JPH04300537A - Composite artificial blood vessel - Google Patents

Composite artificial blood vessel

Info

Publication number
JPH04300537A
JPH04300537A JP3066072A JP6607291A JPH04300537A JP H04300537 A JPH04300537 A JP H04300537A JP 3066072 A JP3066072 A JP 3066072A JP 6607291 A JP6607291 A JP 6607291A JP H04300537 A JPH04300537 A JP H04300537A
Authority
JP
Japan
Prior art keywords
tube
parts
artificial blood
blood vessel
long
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3066072A
Other languages
Japanese (ja)
Inventor
Yasuhiro Okuda
泰弘 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JINKOU KETSUKAN GIJUTSU KENKYU CENTER KK
Original Assignee
JINKOU KETSUKAN GIJUTSU KENKYU CENTER KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JINKOU KETSUKAN GIJUTSU KENKYU CENTER KK filed Critical JINKOU KETSUKAN GIJUTSU KENKYU CENTER KK
Priority to JP3066072A priority Critical patent/JPH04300537A/en
Publication of JPH04300537A publication Critical patent/JPH04300537A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the interstitial property good over a long period of time after implantation by compounding a biotissue inductive material and antithrombotic material into stretched polytetrafluoroethylene (PTFE) having a long fiber structure which is excellent in the infiltration property of the biotissue and an integral structure which is dynamically excellent. CONSTITUTION:A liquid oil lubricant is intimately mixed into the unsintered powder of the stretched PTFE and the mixture is extruded to a tube shape by a ram type extruder. The extruded tube is heated by continuously applying a temp. gradient between the inside and outside surfaces of the tube. The rearrangement of the fiber- knot structure arriving at the outside surface from the inside surface of the tube takes place and the tube is further stretched more than before the treatment, by which the long fibered parts and short fibered parts are obtd. The material having a biotissue induction effect and the antithrombotic material are applied respectively independently or after being mixed with another high-molecular material on the parts constituted of the long fibers. The parts constituted of the short fibers maintain the structure as the tube since the short fiber parts thereof continue like network from the inside surface to the outside surface of the tube wall in the circumferential direction of the tube, thereby imparting tear and tensile strength to the tube.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、冠状動脈、末梢血管な
どの代用血管として用いる小口径人工血管に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a small-diameter artificial blood vessel used as a substitute blood vessel for coronary arteries, peripheral blood vessels, and the like.

【0002】0002

【従来の技術】従来より、ポリエステル繊維編物または
織物や、延伸ポリテトラフルオロエチレン(以下PTF
E)チューブが人工血管として用いられてきた。延伸P
TFEチューブは、PTFE素材自体が抗血栓性に優れ
、また延伸によって得られる繊維−結節による多孔質構
造が生体組織適合性に優れるため、ポリエステルに比較
して、より小口径の領域で人工血管として実用されてき
た。
[Prior Art] Conventionally, polyester fiber knitted or woven fabrics, stretched polytetrafluoroethylene (hereinafter referred to as PTF),
E) Tubes have been used as artificial blood vessels. Stretching P
TFE tubes can be used as artificial blood vessels in smaller diameter areas than polyester because the PTFE material itself has excellent antithrombotic properties, and the porous structure of fibers and knots obtained by stretching has excellent tissue compatibility. It has been put into practice.

