JPH04300119A - Surface gear generation device - Google Patents

Surface gear generation device

Info

Publication number
JPH04300119A
JPH04300119A JP17368990A JP17368990A JPH04300119A JP H04300119 A JPH04300119 A JP H04300119A JP 17368990 A JP17368990 A JP 17368990A JP 17368990 A JP17368990 A JP 17368990A JP H04300119 A JPH04300119 A JP H04300119A
Authority
JP
Japan
Prior art keywords
gear
teeth
tooth
tool
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17368990A
Other languages
Japanese (ja)
Inventor
Buichi Nakamura
中村 武一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON ENG CONTROLS KK
Original Assignee
NIPPON ENG CONTROLS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON ENG CONTROLS KK filed Critical NIPPON ENG CONTROLS KK
Priority to JP17368990A priority Critical patent/JPH04300119A/en
Publication of JPH04300119A publication Critical patent/JPH04300119A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gear Processing (AREA)

Abstract

PURPOSE:To obtain a generating device capable of generating gear teeth of a surface gear successively by reciprocating a tapered rotating tool and bringing the surface of a work close to a tool line while giving a rotational and swing movements equivalent to those of the surface gear of a surface gear mechanism in which a work is assembled. CONSTITUTION:A surface gear type cradle unit 7 to which a work 10 is fixed is provided on a back swing table for a rotating gear 5 which can be fixed at a fixed position and a surface gear 6 which is fixed to an inclined shaft 12 through roller bearings. Then gear grooves in the same number as the surface gear 6 or even-divided number of gear grooves are generated in the work 10 with a cutter 11 by driving the inclined shaft 12. Also an involute curve tooth which is formed by generating the section of teeth at right angle relative to the gear by a rack type tool can be obtained. By generating the gear teeth repeatedly while changing meshed phase of the gear 5 relative to the tool line, the width of the grooves can be unified into the maximum pitch of a master gear and gear teeth with small pitch error can be obtained.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は噛合歯直角断面がラック形工具によって凸イン
ボリュート歯形に創成された主として面擺歯車機構の面
歯車の歯切りとその歯形の連続創成装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial application field The present invention mainly relates to the gear cutting of a face gear of a face screw gear mechanism in which the cross section perpendicular to the meshing teeth is created into a convex involute tooth profile by a rack-shaped tool, and the continuity of the tooth profile. It is related to the creation device.

(ロ)従来の技術 凸円錐傾斜面に歯山のある歯車を傘歯車、ピッチ円錐角
が90゜のものを正面歯車又は冠歯車と呼んで円筒外周
側面の普通の歯車や円筒内周側面の内歯車と区別し、之
以外の歯車は殆んど実用されなかつたために特殊な変形
歯車として扱われて来た。円錐面歯車も又傘歯車の類似
歯車として、その歯形の創成は傘歯車創成歯切盤で加工
されていた。
(B) Conventional technology A gear with teeth on a convex conical inclined surface is called a bevel gear, and a gear with a pitch cone angle of 90° is called a front gear or a crown gear. Since gears other than internal gears were rarely put into practical use, they were treated as special deformed gears. Conical gears are also similar to bevel gears, and their tooth profile was created using a bevel gear generating gear cutting machine.

併し面擺歯車機構が実用され始めた現在では円錐歯車の
定義を定めなければならなくなつて来た。
However, now that surface screw gear mechanisms have begun to be put into practical use, it has become necessary to define a conical gear.

面歯車とは円錐斜面に歯山をもつ (A)ピッチ円錐角(以下P1A1と略称する)が60
゜未満のものを従来通り傘歯車とし、(B)P1A1が
60゜以上75゜未満のものを凸系面歯車 (C)P1A1が75゜以上90゜未満のものを単に面
歯車とする。
A face gear has gear teeth on a conical slope (A) with a pitch cone angle (hereinafter abbreviated as P1A1) of 60
(B) Those with P1A1 of 60° or more but less than 75° are considered convex face gears. (C) Those with P1A1 of 75° or more and less than 90° are simply called face gears.

(D)又P1A1が90゜のものに限り従来通り正面歯
車又は冠歯車とし (E)P1A1が90゜以上のものを凹系面歯車と定義
する。
(D) Also, only those with P1A1 of 90 degrees are defined as front gears or crown gears as before. (E) Those with P1A1 of 90 degrees or more are defined as concave face gears.

