JPH04300353A - Production of spherical carbon fiber - Google Patents

Production of spherical carbon fiber

Info

Publication number
JPH04300353A
JPH04300353A JP3080607A JP8060791A JPH04300353A JP H04300353 A JPH04300353 A JP H04300353A JP 3080607 A JP3080607 A JP 3080607A JP 8060791 A JP8060791 A JP 8060791A JP H04300353 A JPH04300353 A JP H04300353A
Authority
JP
Japan
Prior art keywords
carbon fiber
fibers
carbon
spheres
sphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3080607A
Other languages
Japanese (ja)
Inventor
Shinji Mitarai
御手洗 晋司
Kenji Takatsu
高津 健二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining Co Ltd
Original Assignee
Mitsui Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining Co Ltd filed Critical Mitsui Mining Co Ltd
Priority to JP3080607A priority Critical patent/JPH04300353A/en
Publication of JPH04300353A publication Critical patent/JPH04300353A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce low-density carbon yarn sphere and active carbon yarn sphere having isotropic properties wherein fibers are mutually entangled. CONSTITUTION:Chopped fibers of carbon yarn are blended with a collecting agent by a device of showing rolling and moving transporting action, granulated to give carbon yarn sphere, which is optionally activated to give active carbon yarn sphere.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、炭素繊維強化炭素材料
あるいは炭素系高温断熱材料として有用な炭素繊維複合
成形体の基材あるいは充填材として好適な炭素繊維球状
体、及びそれを用いた活性炭素繊維球状体の製造方法に
関する。 【0002】 【従来の技術】炭素繊維は、高い強度、耐熱性、耐蝕性
など優れた特性を有しており、炭素繊維強化炭素材料、
炭素系高温断熱材料等の複合材料の基材あるいは充填材
として有用な材料である。また、炭素繊維を賦活して得
られる活性炭素繊維は、通常の粉末あるいは粒状の活性
炭に比較して繊維径が非常に細く、接触効率が高いので
、吸着速度が早く単位重量当りの吸着量も多いため、各
種フィルタ−や吸着層の充填材として注目されている。 従来炭素繊維複合材料を製造するに当っては、炭素繊維
を2次元あるいは3次元に製織し、フェルト状あるいは
マット状とし、これに樹脂等のバインダ−を加えて成形
した形で炭素繊維強化炭素材料の中間基材(プリプレグ
)あるいは炭素系高温断熱材料としている。  しかし
ながら、これらの複合材料の製造方法においては織機等
の機械を使用する必要があり、得られた複合成形体は製
織した炭素繊維を用いているため炭素繊維が縦横方向に
配向しており、その配列方向に対して電気的性質、機械
的強度等に異方性が生じ易い。また、このように製織し
たものは、嵩密度が高く、断熱材等に使用した場合の重
量が大きくなる傾向がある。また、活性炭素繊維は、通
常、フェルト、不織布、織物、紙のような形で用いられ
ているが、吸着塔などに充填して使用するには、取扱い
にくく、また、大量に充填した場合には圧力損失が増大
するという難点があった。 【0003】 【発明が解決しようとする課題】本発明の目的は、従来
長繊維を2次元、3次元に編成したフェルト及びマット
の使用では得られなかった低密度で、弾力性に富み、さ
らに熱的、電気的、力学的性質に等方性を示す炭素繊維
強化炭素材料あるいは炭素系高温断熱材料として有用な
炭素繊維複合成形体の基材あるいは充填材として好適な
炭素繊維球状体、及び軽量で取扱いが容易で圧力損失の
増大が少なく各種フィルタ−や吸着処理装置の充填材と
して好適な活性炭素繊維球状体の製造方法を提供するこ
とにある。 【0004】 【課題を解決するための手段】本発明者らは、炭素繊維
を使用した複合材料の検討過程において、短く切断した
炭素繊維がその取扱い中に絡まって毛玉を形成し易い性
質を有することに着目して検討を進めた結果、適当な長
さに調整した炭素繊維チョップドファイバ−に少量のバ
インダ−成分を加えて特定の条件下で処理することによ
り、各種複合材の基材や充填材、活性炭素繊維の前駆体
として有用な炭素繊維球状体が得られることを見出し、
本発明を完成した。すなわち、本発明は、炭素繊維チョ
ップドファイバ−と収束剤とを、転動及び流動作用を示
す装置により混合して造粒することを特徴とする繊維が
相互に絡み合って形成され、密度が 0.05 〜0.