【0003】しかしながら延伸PTFEでも抗血栓性が
十分であるとは言えず、特に内径6mm以下の人工血管
では十分な開存率は得られていない。そこでこれらを解
決する方法として従来より、(1)材料自体の抗血栓性
を向上させる方法、(2)人工血管を移植後に、生体組
織を誘導し内膜形成を起こすことによって抗血栓性を付
与する方法、が検討されている。前者としては相分離構
造等の抗血栓性高分子材料や抗血栓性剤固定化材料の開
発が検討されているが、移植後長期にわたって良好な抗
血栓性を示す材料は得られていない。後者では、移植後
の内膜形成を促進するために、延伸PTFEにフィブロ
ネクチンやコラーゲン等の接着性タンパク質と、必要に
応じてヘパリンを複合化した人工血管が提案されている
(特開昭63−46169号公報)。
However, even expanded PTFE cannot be said to have sufficient antithrombotic properties, and in particular, a sufficient patency rate has not been obtained for artificial blood vessels with an inner diameter of 6 mm or less. Therefore, conventional methods to solve these problems include (1) improving the antithrombotic properties of the material itself, and (2) imparting antithrombotic properties by guiding living tissue and causing intimal formation after implanting the artificial blood vessel. A method to do so is being considered. As for the former, the development of antithrombotic polymeric materials such as phase-separated structures and antithrombotic agent immobilization materials has been considered, but no material has been obtained that exhibits good antithrombotic properties for a long period of time after transplantation. In the latter case, in order to promote intima formation after transplantation, an artificial blood vessel has been proposed in which stretched PTFE is combined with adhesive proteins such as fibronectin and collagen, and heparin as necessary (Japanese Patent Application Laid-Open No. 1983-1999). 46169).

【0004】0004

【発明が解決しようとする課題】しかしながら、従来の
延伸PTFEチューブにコラーゲンやヘパリンを複合化
した人工血管では、なお組織侵入速度が不十分で、内膜
形成に時間がかかる他、侵入した組織や内膜の安定性が
悪く、移植長期において組織が石灰化したり壊死するた
めに長期開存性が悪いといった問題点があった。これら
の問題点は、多孔質構造の孔径が生体組織や毛細血管の
侵入に対して十分に大きくなく、組織が十分に侵入でき
ないことに原因がある。従ってこれらの問題点を解決す
るためには、多孔質の孔径をより大きくし、速やかに大
量の生体組織が孔内に侵入させる必要がある。
[Problems to be Solved by the Invention] However, with conventional artificial blood vessels made of stretched PTFE tubes combined with collagen and heparin, the tissue penetration speed is still insufficient, it takes time for intimal formation, and the tissue that has invaded There were problems in that the stability of the intima was poor and the tissue became calcified or necrotic during the long term of transplantation, resulting in poor long-term patency. These problems are caused by the fact that the pore size of the porous structure is not large enough for the invasion of living tissues and capillaries, and the tissues cannot penetrate sufficiently. Therefore, in order to solve these problems, it is necessary to increase the pore diameter of the porous material and allow a large amount of living tissue to quickly enter the pores.

【0005】延伸PTFEチューブは、非常に細い繊維
とその繊維により互いに連結された結節から成る微細な
繊維構造を有している。したがって、孔径を大きくする
ためには、延伸率を高くし、繊維を長くすれば良い。し
かしながら、延伸PTFEチューブにおいては、延伸に
よって生じた微細繊維が延伸方向に強く配向しているた
めにチューブの管軸方向の引張強度は高いがチューブ周
方向の強度が低く、管軸方向に裂け易いという欠点を有
している。このため、延伸率を向上し、繊維を長くする
とチューブの力学的特性が著しく低下し、特に生体と縫
合する際に縫合針や縫合糸がチューブを引き裂いてしま
ったり、さらに長繊維すると、チューブが管腔構造を保
持出来なくなってしまい、人工血管としての使用に耐え
られなくなってしまう。
[0005] Expanded PTFE tubes have a fine fibrous structure consisting of very fine fibers and nodules interconnected by the fibers. Therefore, in order to increase the pore diameter, it is sufficient to increase the drawing ratio and lengthen the fibers. However, in stretched PTFE tubes, the fine fibers generated by stretching are strongly oriented in the stretching direction, so the tensile strength of the tube is high in the axial direction, but the strength in the circumferential direction of the tube is low, and it is easy to tear in the axial direction. It has the following drawbacks. For this reason, increasing the drawing ratio and lengthening the fibers will significantly reduce the mechanical properties of the tube, and the suture needle or suture thread may tear the tube when suturing it with a living body. It becomes impossible to maintain the lumen structure and cannot withstand use as an artificial blood vessel.