この種円錐歯車で円錐頂点から放射状に漸増歯山を設け
た直(又は斜)歯傘歯車は普通割出装置を用いて粗歯切
りした後カッターラインを揺動させて一歯山宛その歯山
の片面又は両面を創成する方法が採られていた。
This type of conical gear has straight (or oblique) bevel gears with gradually increasing gears radially extending from the apex of the cone. Normally, an indexing device is used to coarsely cut the teeth, and then the cutter line is oscillated to reach one tooth. The method used was to create one or both sides of the mountain.

而るに2次元的円錐曲面に設ける傘歯車の歯形はその歯
直角断面が2次元的又は球面歯形曲線でなければ正確な
噛合は行われないが工具の形状や構構的な関係で従来こ
の種歯形は実用化されていなかつた。
However, the tooth profile of a bevel gear provided on a two-dimensional conical curved surface cannot achieve accurate meshing unless the cross section perpendicular to the tooth is a two-dimensional or spherical tooth profile, but due to the shape and structure of the tool, conventionally this type of tooth profile is not possible. Tooth profiles had not been put to practical use.

このためラック形工具により一次元的に歯直角断面がイ
ンボリュート曲線となる漸増歯形や円錐曲面歯(グリー
ソン社名でCONIFLEX歯形という)を創成してか
ら噛合相手歯車と噛合せ、ラップ剤を介して共摺り仕上
げにより適当に歯当りをつける方法が採られていた。
For this purpose, a rack-shaped tool is used to create a gradually increasing tooth profile or a conically curved tooth profile (called a CONIFLEX tooth profile under the Gleason company name) whose cross section perpendicular to the tooth is an involute curve in one dimension. The method used was to give the teeth an appropriate amount of contact by applying a sanding finish.

従来この種直(斜)歯面歯車特に偏移面歯車のインデッ
クスを使用しない創成法はベースラップによる連続創成
仕上げ装置以外にはなかつた。
Conventionally, there has been no method of creating straight (beveled) tooth flank gears, especially offset flank gears, that does not use an index, other than a continuous generation finishing device using a base lap.

参考文献−シンクルギヤの技術資料、時間S56−15
6366号 註:偏移面歯車はピッチ円錐頂点が円錐傾斜表面の頂点
(CONICALFACEAPPEX)と異なる漸増歯
形をもつ面歯車でピッチ円錐頂点が円錐頂点の内側にあ
るものを負(−)偏移、外側にあるものを正(+)偏移
と定義する。
References - Shinkle gear technical data, time S56-15
Note No. 6366: A deviation plane gear is a plane gear with a progressive tooth profile in which the pitch cone apex is different from the apex of the conical inclined surface (CONICALFACEAPPEX), and the pitch cone apex is inside the conical apex. is defined as a positive (+) deviation.

尚偏移量は夫々の交点よりなる円の直径又は半径で表す
The amount of deviation is expressed by the diameter or radius of the circle formed by the respective intersection points.

(ハ)発明が解決しようとする問題点 面擺歯車機構では小歯数差の面歯車を夫々のピッチ線が
一致するまで傾けて噛合せて面擺させ、各歯車の自転比
を利用する機構である。
(c) Problems to be solved by the invention In a surface gear mechanism, surface gears with a small difference in the number of teeth are tilted and meshed until their respective pitch lines coincide, and the surface gears are meshed to form a surface gear, and the rotation ratio of each gear is utilized. It is.

歯の大きさ(モジュールという)が等しく、歯数の異な
る2つの面歯車のピッチ円錐頂点を揺動中心に一致させ
るためには凹、凸面系面歯車を使用しなければならない
。この場合歯形はラックと凸又は凹凸面系歯形曲線の非
交換性面歯車となる。
In order to align the pitch cone apex of two face gears with equal tooth sizes (called modules) and different numbers of teeth with the center of swing, concave and convex face gears must be used. In this case, the tooth profile is a non-commutable face gear with a rack and a convex or convex tooth profile curve.

特に同一軸心上に2組の面擺噛合部を持つ向斜面擺歯車
機構(シンクルギヤと呼ぶ)ではこの種偏移面歯車を使
用しなければ面擺歯車軸受負担が大きくなり強力なもの
は得られない。
In particular, in a facing gear mechanism (called a sinkle gear) that has two sets of surface meshing parts on the same axis, if this type of offset surface gear is not used, the load on the surface gear bearing will be large, and a stronger one is not advantageous. I can't do it.