15 g/cm3 で等方的性質を有する炭素繊維球状
体の製造方法、並びに炭素繊維チョップドファイバ−と
収束剤とを、転動及び流動作用を示す装置により混合し
て造粒して得られる繊維が相互に絡み合って形成され、
密度が 0.05 〜0.15 g/cm3 で等方的
性質を有する炭素繊維球状体を賦活処理することを特徴
とする活性炭素繊維球状体の製造方法である。 【0005】本発明の炭素繊維球状体は、次のような方
法によって製造される。すなわち、0.5 〜30mm
の長さに調整した炭素繊維チョップドファイバ−を収束
剤とともに、オムニミキサ−やパンペレタイザ−のよう
な転動及び流動効果を示す混合あるいは造粒装置を用い
て混合し、造粒する。ここで使用する炭素繊維としては
PAN系、ピッチ系その他いずれのものでもよく、また
、高強度品、汎用品など特に制限はない。収束剤は、得
られる炭素繊維球状体の用途に応じて使い分けが可能で
あり、好ましくは水、PVA(ポリビニルアルコ−ル)
、CMC(カルボキシメチルセルロ−ス)、水溶性アク
リル樹脂などの水溶性高分子化合物の水溶液、フェノ−
ル樹脂、エポキシ樹脂、フラン樹脂等の合成樹脂の有機
溶媒溶液が使用できる。収束剤の使用量は、繊維表面に
軽く付着する程度で充分であり、水の場合では、繊維重
量に対し 10 〜50wt%が好ましい。炭素繊維チ
ョップドファイバ−の長さが 0.5mm未満では繊維
どうしの絡み合いが少ないので良好な球体を形成するこ
とができず、また、30mmを超えると転動及び流動の
効果が充分発揮されないので好ましくない。この混合、
造粒操作により、個々の炭素繊維チョップドファイバ−
が互いに絡み合い、雪だるま式に繊維が付着し絡み合う
ようになり、毛玉状の球状体が得られるのである。この
方法により得られる炭素繊維球状体は、密度が 0.0
5 〜0.15 g/cm3 と非常に軽く、球径は約
 2〜25mm、大部分は約 4〜20mmで、球形又
はそれに近い形状を有しており、電気的、熱的、強度的
に等方的性質を示し、炭素繊維強化炭素材料の中間基材
(プリプレグ)あるいは炭素系高温断熱材料の素材とし
て好適である。 【0006】また、このようにして得られる炭素繊維球
状体を賦活処理することにより良好な特性を有する活性
炭素繊維球状体を得ることができる。賦活方法としては
、通常の活性炭の賦活と同様に、水蒸気や炭酸ガスによ
るガス賦活あるいは塩化亜鉛などの薬品を用いる賦活を
採ることができるが、本発明の活性炭素繊維球状体の製
造方法としては、バッチ式あるいは連続式のロ−タリ−
キルンを使用し、 750℃以上の温度で水蒸気あるい
は炭酸ガスを用いて賦活するのが好ましい。ここで使用
する炭素繊維球状体は、球状で取扱い易くロ−タリ−キ
ルン内での分散がよく、しかも球体内の通気性も良好な
ので、賦活反応は円滑に進行し、均一に賦活された活性
炭素繊維の球状体を得ることができる。 【0007】本発明の方法によって得られる活性炭素繊
維球状体は、比表面積が 500〜2500m2/g 
と大きく、気体液体成分の吸脱着速度が速いので各種の
脱臭、ガス分離、溶剤回収装置等の充填材としての用途
のほか、電気二重層コンデンサ−の電極などの電池材料
としても好適である。 【0008】本発明の方法によって得られる炭素繊維球
状体は、炭素繊維チョップドファイバ−あるいは短繊維
及び、PVA、パルプ、フェノ−ル樹脂やエポキシ樹脂
などの熱硬化性樹脂、ポリ塩化ビニル等の熱可塑性樹脂
などのバインダ−成分を混合し、好ましくは水などの溶
媒中で湿式混合した後、濾過して溶媒を除去し、さらに
プレス等により任意の形状に成形し乾燥させることによ
り、バインダ−成分を介して炭素繊維が結合し、多孔質
、軽量で等方的な性質を有する炭素繊維複合成形体を得
ることができる。得られた炭素繊維複合成形体は、必要
によりさらに炭化処理を施すことにより、炭素のみから
なる成形体とすることができる。このようにして得られ
た炭素繊維複合成形体は、嵩密度が 0.05 〜0.