【0006】これら力学的特性の低下を解決するための
手段として、チューブの壁厚を厚くする、チューブ外部
をメッシュ等で補強するといった方法が考えられるが、
前者においては生体組織侵入性の低下をきたすという問
題、後者においては補強材の剥離等の問題が生じる。従
ってこれらのチューブに生体組織誘導物質を複合化して
もその効果を十分に発揮させることは不可能である。
[0006] Possible means to solve this problem of deterioration in mechanical properties include increasing the wall thickness of the tube and reinforcing the outside of the tube with mesh or the like.
In the former case, there is a problem of a decrease in the ability to invade living tissue, and in the latter case, problems such as peeling of the reinforcing material occur. Therefore, even if these tubes are combined with biological tissue-inducing substances, it is impossible to fully exhibit their effects.

【0007】[0007]

【課題を解決するための手段】本発明は、生体組織の侵
入性に優れる長繊維構造を有し、かつ力学特性にも優れ
た一体構造の延伸PTFEチューブに、生体組織誘導性
物質と抗血栓性物質を複合化することにより、初期の抗
血栓性に優れ、かつ速やかに安定な内膜を形成すること
により、長期にわたって良好な開存性を示す複合化人工
血管を提供するものである。
[Means for Solving the Problems] The present invention provides a stretched PTFE tube with a monolithic structure that has a long fiber structure that is excellent in penetrating into living tissues and has excellent mechanical properties, and a living tissue-inducing substance and an antithrombotic substance. The purpose of the present invention is to provide a composite artificial blood vessel that has excellent initial antithrombotic properties and quickly forms a stable intima by combining a chemical substance and exhibits good patency over a long period of time.

【0008】本発明が対象とする延伸PTFEチューブ
は、内表面から外表面にいたるまで、繊維の長い部分と
繊維の短い部分の二つの部分から構成され、好ましくは
長繊維部分は、平均繊維長が60μm以上、短繊維部分
は平均繊維長が20μm以下で、チューブの周方向とチ
ューブ管壁の厚み方向に編目状に連続する構造を有する
[0008] The expanded PTFE tube to which the present invention is directed consists of two parts, a long fiber part and a short fiber part, from the inner surface to the outer surface. Preferably, the long fiber part has an average fiber length. is 60 μm or more, and the short fiber portion has an average fiber length of 20 μm or less, and has a structure that continues in the shape of a mesh in the circumferential direction of the tube and the thickness direction of the tube wall.

【0009】かかる延伸PTFEチューブは、基本的に
は特公昭42−13560号公報に記載の方法により製
造される。まずPTFE未焼結粉末に液状潤滑剤を混和
し、ラム式押出機によってチューブ状に押し出す。この
チューブから液状潤滑剤を除去し、あるいは除去せずに
チューブを少なくとも管軸方向に延伸する。次にチュー
ブ両端を収縮しないように固定し、チューブの内表面と
外表面の両側を焼結温度の327℃以上で加熱する。そ
の際、チューブの内外面間に連続的に温度勾配を与え、
外表面の温度を内表面の温度より50〜300℃、好ま
しくは100〜250℃高くする。これにより、チュー
ブの内表面から外表面に至るまで繊維−結節構造の再配
列が起こり、処理前よりもさらに延伸されて長繊維化し
た部分と処理前より短繊維化した部分が得られる。内表
面温度はPTFEが分解しないように500℃以下に制
御することが望ましい。
[0009] Such an expanded PTFE tube is basically manufactured by the method described in Japanese Patent Publication No. 13560/1983. First, a liquid lubricant is mixed with unsintered PTFE powder, and the mixture is extruded into a tube using a ram extruder. The liquid lubricant is removed from the tube, or the tube is stretched at least in the tube axis direction without being removed. Next, both ends of the tube are fixed so as not to shrink, and both the inner and outer surfaces of the tube are heated to a sintering temperature of 327° C. or higher. At that time, a continuous temperature gradient is applied between the inner and outer surfaces of the tube,
The temperature of the outer surface is set higher than the temperature of the inner surface by 50 to 300°C, preferably 100 to 250°C. As a result, the fiber-knot structure is rearranged from the inner surface to the outer surface of the tube, resulting in a portion where the fibers are further drawn and become long fibers than before the treatment, and a portion where the fibers are shorter than before the treatment. It is desirable to control the inner surface temperature to 500° C. or less so that the PTFE does not decompose.