又面擺歯車機構の面歯車は従来の傘歯車のように歯溝の
分割をインデックスで割出してから一歯山宛単独創成す
る方法では例え曲面円錐漸増歯形に矯正歯切りしても歯
当り面が点接触となる許りかインデックスの模範歯車(
MASTERGEAR)のピッチや歯形誤差が被加工歯
車歯山に再現される。
In addition, the surface gear of a surface helical gear mechanism uses a method like the conventional bevel gear, in which the division of the tooth space is determined by an index and then created individually for each tooth. A model gear with a permissible index where the surfaces are in point contact (
MASTERGEAR) pitch and tooth profile errors are reproduced on the gear teeth of the machined gear.

而もこのピッチ誤差は馴染縮小性がなく、機構の弾性変
形や遊隙値が累積して一歯山に集中して増巾現象される
。ラッピングによつて歯当り面を修整する方法もあるが
隣接ピッチ誤差は或程度矯正できるが反面歯形が崩壊す
る許りで累積ピッチ誤差は縮小することはできない。こ
のため之等傘歯車の擬似歯形を使つた面擺歯車機構やシ
ンクルギヤは騒音、振動と角速度の変動が大きく、製法
が困難で、非能率的なために他の歯車機構と比べて多く
の特色を持ち乍ら特殊用途向を除いては殆んど実用化さ
れていない。
However, this pitch error has no wear-in reduction property, and the elastic deformation of the mechanism and the play value accumulate, concentrating on one tooth, and increasing the width. There is also a method of modifying the tooth contact surface by lapping, which can correct the adjacent pitch error to some extent, but on the other hand, the cumulative pitch error cannot be reduced because the tooth profile collapses. For this reason, surface spiral gear mechanisms and sinkle gears that use the pseudo tooth profile of bevel gears have large noise, vibration, and angular velocity fluctuations, are difficult to manufacture, and are inefficient, so they have many characteristics compared to other gear mechanisms. However, it has hardly been put into practical use except for special purposes.

(ニ)問題点を解決するための手段 円錐面に放射状の漸増歯形をもつ面歯車歯形の創成はそ
の冠歯形の工具で創成しなければならないが多刃回転工
具の歯筋方向運動は難しい。
(d) Means for solving the problem A surface gear tooth profile with a radially increasing tooth profile on a conical surface must be created using a tool with a crown tooth profile, but it is difficult to move a multi-blade rotary tool in the tooth trace direction.

このため本発明では定圧力角のテーパー形回転工具を往
復運動させ、そのツールラインに対してワークの表面が
ワークが組込まれる面擺歯車機構の面擺歯車と等しい自
転と揺動運動を与え乍らツールラインに近づけることに
より連続的に面歯車の歯山を創成することができるよう
にしたものである。ワークを取付けるクレイドルユニッ
トはワークが組込まれる面擺歯車機構と同一であり、そ
のマスターギヤの歯形がワークに再現されるが、ツール
ラインに対する面擺歯車の噛合位相を変え乍ら創成運動
を繰返すとマスターギヤのピッチ誤差はその最大値のも
のに統一される。ワーク面に創成される歯形のピッチ誤
差が縮小されると之を再びマスターギヤとして使ってよ
り高精度な面歯車が得られる。ツールラインによつて削
除される歯底線はツールとワーク位置を相対的に移動す
ることにより自由な形状の凸曲線として歯筋方向歯形を
凸形円錐曲面歯形に修整したり、歯底円錐角を任意に変
更することができる。又ツールラインに直交するクレイ
ドルの軸心をツールのピッチ点を中心として変更するこ
とにより歯先歯末を修整することもできる。
For this reason, in the present invention, a tapered rotary tool with a constant pressure angle is reciprocated, and the surface of the workpiece is given the same rotation and oscillation motion as the surface gear of the surface gear mechanism in which the workpiece is installed, relative to the tool line. By moving the tool closer to the tool line, the tooth of the face gear can be created continuously. The cradle unit that attaches the workpiece is the same as the surface gear mechanism into which the workpiece is installed, and the tooth profile of the master gear is reproduced on the workpiece, but if the generating motion is repeated while changing the meshing phase of the surface gear with respect to the tool line, The pitch errors of the master gear are unified to the maximum value. When the pitch error of the tooth profile created on the workpiece surface is reduced, it can be used again as a master gear to obtain a face gear with higher precision. By relatively moving the tool and workpiece positions, the root line deleted by the tool line can be used as a free-form convex curve to modify the tooth profile in the direction of the tooth root to a convex conical curved tooth profile, or to change the root cone angle. It can be changed arbitrarily. Furthermore, by changing the axis of the cradle perpendicular to the tool line around the pitch point of the tool, the tip of the tooth can also be modified.