2g/cm3 と軽量で弾力性に富み、電気的、熱的、
強度的に等方的性質を有する成形体であり、炭素系高温
断熱材料、炭素系高温断熱材として極めて良好な材料で
ある。さらに、チョップドファイバ−及びバインダ−成
分を添加混合し、成形し、必要によりさらに炭化して得
られる成形体に合成樹脂成分を含浸させ、硬化させ、必
要によりさらに炭化、黒鉛化処理を施す方法がある。こ
の方法においては、炭素繊維球状体に対し、炭素繊維チ
ョップドファイバ−あるいは短繊維及びバインダ−成分
を混合し、好ましくは水などの溶媒中で湿式混合した後
、濾過して溶媒を除去し、さらにプレス等により任意の
形状に成形し乾燥させる。この成形体あるいはさらにこ
れを炭化した成形体に、必要により溶媒で希釈した合成
樹脂成分を含浸させ、乾燥、硬化させることにより、炭
素繊維と合成樹脂の複合成形体を得ることができる。引
続いて炭化、さらに黒鉛化処理を施すことにより炭素繊
維強化炭素材の形の複合成形体とすることもできる。ま
た、樹脂の含浸、炭化、黒鉛化等の処理を繰返すことに
より複合成形体の密度等を任意に制御することも可能で
ある。この方法によって得られる炭素繊維複合成形体は
、電気的、熱的、強度的に等方的性質を有する炭素繊維
強化合成樹脂及び炭素繊維強化炭素材料であり、各種構
造材、摺動材などの材料として好適である。 【0009】 【実施例】以下実施例により本発明をさらに具体的に説
明する。 (実施例1)繊維径 10 μm 、繊維長 3mmの
ピッチ系炭素繊維チョップドファイバ− 200gをオ
ムニミキサ−中に投入して作動させ、2分間で収束剤と
しての水 50gを噴霧し、さらに5分間作動させた後
、ミキサ−から取出し、篩により粉体を除去し、110
 ℃で 12 時間乾燥させて炭素繊維球状体を得た。 得られた球状体の歩留りは、約 90 %であり、その
 80 %以上が球径 4〜6 mmの範囲内にあるほ
ぼ均一径の球状体であった。また、それぞれの球体の密
度は約 0.1 g/cm3 であり、軽量で弾力性の
ある等方的性質を有していた。 【0010】(実施例2)実施例1で得た炭素繊維球状
体 100g をロ−タリ−キルン中で不活性雰囲気下
に 900℃まで加熱し、水蒸気80 %及び窒素 2
0 %の賦活ガスを導入し、同温度で所定時間賦活処理
を行い活性炭素繊維球状体を得た。得られた炭素繊維球
状体の比表面積及びJISK−1474の方法により吸
着能力の測定を行った結果は次の通りであり、大きな比
表面積と良好な吸着能力を有することがわかる。           賦活時間          比
表面積        ベンゼン平衡吸着量     
     ( 分 )           ( N2
 BET 法 )          ( wt% )
            25           
   773            28.6   
         40            11
58            39.2       
     50            1575  
          44.9  【0011】 【発明の効果】本発明の方法によれば、従来得られなか
った軽量で取扱いが容易で、高い通気性を有する炭素繊
維複合成形体の基材あるいは充填材として好適な炭素繊
維球状体を得ることができる。そして、この炭素繊維球
状体を用いた炭素繊維複合成形体は、従来の長繊維を2
次元、3次元に編成したフェルトあるいはマットの使用
では得られなかった低密度で、弾力性に富み、さらに熱
的、電気的、力学的性質に等方性を示す炭素繊維複合成
形体であり、炭素系高温断熱材料あるいは炭素繊維強化
炭素材料として優れた材料である。また、この炭素繊維
球状体を賦活して得られる活性炭素繊維球状体は、軽量
で取扱いが容易で、濾過装置や吸着装置に充填した際の
圧力損失の増大が少なく各種フィルタ−や吸着処理装置
の充填剤として極めて優れた特性を有している。
Detailed Description of the Invention [0001] [Industrial Application Field] The present invention is directed to a carbon fiber-reinforced carbon material or a carbon fiber composite molded article useful as a carbon-based high-temperature insulation material. The present invention relates to a fiber spheroid and a method for producing an activated carbon fiber spheroid using the same. [0002] Carbon fiber has excellent properties such as high strength, heat resistance, and corrosion resistance, and is used as carbon fiber reinforced carbon material,
It is a useful material as a base material or filler for composite materials such as carbon-based high-temperature insulation materials. In addition, the activated carbon fiber obtained by activating carbon fiber has a much thinner fiber diameter and higher contact efficiency than ordinary powder or granular activated carbon, so it has a fast adsorption rate and a low adsorption amount per unit weight. Because of its large amount, it is attracting attention as a filling material for various filters and adsorption layers. Conventionally, in manufacturing carbon fiber composite materials, carbon fibers are woven two-dimensionally or three-dimensionally into a felt or mat shape, and then a binder such as resin is added to form carbon fiber-reinforced carbon. The material is an intermediate base material (prepreg) or a carbon-based high-temperature insulation material. However, the manufacturing methods for these composite materials require the use of machines such as looms, and the resulting composite molded products use woven carbon fibers, so the carbon fibers are oriented in the vertical and