【0010】特公昭58−1656号公報及び特開昭5
5−76648号公報には、延伸後のPTFEの一部分
を更に327℃以上の温度で加熱することにより、延伸
方向と垂直方向の強度に優れた延伸PTFEを製造する
方法が記載されている。しかしながら、この方法では同
明細書にも記載されているように、チューブの片面のみ
が327℃以上に加熱されるだけで、別の片面は327
℃以下であるために、上述したようにチューブ内表面か
ら外表面に至るまで繊維−結節構造の再配列がおきるこ
とはなく、本発明に記載したように長繊維部と短繊維部
に分かれ、しかも短繊維部分がチューブの周方向及び厚
み方向に編目状に連続するという構造は得られない。こ
のように、327℃以上の温度で、内表面の温度と内外
面の温度差を適当に設定することにより、長繊維部分と
短繊維部分とからなりしかも短繊維部分がチューブの周
方向及び厚み方向に編目状に連続する構造の延伸PTF
Eチューブが得られる。
[0010] Japanese Patent Publication No. 58-1656 and Japanese Unexamined Patent Publication No. 1982-1656
No. 5-76648 describes a method for producing stretched PTFE with excellent strength in the direction perpendicular to the stretching direction by further heating a portion of the stretched PTFE at a temperature of 327° C. or higher. However, as described in the same specification, in this method, only one side of the tube is heated to 327°C or higher, and the other side is heated to 327°C or higher.
℃ or below, the fiber-nodule structure does not rearrange from the inner surface to the outer surface of the tube as described above, and as described in the present invention, the tube is divided into long fiber portions and short fiber portions, Moreover, a structure in which the short fiber portions are continuous in a mesh-like manner in the circumferential direction and thickness direction of the tube cannot be obtained. In this way, by appropriately setting the temperature difference between the inner surface and the outer and outer surfaces at a temperature of 327°C or higher, the tube is made up of long fiber portions and short fiber portions, and the short fiber portions are distributed in the circumferential direction and thickness of the tube. Stretched PTF with a continuous mesh-like structure in the direction
An E-tube is obtained.

【0011】このようにして得られた延伸PTFEチュ
ーブを、生体組織誘導性物質や抗血栓性物質の溶液に浸
漬するか、または溶液をチューブの管壁内に加圧または
減圧により注入することにより、複合化した人工血管を
作製することができる。生体組織誘導性物質や抗血栓性
物質は、単独で別々に複合化してもよいし、予め両者を
混合したり、必要に応じて第三の高分子材料を混合して
から複合化してもよい。
[0011] The expanded PTFE tube thus obtained is immersed in a solution of a biological tissue-inducing substance or an antithrombotic substance, or the solution is injected into the wall of the tube under pressure or vacuum. , a composite artificial blood vessel can be produced. The biological tissue-inducing substance and the antithrombotic substance may be combined individually or separately, or both may be mixed in advance, or if necessary, a third polymeric material may be mixed and then combined. .

【0012】本発明による複合化人工血管において、平
均繊維長が60μm以上の長繊維で構成される部分に生
体組織誘導物質を複合化することにより、従来のいかな
る人工血管材料でも得られなかった高速度で、人工血管
壁の外側から大量の生体組織や毛細血管が侵入する。こ
のように、従来の人工血管に比べてきわめて高速で大量
に侵入した組織は、長期にわたって安定な内膜を形成、
維持することができるため、移植後長期にわたって良好
な開存性を示す。このように良好な組織化を起こせしめ
るためには、長繊維部分の平均繊維長は60μm以上で
あることが必要であるが、好ましくは100μm以上、
より好ましくは150μm以上であることが望ましい。
[0012] In the composite artificial blood vessel according to the present invention, by compounding a biological tissue-inducing substance into the portion composed of long fibers with an average fiber length of 60 μm or more, a high A large amount of living tissue and capillaries invade from the outside of the artificial blood vessel wall at high speed. In this way, the tissue that invades in large quantities at an extremely high speed compared to conventional artificial blood vessels forms a stable intima over a long period of time.
Because it can be maintained, it shows good patency over a long period after transplantation. In order to cause such good organization, the average fiber length of the long fiber portion needs to be 60 μm or more, preferably 100 μm or more,
More preferably, the thickness is 150 μm or more.