(ホ)作用 ワークが組込まれる面擺歯車機構の面擺歯車と同一揺動
運動をするためにはクレイドルユニットの斜軸(12)
の向斜角Σ゜はピッチ円錐余角の2倍としなければなら
ないが歯形の弾性変形を考慮して歯底円錐余角(背円錐
の半頂角)とする。任意の位置で固定することができる
自転面歯車(5)と斜軸(12)に転がり軸受を介して
取付けた面擺歯車(6)を噛合せ、その背面の揺動台に
ワーク(10)を揺動中心(0)が定位置になるよう固
定する。今創成しようとするワークの歯数をZ1、之と
噛合う相手面歯車の歯数をZ2、基準P、C、D点に於
けるモジュールをm、斜軸の向斜角をΣ゜とすれば (a)揺動中心(0)から最大切込時に於けるツールラ
インまでの距離は(Z1−Z2)m/2sinΣ゜(ミ
リ)(b)面擺歯車機構にワーク(10)が組込まれた
時のワークの揺動中心はワークが面擺歯車、即ちZ1>
Z2のときは面擺歯車(6)の揺動中心(0)と一致す
る。ワークが自転面歯車即ちZ1<Z2のときはその反
対側となるがこの場合はツールが噛合相手面歯車の歯山
となるためにZ1>Z2のときと同一位置にしなければ
ならない。
(e) In order to have the same oscillation motion as the surface gear of the surface spiral gear mechanism in which the workpiece is incorporated, the oblique shaft (12) of the cradle unit is required.
The synclinal angle Σ° must be twice the complementary angle of the pitch cone, but in consideration of the elastic deformation of the tooth profile, it is set as the complementary angle of the root cone (half apex angle of the back cone). The rotating surface gear (5), which can be fixed at any position, is meshed with the surface sliding gear (6), which is attached to the oblique shaft (12) via a rolling bearing, and the workpiece (10) is mounted on the rocking table on the back side. Fix it so that the center of swing (0) is at the fixed position. Let the number of teeth of the workpiece to be created now be Z1, the number of teeth of the mating gear that meshes with it be Z2, the module at reference points P, C, and D be m, and the synclinal angle of the oblique axis be Σ°. (a) The distance from the swing center (0) to the tool line at the maximum depth of cut is (Z1-Z2) m/2sinΣ゜ (mm) (b) The workpiece (10) is installed in the plane gear mechanism. The center of oscillation of the workpiece when the workpiece is a plane gear, that is, Z1>
When Z2, it coincides with the center of oscillation (0) of the plane gear (6). When the workpiece is a rotating surface gear, that is, when Z1<Z2, it is on the opposite side, but in this case, the tool becomes the tooth of the mating surface gear, so it must be in the same position as when Z1>Z2.