horizontal directions. Anisotropy tends to occur in electrical properties, mechanical strength, etc. with respect to the arrangement direction. In addition, the woven material has a high bulk density and tends to be heavy when used as a heat insulating material or the like. Activated carbon fibers are usually used in the form of felt, nonwoven fabric, woven fabric, or paper, but they are difficult to handle when used in adsorption towers, etc., and they are difficult to handle when filled in large quantities. had the disadvantage of increased pressure loss. OBJECTS OF THE INVENTION The object of the present invention is to achieve low density, high elasticity, and high elasticity, which could not be obtained by conventional felts and mats made of two-dimensional or three-dimensional knitting of long fibers. A carbon fiber spherical body suitable as a base material or filler for a carbon fiber composite molded article useful as a carbon fiber-reinforced carbon material exhibiting isotropy in thermal, electrical, and mechanical properties or a carbon-based high-temperature insulation material, and lightweight. It is an object of the present invention to provide a method for producing activated carbon fiber spheres that are easy to handle, have little increase in pressure loss, and are suitable as fillers for various filters and adsorption treatment devices. [Means for Solving the Problems] In the process of studying composite materials using carbon fibers, the present inventors discovered that carbon fibers cut into short lengths tend to get tangled and form pilling during handling. As a result of our studies, we found that by adding a small amount of binder to chopped carbon fibers adjusted to an appropriate length and processing them under specific conditions, we were able to create a material that can be used as a base material for various composite materials. It was discovered that carbon fiber spheres useful as a filler and a precursor of activated carbon fibers can be obtained.
The invention has been completed. That is, the present invention is characterized in that chopped carbon fibers and a sizing agent are mixed and granulated using a device that exhibits rolling and flow action, so that the fibers are intertwined with each other and have a density of 0. 05 ~0.
A method for producing carbon fiber spheres having isotropic properties at 15 g/cm3, and fibers obtained by mixing and granulating chopped carbon fibers and a sizing agent using a device that exhibits rolling and flow action. are formed by intertwining with each other,
This is a method for producing activated carbon fiber spheres, which comprises activating carbon fiber spheres having a density of 0.05 to 0.15 g/cm3 and isotropic properties. The carbon fiber spheres of the present invention are manufactured by the following method. i.e. 0.5-30mm
The chopped carbon fibers adjusted to a length of are mixed with a sizing agent and granulated using a mixing or granulating device that exhibits rolling and fluidizing effects, such as an omni mixer or a pan pelletizer. The carbon fibers used here may be PAN-based, pitch-based, or any other type, and there are no particular limitations, such as high-strength products or general-purpose products. The sizing agent can be used depending on the purpose of the obtained carbon fiber spheres, and preferably water or PVA (polyvinyl alcohol).