【0013】平均繊維長が20μm以下の短繊維で構成
される部分は、結節部分の密度が高いため強度特性に優
れる。この短繊維部分がチューブの周方向および管壁の
内表面から外表面まで編目状に連続することによって、
チューブとしての構造を維持し、かつ縫合時に必要な引
裂強度や引張強度をチューブに付与する。良好な強度を
付与するためには短繊維部分の平均繊維長は、20μm
以下であることが必要である。
[0013] The portion composed of short fibers having an average fiber length of 20 μm or less has a high density in the nodule portion, and therefore has excellent strength characteristics. This short fiber portion continues in a mesh pattern in the circumferential direction of the tube and from the inner surface to the outer surface of the tube wall.
It maintains the structure of the tube and provides the tube with tear strength and tensile strength necessary for suturing. In order to provide good strength, the average fiber length of the short fiber portion is 20 μm.
It is necessary that the following is true.

【0014】この延伸PTFEチューブに複合化する物
質のうち、生体組織誘導作用を有する物質としては、接
着性タンパク質や、内皮細胞増殖因子、血管増殖因子等
の成長因子類があげられる。これらの中で、コラーゲン
、ゼラチン、アルブミン、ラミニンが望ましい。これら
の物質を上記延伸PTFEチューブに複合化することに
より、従来の材料では得られなかった程迅速に大量の生
体組織や毛細血管が侵入することができ、長期にわたっ
て安定な内膜を維持することができる。
[0014] Among the substances compounded into this stretched PTFE tube, substances having a biological tissue-inducing effect include adhesive proteins and growth factors such as endothelial cell growth factor and vascular growth factor. Among these, collagen, gelatin, albumin, and laminin are preferred. By combining these substances into the expanded PTFE tube, a large amount of living tissue and capillaries can enter the tube more rapidly than with conventional materials, and a stable intima can be maintained over a long period of time. Can be done.

【0015】複合化する方法としては、単独で塗布する
だけでもよいし、別の高分子材料に混合して塗布しても
良いし、必要に応じて化学的に固定してもよい。複合構
造としては、複合化後にも多孔質構造が維持されるよう
に、壁厚全体にわたって、孔内全体に薄く複合化するの
が望ましい。また、本発明による延伸EPTFEチュー
ブは延伸率が高く孔径が大きいため、単独で移植すると
漏血が生じるが、このようにタンパク質類を複合化する
ことにより、漏血を防ぐことができる。
[0015] As for the method of forming a composite, it may be applied alone, it may be mixed with another polymer material and applied, or it may be fixed chemically as required. As for the composite structure, it is desirable that the composite be thinly composited throughout the entire wall thickness and within the pores so that the porous structure is maintained even after the composite is composited. Further, since the expanded EPTFE tube according to the present invention has a high stretching ratio and a large pore diameter, blood leakage occurs when it is implanted alone, but blood leakage can be prevented by combining proteins in this way.

【0016】複合化する物質のうち、抗血栓性材料は、
移植後に人工血管内面が抗血栓性を有する内皮細胞で覆
われる迄の間、人工血管に抗血栓性を付与するために複
合化される。これらの物質として、ヘパリン等の抗血液
凝固物質、アスピリン、プロスタグランジンE1、同I
2等の抗血小板凝集物質、ウロキナーゼ等の血栓溶解物
質があげられる。これらの物質を単独で塗布するだけで
もよいし、別の高分子材料に混合して塗布してもよいし
、必要に応じて共有結合やイオン結合固定してもよいが
、いずれにしても移植後に形成される内膜によって抗血
栓性が付与されるまでの間、人工血管内面を抗血栓性に
しておくために必要なだけの量を複合化することが必要
である。
Among the substances to be combined, the antithrombotic material is
After transplantation, until the inner surface of the artificial blood vessel is covered with endothelial cells having antithrombotic properties, the composite is used to impart antithrombotic properties to the artificial blood vessel. These substances include anticoagulants such as heparin, aspirin, prostaglandin E1, and prostaglandin I.
Examples include anti-platelet aggregation substances such as No. 2, and thrombolytic substances such as urokinase. These substances can be applied alone, mixed with another polymeric material, or fixed with covalent or ionic bonds as necessary, but in any case, the It is necessary to compound the amount necessary to keep the inner surface of the artificial blood vessel antithrombotic until antithrombotic properties are imparted by the intima formed later.

