は保たれていた。
Example 1 Fluorine-containing elastomer powder (110μ
m or less) to 300 ml of sodium chloride powder (100 μm or less).
(below) 700 ml was mixed, and the inner diameter was 1.5 by extraction molding.
A tube with an outer diameter of 2.5 mm was obtained. Sodium chloride was extracted from this tube with hot water to obtain a porous tube having through holes extending from the inner surface to the outer surface of the tube, a porosity of 70%, an average pore diameter of 70 μm, and a compliance of 0.3. 0.5% bovine tendon derived I from the inside of this tube
After injecting an aqueous solution of type collagen in a vacuum and crosslinking with glutaraldehyde, it was impregnated with a 10% aqueous heparin solution and dried in a vacuum. The combined amounts of collagen and heparin are 0.2 mg/cm and 1.6 mg/cm, respectively (300UNI
T/cm). When observed with a scanning electron microscope, collagen and heparin were found to be thinly composited over the entire pore surface, and the porous structure was maintained.

【0019】この複合化人工血管をラット腹部大動脈に
移植した。1か月後の内面内皮被覆率は90%、2年後
の開存率は95%であり、吻合部での内膜の過形成やチ
ューブの分解・劣化は認められなかった。
[0019] This composite artificial blood vessel was transplanted into the abdominal aorta of a rat. The inner endothelial coverage rate after 1 month was 90%, and the patency rate after 2 years was 95%, and no hyperplasia of the intima or disassembly or deterioration of the tube at the anastomotic site was observed.

【0020】実施例2〜3 実施例1と同様の方法により複合化人工血管を作製し、
ラットに移植した。結果は表に示す通りで、内皮被覆は
良好で、2年後にも吻合部での内膜の過形成やチューブ
の分離・劣化はなく開存率は良好であった。
Examples 2 to 3 Composite artificial blood vessels were prepared by the same method as in Example 1,
transplanted into rats. The results are shown in the table, and the endothelial coverage was good, and even after 2 years, there was no intimal hyperplasia or separation or deterioration of the tube at the anastomotic site, and the patency rate was good.

【0021】比較例1 実施例1と同様にして作製した含フッ素エラストマー多
孔質チューブ10cmをそのままラットに移植した。1
か月後の内皮被覆率は18%と低く、2年後の開存率も
55%と低かった。
Comparative Example 1 A 10 cm fluorine-containing elastomer porous tube prepared in the same manner as in Example 1 was directly implanted into a rat. 1
The endothelial coverage rate after 1 month was low at 18%, and the patency rate after 2 years was also low at 55%.

【0022】比較例2 平均繊維長が60μm、気孔率が70%、コンプライア
ンスが0.02、内径1.5mm、外径2.5mmの延
伸ポリテトラフルオロエチレンチューブの内側から0.
3%コラーゲン水溶液を真空注入し、グルタールアルデ
ヒドで架橋後、10%ヘパリン水溶液に含浸し、真空乾
燥した。コラーゲン及びヘパリンの複合化量は0.2m
g/cm、1.7mg/cm(320UNIT/cm)
であった。この複合化人工血管10cmをラットに移植
した。1か月後の内皮被覆率は85%と良好であったが
、2年後には吻合部で内膜の過形成が頻発し、開存率は
60%と低かった。
Comparative Example 2 A stretched polytetrafluoroethylene tube with an average fiber length of 60 μm, a porosity of 70%, a compliance of 0.02, an inner diameter of 1.5 mm, and an outer diameter of 2.5 mm is 0.0 mm from the inside.
A 3% collagen aqueous solution was injected under vacuum, and after crosslinking with glutaraldehyde, it was impregnated with a 10% heparin aqueous solution and dried under vacuum. The combined amount of collagen and heparin is 0.2m
g/cm, 1.7mg/cm (320UNIT/cm)
Met. This composite artificial blood vessel with a length of 10 cm was transplanted to a rat. The endothelial coverage rate after 1 month was good at 85%, but after 2 years, intimal hyperplasia frequently occurred at the anastomotic site, and the patency rate was as low as 60%.