(c)揺動台(7)に取付けた自転面歯車(5)の歯数
をN5、面擺歯車(6)の歯数をN6とすると自転面歯
車(5)の円錐頂点P5から揺動中心(0)までの距離
■〓■5=(N6−N5)m/2sinΣ゜面擺歯車(
6)の背面に揺動中心(0)が定位置になるようにワー
ク(10)を取付けるためには、歯数N5、N6をZ1
、Z2の整数倍にするかmを大きくして■〓■5間隔を
長くする必要がある。ここで自転面歯車を固定して斜軸
(12)を回転させると面擺歯車(6)は斜軸1回転に
付1揺動すると共にN6−N5/N6比で自転する。機
構的にN6>N5でなければならないので面擺歯車(5
)の自転方向は斜軸の回転と同方向となる。一方ツール
は創成しようとする歯形の圧力角と等しいテーパーラッ
ク形とし、軸心X−Xと直交方向に往復運動を与えてお
く(回転工具のときはそのスピンドルを往復運動させる
)この工具の刃先線をツールラインと呼ぶ。
(c) If the number of teeth of the rotating plane gear (5) attached to the rocking table (7) is N5, and the number of teeth of the plane gear (6) is N6, the rotating plane gear (5) swings from the conical apex P5. Distance to center (0)■〓■5=(N6-N5)m/2sinΣ゜plane gear (
In order to mount the workpiece (10) on the back side of the workpiece (10) so that the swing center (0) is in the fixed position, the number of teeth N5 and N6 must be set to Z1.
, it is necessary to increase the interval by making it an integer multiple of Z2 or by increasing m. Here, when the autorotating plane gear is fixed and the oblique shaft (12) is rotated, the plane gear (6) swings once per rotation of the oblique axis and rotates at a ratio of N6-N5/N6. Mechanically, N6>N5 must be satisfied, so the surface gear (5
) is in the same direction as the rotation of the oblique axis. On the other hand, the tool should have a tapered rack shape that is equal to the pressure angle of the tooth profile to be created, and should be given reciprocating motion in a direction perpendicular to the axis X-X (if it is a rotary tool, the spindle should be reciprocated). The line is called a tool line.

面擺歯車(6)の背面に取付けたワーク(10)をツー
ルラインに近づけるとワーク面にツールによって溝が歯
数差(Z1−Z2)跳びに刻まれて行く。この溝と溝間
に出来る歯山の噛合直角歯形曲線はラック形工具によつ
て創成された正確なインボリュート曲線となる。
When the workpiece (10) attached to the back surface of the surface gear (6) is brought close to the tool line, grooves are carved on the workpiece surface by the tool at a jump of the number of teeth (Z1-Z2). The meshing right-angled tooth profile curve of the tooth formed between these grooves becomes an accurate involute curve created by a rack-shaped tool.

自転面歯車(5)を移動することにより溝巾を拡張して
処定の歯巾に仕上げる。このラック形工具によつて創成
された面歯車の歯形は交換性の凸系インボリュート曲線
であり、この歯数Z1と面歯車は、軸角Σ゜傾斜して噛
合う歯数差(Z1−Z2)の相手面歯車Z2と噛合つて
、揺動中心を中心として面擺することも、その軸心を中
心として自転することもできる。
By moving the rotating surface gear (5), the groove width is expanded to a predetermined tooth width. The tooth profile of the face gear created by this rack-shaped tool is an exchangeable convex involute curve. ) can mesh with the mating face gear Z2 and rotate about the center of oscillation, or can rotate about its axis.

偏移面歯車を創成する場合はツールラインを正、負等量
偏移することにより同一形状の凸系多次元インボリュー
ト歯形が創成できる。
When creating a shifted surface gear, a convex multidimensional involute tooth profile with the same shape can be created by shifting the tool line by equal positive and negative amounts.

中心線X−Xからツール位置を上、下方向に適宜偏らせ
ることにより、斜歯面歯車が得られる。
By appropriately shifting the tool position upward or downward from the center line XX, a bevel gear can be obtained.

インボリュート系歯形を使用した面擺歯車機構は負転位
して予圧噛合(定位置又は定圧)させることができるの
で背隙が除去できる特徴がある。このため面擺歯車(6
)の背面に取付けたワークを直接重切削しても振動害が
生じない。同一方向回転のフライスカッターで往復切削
(UP&DOWNCUTTING)することができると
共に併列スピンドルで一揺動に付2溝宛創成することが
できるので能率的である。尚ツールには往復バイトやフ
ライスカッターを用いて切削することもできるし、熱処
理後は砥石やラップベースを用いて仕上げることもでき
る。
A surface spiral gear mechanism using an involute tooth profile has a feature that a back gap can be eliminated because it can achieve negative displacement and preload engagement (fixed position or constant pressure). For this reason, the surface gear (6
) No vibration damage occurs even when heavy cutting is performed directly on the workpiece attached to the back of the machine. It is efficient because reciprocating cutting (UP & DOWNCUTTING) can be performed using milling cutters rotating in the same direction, and two grooves can be created per swing using parallel spindles. Note that cutting can be performed using a reciprocating tool or a milling cutter, or finishing can be performed using a grindstone or lap base after heat treatment.