【0017】[0017]

【実施例】以下に、本発明を実施例によって具体的に説
明するが、本発明の範囲はこれによって制限されるもの
ではない。
[Examples] The present invention will be specifically explained below with reference to Examples, but the scope of the present invention is not limited thereby.

【0018】実施例1   PTFE粉末ポリフロンF−104(ダイキン工業
株式会社製)100重量部に対して液状潤滑剤27重量
部を添加して混和し、加圧予備成形後、押出機で内径1
.5mm、外径2.5mmのチューブ状に押出した。こ
のチューブから液状潤滑剤を除去した後、チューブを3
90℃に加熱し、1000%延伸した。この延伸チュー
ブに外径1.5mmのステンレス棒を挿入し、外表面側
を650℃、内表面側を450℃にて35秒間加熱した
。これにより下表1に示す物性のチューブを得た。
Example 1 27 parts by weight of a liquid lubricant was added to 100 parts by weight of PTFE powder Polyflon F-104 (manufactured by Daikin Industries, Ltd.) and mixed, and after pressurized preforming, an extruder was used to make the inner diameter 1.
.. It was extruded into a tube shape of 5 mm and outer diameter of 2.5 mm. After removing the liquid lubricant from this tube, remove the tube from
It was heated to 90°C and stretched 1000%. A stainless steel rod with an outer diameter of 1.5 mm was inserted into this stretched tube, and the outer surface side was heated at 650° C. and the inner surface side was heated at 450° C. for 35 seconds. As a result, a tube having physical properties shown in Table 1 below was obtained.

【0019】このチューブの内側から0.5%牛腱由来
タイプI型コラーゲン水溶液を真空注入し、グルタール
アルデヒドで架橋後、10%ヘパリン水溶液に含浸し、
真空乾燥した。コラーゲン及びヘパリンの複合化量はそ
れぞれ0.3mg/cm,1.8mg/cm(329U
NIT/cm)であった。
A 0.5% bovine tendon-derived type I collagen aqueous solution was vacuum injected from the inside of this tube, crosslinked with glutaraldehyde, and then impregnated with a 10% heparin aqueous solution.
Vacuum dried. The combined amounts of collagen and heparin are 0.3 mg/cm and 1.8 mg/cm (329 U
NIT/cm).

【0020】この複合化人工血管をラット腹部大動脈に
移植した。2週間後管壁内は線維芽細胞等の生体組織成
分により満たされていた。内面の内皮被覆率は92%と
高く、開存率100%であった。また1年経過後にも形
成した内皮は安定で開存率は95%であった。
[0020] This composite artificial blood vessel was transplanted into the abdominal aorta of a rat. Two weeks later, the inside of the tube wall was filled with living tissue components such as fibroblasts. The endothelial coverage of the inner surface was as high as 92%, and the patency rate was 100%. Furthermore, even after one year had passed, the formed endothelium was stable and the patency rate was 95%.

【0021】実施例2〜4   表1に示す複合化物質を用いる他は実施例1と同様
の方法により複合化人工血管を作製し、ラットに移植し
た。結果は表1に示す通りで、2週間後の多孔質内への
組織侵入は良好で内面の被覆率は高く、開存率は高かっ
た。また1年経過後にも形成した内皮は安定で開存率も
高かった。
Examples 2 to 4 Composite artificial blood vessels were prepared in the same manner as in Example 1, except that the composite substances shown in Table 1 were used, and transplanted into rats. The results are shown in Table 1, and after 2 weeks, tissue penetration into the pores was good, the inner surface coverage was high, and the patency rate was high. Furthermore, even after one year, the formed endothelium was stable and had a high patency rate.