【0023】比較例3 平均孔径50μm、気孔率が50%で内径1.5mm、
外径2.5mmのポリエーテル系ポリウレタン多孔質チ
ューブに、実施例1と同様の方法でコラーゲン及びヘパ
リンを複合化した。複合化量はそれぞれ0.3mg/c
m、1.6mg/cm(300UNIT/cm)であっ
た。この複合化人工血管10cmをラットに移植した。 1か月後の内皮被覆率は80%と良好であったが、2年
後にはチューブの一部が分解劣化し、開存率は65%と
低かった。
Comparative Example 3 Average pore diameter 50 μm, porosity 50%, inner diameter 1.5 mm,
Collagen and heparin were composited into a polyether-based polyurethane porous tube having an outer diameter of 2.5 mm in the same manner as in Example 1. Composite amount is 0.3mg/c each
m, 1.6 mg/cm (300 UNIT/cm). This composite artificial blood vessel with a length of 10 cm was transplanted to a rat. The endothelial coverage rate after 1 month was good at 80%, but after 2 years, a portion of the tube had degraded and deteriorated, and the patency rate was as low as 65%.

【0024】比較例4 実施例1と同様にして作製した内径1.5mm、外径2
.5mm、気孔率70%、平均孔径70μmの多孔質含
フッ素エラストマーチューブの内側から0.5%コラー
ゲン水溶液を真空注入し、ジアルデヒドデンプンで架橋
した後、真空乾燥した。コラーゲンの複合化量は0.2
mg/cmであった。走査電顕で観察したところチュー
ブの多孔質構造は保たれていた。この複合化人工血管を
ラットに移植した。1か月後の開存率は65%と低かっ
た。
Comparative Example 4 An inner diameter of 1.5 mm and an outer diameter of 2 manufactured in the same manner as in Example 1.
.. A 0.5% collagen aqueous solution was vacuum injected from the inside of a porous fluorine-containing elastomer tube with a diameter of 5 mm, a porosity of 70%, and an average pore diameter of 70 μm, crosslinked with dialdehyde starch, and then vacuum dried. The amount of collagen complexed is 0.2
mg/cm. When observed with a scanning electron microscope, the porous structure of the tube was maintained. This composite artificial blood vessel was transplanted into a rat. The patency rate after one month was as low as 65%.

【0025】比較例5 実施例1と同様にして作製した内径1.5mm、外径2
.5mm、気孔率70%、平均孔径70μmの多孔質含
フッ素エラストマーチューブの管腔内に、圧をかけずに
0.5%コラーゲン水溶液を満たし、チューブ両端に栓
をして、チューブの円周方向にゆっくり回転させながら
乾燥した。グルタールアルデヒドで架橋した後、10%
ヘパリン水溶液に含浸し、真空乾燥した。コラーゲン及
びヘパリンの複合化量はそれぞれ0.2mg/cm、1
.7mg/cm(310UNIT/cm)であった。走
査電顕で観察したところコラーゲン及びヘパリンはチュ
ーブ内腔面に8μm厚の壁状の層を形成しており多孔質
内は複合化されていなかった。この複合化人工血管10
cmをラット腹部大動脈に移植した。1か月後の開存率
は55%、内面の内皮被覆率は70%であり、コラーゲ
ンが一部剥離していた。2年後、開存率は40%に低下
し開存例においても吻合部は狭搾していた。
Comparative Example 5 An inner diameter of 1.5 mm and an outer diameter of 2 manufactured in the same manner as in Example 1.
.. Fill the lumen of a porous fluorine-containing elastomer tube with a diameter of 5 mm, a porosity of 70%, and an average pore diameter of 70 μm with a 0.5% collagen aqueous solution without applying pressure, plug both ends of the tube, and move it in the circumferential direction of the tube. Dry by rotating slowly. After crosslinking with glutaraldehyde, 10%
It was impregnated with an aqueous heparin solution and dried under vacuum. The combined amounts of collagen and heparin are 0.2 mg/cm and 1, respectively.
.. It was 7 mg/cm (310 UNIT/cm). When observed using a scanning electron microscope, collagen and heparin formed a wall-like layer with a thickness of 8 μm on the inner surface of the tube, and the inside of the pore was not composited. This composite artificial blood vessel 10
cm was implanted into the rat abdominal aorta. One month later, the patency rate was 55%, the inner surface endothelial coverage was 70%, and some collagen had peeled off. Two years later, the patency rate had decreased to 40%, and even in cases where the anastomosis was patent, the anastomosis was narrowed.