本機構では揺動台(7)に取付けた自転面歯車(5)と
面擺歯車(6)の歯数N5、N6とその歯数差(N6−
N5)がワーク歯数Z1、Z2とその歯数差(Z1−Z
2)と等しいかその整数倍にしなければならない制約が
あるために互換性がなく、強力なものが設計し難い欠点
がある。又自転面歯車(5)を固定して創成加工をする
ときツールラインに対して自転面歯車(5)の噛合歯山
が一定であるために創成されるワーク(10)の歯山の
ピッチは面擺歯車(6)のピッチが再現される。このピ
ッチ誤差は創成を繰返しても縮小できないので、斜軸1
回転に付自転面歯車(5)を定量宛反転させ、面擺歯車
(6)の自転比を歯数差/歯数となるようにしなければ
ならない。
In this mechanism, the number of teeth N5, N6 and the difference in the number of teeth (N6-
N5) is the workpiece tooth number Z1, Z2 and the difference in the number of teeth (Z1-Z
Since there is a constraint that it must be equal to 2) or an integral multiple thereof, it is incompatible and has the disadvantage that it is difficult to design a powerful one. In addition, when generating processing is performed with the rotating surface gear (5) fixed, the pitch of the teeth of the generated workpiece (10) is The pitch of the surface gear (6) is reproduced. This pitch error cannot be reduced even if generation is repeated, so the oblique axis 1
During rotation, the rotational surface gear (5) must be reversed by a fixed amount so that the rotation ratio of the surface gear (6) becomes the difference in the number of teeth/the number of teeth.

(ヘ)実施例 第1図は反転形シンクルギヤの斜軸(2)を揺動台(7
)に取付けた面擺歯車機構の斜軸(12)と、従動面歯
車(4)を自転面歯車(5)に夫々連結し、更にモータ
ーで駆動される減速機(13)で斜軸(2)を駆動する
ようにしたシンクルギヤ式クレイドルユニットの断面(
各面歯車の最大噛合位置での)図である。
(F) Embodiment Figure 1 shows the oblique shaft (2) of the reversible sinkle gear connected to the rocking table (7).
) and the driven surface gear (4) of the surface gear mechanism are connected to the rotating surface gear (5), respectively. ) Cross-section of the single gear type cradle unit that drives the (
FIG.

シンクルギヤ部の自転面歯車(1)の歯数をN1、面擺
歯車(3)の歯数をN2、N3、従動面歯車(4)の歯
数をN4、揺動台(7)の自転面歯車(5)の歯数をN
5、面擺歯車(6)の歯数をN6とすると斜軸(2)(
12)と面擺歯車(6)との回転比は この場合、面擺歯車部の歯数N5、N6はワーク歯数Z
1、Z2とは関係なく自由に定められる。
The number of teeth of the rotation surface gear (1) of the sinkle gear part is N1, the number of teeth of the surface gear (3) is N2, N3, the number of teeth of the driven surface gear (4) is N4, and the rotation surface of the rocking table (7). The number of teeth of gear (5) is N
5. If the number of teeth of the plane gear (6) is N6, the oblique shaft (2) (
In this case, the rotation ratio between 12) and the surface gear (6) is the number of teeth of the surface gear part N5, N6 is the number of teeth of the workpiece Z
1, can be determined freely regardless of Z2.

O−P5間隔を長くするためにN6=60、N5=60
−4=56とするとN5/N6=56/60=14/1
5であるから、 1/R=歯数差/出歯数=(N2−N1)/N2とする
ためにはN3/N4=N6/N5とする。
N6=60, N5=60 to lengthen O-P5 interval
If -4=56, then N5/N6=56/60=14/1
5, so in order to obtain 1/R=difference in number of teeth/number of protruding teeth=(N2-N1)/N2, set N3/N4=N6/N5.

N4=N5/2=56/2=28 N3=N6/2=60/2=30とすると割出歯数Z1
=67 歯数差Z1−Z2=67−65=2のときN2=Z1=
67 N1=67−2=65とする。
If N4=N5/2=56/2=28 N3=N6/2=60/2=30, the number of index teeth Z1
=67 When tooth number difference Z1-Z2=67-65=2, N2=Z1=
67 N1=67-2=65.

ワーク(10)は1揺動毎に2/67=1/36.5宛
自転する。歯溝は1歯山跳びに刻まれ67×2=134
揺動で67歯山が創成される。
The workpiece (10) rotates by 2/67=1/36.5 for each swing. The tooth groove is carved into one tooth jump, 67 x 2 = 134
67 teeth are created by rocking.