【0022】比較例1   平均繊維長30μmで内径1.5mm、外径2.5
mmの延伸PTFEチューブの内側から0.5%牛腱由
来タイプI型コラーゲン水溶液を真空注入し、グルター
ルアルデヒドで架橋後、10%ヘパリン水溶液に含浸し
、真空乾燥した。コラーゲン及びヘパリンの複合化量は
それぞれ0.3mg/cm,1.7mg/cm(311
UNIT/cm)であった。この複合化人工血管10c
mをラット腹部大動脈にループ状に移植した。2週間後
多孔質内に組織は十分に入っておらず、内面の内皮被覆
率は63%で開存率は90%であった。また1年経過後
には侵入した組織は石灰化を起こしており、形成されて
内皮も一部剥離しており、開存率は50%であった。
Comparative Example 1 Average fiber length 30 μm, inner diameter 1.5 mm, outer diameter 2.5
A 0.5% bovine tendon-derived type I collagen aqueous solution was vacuum injected from the inside of a mm stretched PTFE tube, crosslinked with glutaraldehyde, impregnated with a 10% heparin aqueous solution, and vacuum dried. The combined amounts of collagen and heparin are 0.3 mg/cm and 1.7 mg/cm (311
UNIT/cm). This composite artificial blood vessel 10c
m was implanted in a loop shape into the rat abdominal aorta. After 2 weeks, there was not enough tissue within the pores, the inner surface endothelial coverage was 63%, and the patency rate was 90%. Furthermore, after one year had passed, the invading tissue had become calcified, and the endothelium had also partially peeled off, and the patency rate was 50%.

【0023】比較例2   実施例1と同様の方法により作製した延伸PTFE
チューブをそのままラットに移植した。移植の際の漏血
が激しく、2週間後多孔質内に組織は十分に入っておら
ず、内面の内皮被覆率は55%で開存率は75%であっ
た。1年経過後には内皮被覆率は100%であったが開
存率は50%であった。
Comparative Example 2 Expanded PTFE produced by the same method as Example 1
The tube was directly implanted into a rat. There was severe blood leakage during transplantation, and two weeks later, the tissue was not sufficiently contained within the pore, and the inner surface endothelial coverage was 55% and the patency rate was 75%. After one year, the endothelial coverage was 100%, but the patency rate was 50%.

【0024】[0024]

【表1】[Table 1]

【0025】[0025]

【発明の効果】以上説明したように、本発明による複合
化人工血管は生体組織が速やかに、しかも大量に侵入で
きる長繊維構造を有し、かつ力学特性にすぐれる一体構
造延伸PTFEチューブに、生体組織誘導性物質と抗血
栓性物質を複合化することにより、移植初期の抗血栓性
にすぐれ、しかも速やかに安定な内膜を形成することに
より、移植後長期にわたって良好な開存性を示す。した
がって、本発明による人工血管は、従来のいかなる材料
をもっても実用化できなかった、冠状動脈,末梢血管な
どの小口径の代用血管として有効である。
As explained above, the composite artificial blood vessel according to the present invention has a long fiber structure that allows living tissue to penetrate quickly and in large quantities, and is made of a monolithic expanded PTFE tube with excellent mechanical properties. By combining a biological tissue-inducing substance and an antithrombotic substance, it has excellent antithrombotic properties in the initial stage of transplantation, and also shows good patency over a long period of time after transplantation by quickly forming a stable intima. . Therefore, the artificial blood vessel according to the present invention is effective as a substitute for small-diameter blood vessels such as coronary arteries and peripheral blood vessels, which could not be put to practical use using any conventional material.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】  本発明の複合化人工血管の内面図。FIG. 1 is an internal view of the composite artificial blood vessel of the present invention.

【図2】  本発明の複合化人工血管の内面の拡大図。FIG. 2 is an enlarged view of the inner surface of the composite artificial blood vessel of the present invention.