【0026】[0026]

【発明の効果】以上説明したように、本発明による複合
化人工血管は、生体血管と同等のコンプライアンスを有
し、かつ生体内で劣化しない多孔質含フッ素エラストマ
ーチューブに多孔質チューブの孔が塞がらないように、
しかも孔表面全面を被覆するように生体組織誘導性物質
や抗血栓性物質を複合化したものである。この複合化人
工血管は、移植後初期の抗血栓性にすぐれ、しかも速や
かな内膜形成を起こすことにより、生体血管と同等の抗
血栓性を付与することができ、しかも長期間を経過して
も吻合部における内膜の過形成が生じず、また分解劣化
を起こさず、長期間にわたって良好な開存性を示す。
[Effects of the Invention] As explained above, the composite artificial blood vessel according to the present invention has the same compliance as a biological blood vessel, and the pores of the porous tube are filled with a porous fluorine-containing elastomer tube that does not deteriorate in vivo. So that there is no
Moreover, it is a compound containing a biological tissue-inducing substance and an antithrombotic substance so as to cover the entire surface of the pore. This composite artificial blood vessel has excellent antithrombotic properties in the initial stage after transplantation, and by causing rapid intimal formation, it can provide antithrombotic properties equivalent to that of biological blood vessels, and even over a long period of time. Also, there is no hyperplasia of the intima at the anastomosis site, no decomposition and deterioration, and good patency over a long period of time.

【0027】したがって、本発明による複合化人工血管
は、抗血栓性、組織誘導性、柔軟性、耐分解劣化性とい
った要求特性をすべて満足するものであり、特に、従来
のいかなる材料によっても実用化できなかった。冠状動
脈、末梢血管等の小口径血管の代用血管として有効であ
る。
[0027] Therefore, the composite artificial blood vessel according to the present invention satisfies all the required properties such as antithrombotic properties, tissue conductivity, flexibility, and resistance to decomposition and deterioration. could not. It is effective as a substitute blood vessel for small diameter blood vessels such as coronary arteries and peripheral blood vessels.

【0028】[0028]

【表1】[Table 1]

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  実質的にポリマー成分以外の添加剤を
含まない熱可塑性含フッ素エラストマーより成る多孔質
チューブに、多孔質チューブの孔が塞がらないようにし
かも孔の表面全面を被覆するように生体組織誘導性物質
と抗血栓性物質を複合化してなる人工血管。
Claim 1: A porous tube made of a thermoplastic fluorine-containing elastomer containing substantially no additives other than polymer components, and a biological material so as to prevent the pores of the porous tube from being blocked and to cover the entire surface of the pores. An artificial blood vessel made by combining a tissue-inducing substance and an antithrombotic substance.
【請求項2】  多孔質チューブの孔径が1〜500μ
mで、孔が壁内面から外面まで貫通しており、気孔率が
50〜90%の間であり、チューブのコンプライアンス
が0.1〜0.8の間であることを特徴とする請求項1
記載の人工血管。
[Claim 2] The porous tube has a pore diameter of 1 to 500 μm.
m, the pores penetrate from the inner wall to the outer surface, the porosity is between 50 and 90%, and the compliance of the tube is between 0.1 and 0.8.
The artificial blood vessel described.
【請求項3】  生体組織誘導性物質がコラーゲン、ゼ
ラチン、ラミニンおよびアルブミンの少なくとも一種で
あることを特徴とする請求項1または2記載の人工血管
3. The artificial blood vessel according to claim 1, wherein the biological tissue-inducing substance is at least one of collagen, gelatin, laminin, and albumin.
JP3066071A 1991-03-29 1991-03-29 Composite artificial blood vessel Pending JPH04300559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3066071A JPH04300559A (en) 1991-03-29 1991-03-29 Composite artificial blood vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3066071A JPH04300559A (en) 1991-03-29 1991-03-29 Composite artificial blood vessel