, CMC (carboxymethylcellulose), aqueous solutions of water-soluble polymer compounds such as water-soluble acrylic resins, phenol
Organic solvent solutions of synthetic resins such as poly resins, epoxy resins, and furan resins can be used. The amount of the sizing agent used is sufficient so that it lightly adheres to the fiber surface, and in the case of water, it is preferably 10 to 50 wt% based on the weight of the fiber. If the length of the chopped carbon fiber is less than 0.5 mm, the fibers will not entangle with each other so much that it will not be possible to form a good sphere, and if it exceeds 30 mm, the rolling and flow effects will not be sufficiently exhibited, so it is preferable. do not have. This mixture,
The granulation process produces individual chopped carbon fibers.
The fibers become entangled with each other, and the fibers adhere and intertwine in a snowballing manner, resulting in a fluff-like spherical body. The carbon fiber spheres obtained by this method have a density of 0.0
It is extremely light at 5 to 0.15 g/cm3, and has a spherical or nearly spherical shape, with a sphere diameter of approximately 2 to 25 mm, most of which is approximately 4 to 20 mm, and is electrically, thermally, and physically strong. It exhibits isotropic properties and is suitable as an intermediate base material (prepreg) for carbon fiber-reinforced carbon materials or as a material for carbon-based high-temperature insulation materials. Furthermore, activated carbon fiber spheres having good properties can be obtained by subjecting the carbon fiber spheres obtained in this manner to an activation treatment. As the activation method, similar to the activation of ordinary activated carbon, gas activation using water vapor or carbon dioxide gas or activation using chemicals such as zinc chloride can be used, but the method for producing the activated carbon fiber spheres of the present invention , batch or continuous rotary
It is preferable to use a kiln and activate with steam or carbon dioxide gas at a temperature of 750° C. or higher. The carbon fiber spheres used here are spherical and easy to handle and disperse well in the rotary kiln, and also have good air permeability inside the spheres, so the activation reaction proceeds smoothly and the activation reaction is uniformly activated. Carbon fiber spheres can be obtained. The activated carbon fiber spheres obtained by the method of the present invention have a specific surface area of 500 to 2500 m2/g.
It is large in size and has a high rate of adsorption and desorption of gas and liquid components, so it is suitable for use as a filler in various deodorizing, gas separation, and solvent recovery devices, as well as as a battery material for electrodes in electric double layer capacitors. The carbon fiber spheres obtained by the method of the present invention are carbon fiber chopped fibers or short fibers, PVA, pulp, thermosetting resins such as phenol resins and epoxy resins, and thermosetting resins such as polyvinyl chloride. Binder components such as plastic resins are mixed, preferably wet mixed in a solvent such as water, filtered to remove the solvent, further molded into an arbitrary shape by pressing etc., and dried. Carbon fibers are bonded together through the carbon fibers, and a carbon fiber composite molded article having porous, lightweight, and isotropic properties can be obtained. The obtained carbon fiber composite molded body can be further subjected to carbonization treatment, if necessary, to form a molded body made only of carbon. The carbon fiber composite molded article thus obtained has a bulk density of 0.05 to 0.
2g/cm3, lightweight and highly elastic, electrical, thermal,
It is a molded body having isotropic properties in terms of strength, and is an extremely good material as a carbon-based high-temperature heat insulating material. Furthermore, there is a method in which chopped fibers and binder components are added and mixed, molded, and further carbonized if necessary, resulting in a molded body impregnated with a synthetic resin component, hardened, and further subjected to carbonization and graphitization treatment if necessary. be. In this method, chopped carbon fibers or short fibers and a binder component are mixed with carbon fiber spheres, preferably wet mixed in a solvent such as water, and then filtered to remove the solvent. Form into any shape using a press or the like and dry. By impregnating this molded body or a carbonized molded body with a synthetic resin component diluted with a solvent if necessary, drying and curing, a composite molded body of carbon fiber and synthetic resin can be obtained. By subsequently performing carbonization and further graphitization, a composite molded article in the form of a carbon fiber-reinforced carbon material can be obtained. Furthermore, it is also possible to arbitrarily control the density, etc. of the composite molded body by repeating treatments such as resin impregnation, carbonization, and graphitization. The carbon fiber composite molded product obtained by this method is a carbon fiber-reinforced synthetic resin and carbon fiber-reinforced carbon material that has isotropic properties in terms of electrical, thermal, and strength, and can be used for various structural materials, sliding materials, etc. Suitable as a material. [Example] The present invention will be explained in more detail with reference to the following example. (Example 1) 200 g of pitch-based carbon fiber chopped fibers with a fiber diameter of 10 μm and a fiber length of 3 mm were put into an omni mixer and operated. 50 g of water as a sizing agent was sprayed for 2 minutes, and the operation was continued for 5 minutes. After that, take it out from the mixer, remove the powder with a sieve, and
Carbon fiber spheres were obtained by drying at ℃ for 12 hours. The yield of the obtained spherical bodies was about 90%, and more than 80% of the spherical bodies had a substantially uniform diameter within the range of 4 to 6 mm. Furthermore, the density of each sphere was about 0.1 g/cm3, and it had lightweight, elastic, and isotropic properties. (Example 2) 100 g of the carbon fiber spheres obtained in Example 1 were heated to 900° C. in an inert atmosphere in a rotary kiln, and 80% of water vapor and 2 nitrogen were added.