この場合シンクルギヤの面擺歯車(3)は自転面歯車(
1)固定のときN2−N1/N2=67−65/67=
2/67同転する。之はワーク(10)の自転比2/6
7と同じである。この場合ワーク歯山のピッチ誤差はN
2歯山のピッチ誤差の影響を受ける。併し面擺歯車機構
に於て夫々の面歯車のピッチ誤差は隣接ピッチ誤差とな
つて現われるが累積ピッチ誤差とはならない。この性質
によりこの機構ではN1、N2部の噛合誤差はN3、N
4とN5、N6部の面擺噛合によつて補償される。即ち
創成運動を繰返すと之によつて生じる溝巾は噛合歯山の
最大誤差に統一される。従つて創成される歯山のピッチ
誤差は創成を繰返す程零値に近づく。この方法は工作機
械の模範歯車(マスターギヤ)を作る場合には必要であ
るが非能率的である。成可く繰返し加工回数を減小して
高精度歯車を得るためにはマスターギヤのピッチ精度を
上げるか又はツールラインに対する噛合位相を順次偏位
させることにより同一歯山を同一噛合歯山基準で創成し
ないようにしなければならない。
In this case, the surface gear (3) of the sinkle gear is the rotating surface gear (
1) When fixed, N2-N1/N2=67-65/67=
2/67 same rotation. This is the rotation ratio of the workpiece (10) 2/6
Same as 7. In this case, the pitch error of the workpiece gear is N
Affected by pitch error of 2 teeth. However, in a surface gear mechanism, the pitch error of each surface gear appears as an adjacent pitch error, but does not become a cumulative pitch error. Due to this property, in this mechanism, the meshing errors of N1 and N2 parts are N3 and N3.
This is compensated by the surface sliding engagement of the parts 4, N5, and N6. That is, when the generating motion is repeated, the resulting groove width is unified to the maximum error of the meshing teeth. Therefore, the pitch error of the generated tooth ridge approaches zero value as generation is repeated. Although this method is necessary when making a model gear (master gear) for a machine tool, it is inefficient. In order to obtain high-precision gears by reducing the number of repetitive machining operations possible, it is possible to increase the pitch accuracy of the master gear, or to sequentially shift the meshing phase with respect to the tool line. We must avoid creating them.

前実施例に於て を次のように変更する。In the previous example Change as follows.

N1を固定して創成運動を与えるとワーク歯山に対する
各面歯車の噛合位相は定量宛偏位させることは出来るが
設定分割数に対して全面歯車歯山を変更しなければなら
ない関係上汎用化し難い。
If N1 is fixed and a generating motion is applied, the meshing phase of each face gear with respect to the workpiece gear can be deviated to a fixed amount, but it is not possible to generalize because the tooth of the full face gear must be changed according to the set number of divisions. hard.

又自転面歯車(1)は創成中固定しなければならないた
めにツールラインに対して之と反対側の一定歯山が基準
となるために特殊な場合以外は利用できない。実施例(
2)第2図はシンクルギヤ部の面擺歯車(3)に揺動継
手(17)(18)(参考文献特願S59−04878
4号)を用い、揺動継手(18)と自転面歯車(1)の
外周を制動機(19)(20)で任意の位置で固定でき
るようにしたものである。
Furthermore, since the rotating surface gear (1) must be fixed during generation, a constant tooth on the opposite side to the tool line serves as a reference, so it cannot be used except in special cases. Example(
2) Figure 2 shows the oscillating joints (17) and (18) on the surface gear (3) of the sinkle gear section (reference document, patent application S59-04878).
No. 4), and the outer periphery of the swing joint (18) and the rotating surface gear (1) can be fixed at any position using the brakes (19) and (20).

各面歯車の歯数N1〜N6は前実施通りとしてその動作
を述べる。
The operation will be described assuming that the number of teeth N1 to N6 of each face gear is the same as in the previous embodiment.