【図3】  本発明の複合化人工血管の軸方向断面図。FIG. 3 is an axial cross-sectional view of the composite artificial blood vessel of the present invention.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  繊維と該繊維によって互いに連結され
た結節とからなる微細繊維状組織を有するポリテトラフ
ルオロエチレン多孔質チューブであって、チューブの内
表面から外表面に至るまで繊維の長い部分と繊維の短い
部分の二つの部分から構成され、かつ繊維の短い部分が
チューブの周方向およびチューブ内表面から外表面まで
編目状に連続しているチューブに、生体組織誘導性物質
と抗血栓性物質を複合化してなる人工血管。
1. A polytetrafluoroethylene porous tube having a fine fibrous structure consisting of fibers and nodules interconnected by the fibers, the tube having long portions of fibers from the inner surface to the outer surface of the tube. A living tissue-inducing substance and an antithrombotic substance are added to the tube, which is composed of two short fiber parts, and the short fiber parts are continuous in the circumferential direction of the tube and from the inner surface to the outer surface of the tube. An artificial blood vessel made by combining the following.
【請求項2】  チューブ内表面の長繊維部分の平均繊
維長が60μm以上、短繊維部分の平均繊維長が20μ
m以下である請求項1記載の人工血管。
Claim 2: The average fiber length of the long fiber portion on the inner surface of the tube is 60 μm or more, and the average fiber length of the short fiber portion is 20 μm.
The artificial blood vessel according to claim 1, which has a diameter of less than m.
【請求項3】  生体組織誘導性物質がコラーゲン、ゼ
ラチン、アルブミンおよびラミニンの少なくとも一種で
ある請求項1または2記載の人工血管。
3. The artificial blood vessel according to claim 1, wherein the biological tissue-inducing substance is at least one of collagen, gelatin, albumin, and laminin.
JP3066072A 1991-03-29 1991-03-29 Composite artificial blood vessel Pending JPH04300537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3066072A JPH04300537A (en) 1991-03-29 1991-03-29 Composite artificial blood vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3066072A JPH04300537A (en) 1991-03-29 1991-03-29 Composite artificial blood vessel

Publications (1)

Publication Number Publication Date
JPH04300537A true JPH04300537A (en) 1992-10-23

Family

ID=13305274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3066072A Pending JPH04300537A (en) 1991-03-29 1991-03-29 Composite artificial blood vessel

Country Status (1)

Country Link
JP (1) JPH04300537A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5718723A (en) * 1994-03-15 1998-02-17 Seikagaku Kogyo Kabushiki Kaisha (Seikagaku Corporation) Artificial blood vessel and process for producing the same
US6053939A (en) * 1996-02-15 2000-04-25 Vascular Graft Research Center Co., Ltd. Artificial blood vessel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5718723A (en) * 1994-03-15 1998-02-17 Seikagaku Kogyo Kabushiki Kaisha (Seikagaku Corporation) Artificial blood vessel and process for producing the same
US6053939A (en) * 1996-02-15 2000-04-25 Vascular Graft Research Center Co., Ltd. Artificial blood vessel

Similar Documents

Publication Publication Date Title
US6197296B1 (en) Tissue equivalents
US6136024A (en) Artificial blood vessel
US5413597A (en) Three-layer vascular prostheses
EP0656196B1 (en) Implantable tubular prosthesis
CA1341519C (en) Prosthetic vascular graft
US4822361A (en) Tubular prosthesis having a composite structure
CA1147087A (en) Graphite impregnated prosthetic vascular graft materials
US5632776A (en) Implantation materials
CA2119252C (en) Controlled porosity implantable primary lumen device
Guidoin et al. Albumin coating of a knitted polyester arterial prosthesis: an alternative to preclotting
WO2000072894A1 (en) Prosthesis for blood vessel
CA2074362A1 (en) Implantation materials
JPH04242642A (en) Hybrid artificial blood vessel and preparation thereof
White et al. Preliminary report: Evaluation of tissue ingrowth into experimental Replamineform vascular prostheses
EP1185313B1 (en) Expanded polytetrafluoroethylene vascular graft with increased healing response
EP0382158B1 (en) Prosthesis for living organ
JPH04300537A (en) Composite artificial blood vessel
Trudell et al. Alcohol-treated PTFE vascular grafts
JP3591868B2 (en) Artificial prosthesis
Ferrari et al. Small diameter vascular grafts coated with gelatin
JP2814415B2 (en) Artificial blood vessel and its manufacturing method
WO1992002195A1 (en) Artificial blood vessel and production thereof
JPS62152468A (en) Tubular organ prosthetic article having composite structure
JPH05237141A (en) Artificial blood vessel and its production
JPH0262264B2 (en)