Activation gas of 0% was introduced and activation treatment was performed at the same temperature for a predetermined time to obtain activated carbon fiber spheres. The results of measuring the specific surface area and adsorption capacity of the obtained carbon fiber spheres according to the method of JISK-1474 are as follows, and it can be seen that they have a large specific surface area and good adsorption capacity. Activation time Specific surface area Benzene equilibrium adsorption amount
(minutes) (N2
BET method) (wt%)
25
773 28.6
40 11
58 39.2
50 1575
44.9 [0011] [Effects of the Invention] According to the method of the present invention, a material suitable as a base material or a filler for a carbon fiber composite molded product, which is lightweight, easy to handle, and has high air permeability, which has not been previously obtained, can be obtained. Carbon fiber spheres can be obtained. The carbon fiber composite molded body using this carbon fiber spherical body can be made by converting conventional long fibers into two parts.
It is a carbon fiber composite molded product that has low density, high elasticity, and exhibits isotropy in thermal, electrical, and mechanical properties that could not be obtained by using felt or mat organized in three dimensions. It is an excellent material as a carbon-based high-temperature insulation material or a carbon fiber-reinforced carbon material. In addition, the activated carbon fiber spheres obtained by activating these carbon fiber spheres are lightweight and easy to handle, and there is little increase in pressure loss when filling them into filtration equipment or adsorption equipment. It has extremely excellent properties as a filler.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  炭素繊維チョップドファイバ−と収束
剤とを、転動及び流動作用を示す装置により混合して造
粒することを特徴とする、繊維が相互に絡み合って形成
され、密度が 0.05 〜0.15 g/cm3 で
等方的性質を有する炭素繊維球状体の製造方法。
1. A carbon fiber chopped fiber and a sizing agent are mixed and granulated using a device that exhibits rolling and flow action, and the fibers are intertwined with each other and have a density of 0. A method for producing carbon fiber spheres having isotropic properties at 0.05 to 0.15 g/cm3.
【請求項2】  炭素繊維チョップドファイバ−と収束
剤とを、転動及び流動作用を示す装置により混合して造
粒して得られる繊維が相互に絡み合って形成され、密度
が 0.05 〜0.15 g/cm3 で等方的性質
を有する炭素繊維球状体を賦活処理することを特徴とす
る活性炭素繊維球状体の製造方法。
[Claim 2] Fibers obtained by mixing and granulating chopped carbon fibers and a sizing agent using a device that exhibits rolling and flow action are intertwined with each other, and have a density of 0.05 to 0. A method for producing activated carbon fiber spheres, which comprises activating carbon fiber spheres having isotropic properties at .15 g/cm3.