Publications (1)

Publication Number Publication Date
JPH04300559A true JPH04300559A (en) 1992-10-23

Family

ID=13305247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3066071A Pending JPH04300559A (en) 1991-03-29 1991-03-29 Composite artificial blood vessel

Country Status (1)

Country Link
JP (1) JPH04300559A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5718723A (en) * 1994-03-15 1998-02-17 Seikagaku Kogyo Kabushiki Kaisha (Seikagaku Corporation) Artificial blood vessel and process for producing the same
JPH1176278A (en) * 1997-05-30 1999-03-23 Schneider Usa Inc Porous artificial organism characterized by formation thereof by spraying water-soluble and non-water soluble fiber with rotary mandrel and use thereof
JP2005521440A (en) * 2002-02-05 2005-07-21 ケンブリッジ サイエンティフィック, インコーポレイテッド Bioresorbable osteoconductive composition for bone regeneration

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5718723A (en) * 1994-03-15 1998-02-17 Seikagaku Kogyo Kabushiki Kaisha (Seikagaku Corporation) Artificial blood vessel and process for producing the same
JPH1176278A (en) * 1997-05-30 1999-03-23 Schneider Usa Inc Porous artificial organism characterized by formation thereof by spraying water-soluble and non-water soluble fiber with rotary mandrel and use thereof
JP2005521440A (en) * 2002-02-05 2005-07-21 ケンブリッジ サイエンティフィック, インコーポレイテッド Bioresorbable osteoconductive composition for bone regeneration

Similar Documents

Publication Publication Date Title
JP3784798B2 (en) Implantable tubular prosthesis made of polytetrafluoroethylene
JP3221690B2 (en) Collagen structure
US5632776A (en) Implantation materials
Guidoin et al. Albumin coating of a knitted polyester arterial prosthesis: an alternative to preclotting
CA2327649C (en) Small bore biologic graft with therapeutic delivery system
Pennel et al. The performance of cross-linked acellular arterial scaffolds as vascular grafts; pre-clinical testing in direct and isolation loop circulatory models
EP0128501B1 (en) Artificial vessel and process for preparing the same
JPH03198846A (en) Artificial blood tube, manufacture thereof and substrate for artificial blood tube
EP0512122A1 (en) Implant material
US20220072197A1 (en) Method for producing a fibrin-based bioartificial, primarily acellular construct, and the construct itself
JPH09509085A (en) Bioremodelable collagen graft prosthesis
JPH07275344A (en) Medical material for soft tissue
Nojiri et al. Aorta-coronary bypass grafting with heparinized vascular grafts in dogs: a preliminary study
EP0246638A2 (en) Biologically modified synthetic grafts
Hata et al. Evaluation of a polyepoxy compound fixed biological vascular prosthesis and an expanded polytetrafluoroethylene vascular graft
JPH04300559A (en) Composite artificial blood vessel
WO2000035372A2 (en) Multiple matrices for engineered tissues
JP2007037764A (en) Prosthetic valve
Sigot‐Luizard et al. Cytocompatibility of albuminated polyester fabrics
JP3687995B2 (en) Artificial blood vessel and manufacturing method thereof
JPH05269196A (en) Multilayered artificial blood vessel
Eberhart et al. Cardiovascular materials
JPH0240341B2 (en)
EP0282091A2 (en) Medical device with heparin slow-release
JP3003208B2 (en) Vascular prostheses and patches