JP3080607A 1991-03-20 1991-03-20 Production of spherical carbon fiber Pending JPH04300353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3080607A JPH04300353A (en) 1991-03-20 1991-03-20 Production of spherical carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3080607A JPH04300353A (en) 1991-03-20 1991-03-20 Production of spherical carbon fiber

Publications (1)

Publication Number Publication Date
JPH04300353A true JPH04300353A (en) 1992-10-23

Family

ID=13723020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3080607A Pending JPH04300353A (en) 1991-03-20 1991-03-20 Production of spherical carbon fiber

Country Status (1)

Country Link
JP (1) JPH04300353A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5639807A (en) * 1994-08-05 1997-06-17 Akzo Nobel Nv Process for manufacturing carbon fiber pellets, the high density, streamlined pellets resulting therefrom and process for producing reinforced thermoplastic resins employing the pellets
EP0882558A1 (en) * 1997-06-06 1998-12-09 Kureha Chemical Industry Co., Ltd. Carbon fiber ball and process for manufacturing the same
EP2308921A1 (en) * 2009-10-09 2011-04-13 Rockwool International A/S Friction material with reduced noise, vibration and harshness generation, and process for the preparation thereof
WO2017170754A1 (en) * 2016-03-30 2017-10-05 株式会社Lixil Granulated activated charcoal
CN115430202A (en) * 2022-09-06 2022-12-06 苏州贝林微纤科技有限公司 Large-bulk density paper fiber filter aid and preparation method and application thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5639807A (en) * 1994-08-05 1997-06-17 Akzo Nobel Nv Process for manufacturing carbon fiber pellets, the high density, streamlined pellets resulting therefrom and process for producing reinforced thermoplastic resins employing the pellets
EP0882558A1 (en) * 1997-06-06 1998-12-09 Kureha Chemical Industry Co., Ltd. Carbon fiber ball and process for manufacturing the same
US6194071B1 (en) 1997-06-06 2001-02-27 Kureha Chemical Industries Co., Ltd. Carbon fiber ball and a process for manufacturing the same
EP2308921A1 (en) * 2009-10-09 2011-04-13 Rockwool International A/S Friction material with reduced noise, vibration and harshness generation, and process for the preparation thereof
WO2011042533A1 (en) * 2009-10-09 2011-04-14 Rockwool International A/S Friction material with reduced noise, vibration and harshness generation, and process for the preparation thereof
WO2017170754A1 (en) * 2016-03-30 2017-10-05 株式会社Lixil Granulated activated charcoal
CN115430202A (en) * 2022-09-06 2022-12-06 苏州贝林微纤科技有限公司 Large-bulk density paper fiber filter aid and preparation method and application thereof
CN115430202B (en) * 2022-09-06 2023-10-27 苏州贝林微纤科技有限公司 Large bulk density paper fiber filter aid and preparation method and application thereof

Similar Documents

Publication Publication Date Title
Cheng et al. Recent advances in design strategies and multifunctionality of flexible electromagnetic interference shielding materials
Song et al. Carbon microtube aerogel derived from kapok fiber: an efficient and recyclable sorbent for oils and organic solvents
KR880001099B1 (en) Multi-purpose air permeable composites
CN103265010B (en) Three-dimensional carbon fiber based aerogel material and preparation method thereof
CN103285789B (en) Preparation method of three-dimensional fiber-based aerogel material and product thereof
Xiang et al. Synthesis of carboxymethyl cellulose-reduced graphene oxide aerogel for efficient removal of organic liquids and dyes
CN103285920B (en) Three-dimensional fiber-based aerogel catalyst carrier and preparation method thereof
CN106945362A (en) Framework enhancing aeroge heat insulating material and its preparation with Waterproof Breathable function
JP2009167412A (en) Three-dimentional interpenetrating network texture of macroscopic assemblage of randomly oriented carbon fibril and organic polymer
CN102874792A (en) Novel carbon sponge preparation method
KR20110097252A (en) Heat insulation articles without segregation of insulating nano-powder and its manufacturing method
RU2005131731A (en) NONWOVEN MAT, METHOD FOR ITS MANUFACTURE AND FIBER COMPOSITE
CN103274364A (en) Three-dimensional inorganic fiber-base aerogel material and preparation method thereof
Mazrouei-Sebdani et al. Multiple assembly strategies for silica aerogel-fiber combinations–A review
RU2577273C1 (en) Method of producing of aerogels based on multilayer carbon nanotubes
KR101323618B1 (en) Aerogel coating solution, method of manufacturing aerogel sheet coated thereby, and aerogel sheet manufactured by the same method
Zhang et al. Research progress of functional composite electromagnetic shielding materials
JPH04300353A (en) Production of spherical carbon fiber
TW202120775A (en) Method for preparing graphite sheet
Sabzehmeidani et al. Adsorbents based on nanofibers
JP2001040548A (en) Active carbon fiber, active carbon fiber cloth and its production
JPH04292462A (en) Production of composite molded article of carbon fiber
KR101564909B1 (en) Porous carbon materials made by polyamic acid and method of preparing the same
JP2002346322A (en) Air cleaning filter
JPH0578182A (en) Production of porous carbon formed product and electrode material