自転面歯車(1)を制動機(20)で固定し、揺動継手
(18)の制動機(19)を開放して駆動するときはワ
ーク(10)は67×2=134揺動で67溝が刻まれ
る。この前後で制動機(19)で揺動継手(18)を固
定し、制動機(20)を開放して自転面歯車(1)を空
転させるとワーク(10)は揺動するだけで自転しない
からツール(11)はワークの同一歯山面を創成し、自
転面歯車は空転する。自転面歯車(1)が定角度空転し
たとき制動機(19)を解放し、制動機(20)で自転
面歯車(1)を固定すると再びワークに自転成分が与え
られマスターギヤの異なつた位相が基準となつて創成が
経続される。溝巾の増加は加工中、制動機(19),(
20)を同時に解放して自転面歯車(1)を適宜空転さ
せることによつて行われる。歯山の創成はツールに対し
てワークの回転方向歯山面が噛込創成、その反対側が脱
退削除となるが面歯車の放射状漸増歯形のときはワーク
を反転して歯山の反対側を創成しなければならない。
When the rotating surface gear (1) is fixed with the brake (20) and the brake (19) of the swing joint (18) is released and driven, the workpiece (10) swings 67 x 2 = 134 and moves 67 times. A groove is carved. Before and after this, the swing joint (18) is fixed by the brake (19), and when the brake (20) is released and the rotating face gear (1) is idled, the workpiece (10) only swings but does not rotate. From this, the tool (11) creates the same tooth surface of the workpiece, and the rotating surface gear idles. When the rotating surface gear (1) idles at a fixed angle, the brake (19) is released, and when the rotating surface gear (1) is fixed by the brake (20), the rotational component is again given to the workpiece, and the master gear is shifted to a different phase. The creation will continue with this as the standard. The groove width increases during machining, brake (19), (
20) at the same time to allow the rotating surface gear (1) to idle as appropriate. To create a tooth, the tooth surface in the direction of rotation of the workpiece engages with the tool, and the opposite side is removed and removed, but in the case of a radially increasing tooth profile of a face gear, the workpiece is reversed and the opposite side of the tooth is created. Must.

この反転時に溝巾の調整を行うようにすると自動化が容
易にできる。
Automation can be easily achieved by adjusting the groove width at the time of this reversal.

面歯車は普通合金銅で製造され、その歯山は動力伝達時
は面圧によつて弾性変形するために歯形曲線は修正しな
いと干渉が起る。面歯車の場合は特に歯筋方向クラウニ
ング化する必要がある。
Face gears are usually made of alloyed copper, and their teeth are elastically deformed by surface pressure during power transmission, so interference will occur if the tooth profile curve is not corrected. In the case of face gears, it is especially necessary to crown the teeth in the tooth trace direction.

本機構各実施例に於て、歯形方向の修整は斜軸の向斜角
Σ°を歯底円錐余角に増加する。大形大容量機種ではテ
ーパー角の大きいツールを使用して歯先修整を行う。
In each embodiment of the present mechanism, the modification in the tooth profile direction increases the oblique angle Σ° of the oblique axis to the complementary angle of the root cone. For large, high-capacity models, a tool with a large taper angle is used to modify the tooth tip.

歯筋方向の修整はツールとワークの位置を相対的に移動
することにより歯底線を凸曲化して円錐曲面歯形とする
ことができる。偏移面歯車の場合は内側歯山の圧力角が
漸増する関係上、ワーク中心に対してツール位置を偏ら
せて歯溝の内側巾を増大することもできる。
For modification in the direction of the tooth trace, by relatively moving the positions of the tool and the workpiece, the bottom line of the tooth can be made into a convex curve to form a conically curved tooth profile. In the case of offset surface gears, since the pressure angle of the inner gear gradually increases, the inner width of the tooth groove can also be increased by shifting the tool position with respect to the center of the workpiece.

(ト)発明の効果 クレイドルユニツトの揺動中心(0)から定位置の所に
ワーク(10)を取付け、ワークの歯山創成面に、ワー
クが組込まれる面擺歯車と等しい運動を与え乍ら定圧力
角のテーパー歯ツールラインに近づけると自転比の分母
数に等しい分割数の歯山がその分子数とびに、1揺動毎
に1溝宛創成される。ツールラインを揺動中心(0)に
一致させた時に創成される正規の面歯車の噛合直角歯形
はラック形工具によつて創成された凸形インボリュート
2次曲線となるが偏移面歯車では夫々の円錐頂点が噛合
相手面歯車の円錐頂点と(歯数差)×(モジュール)だ
けオフセットしているので歯数の少ない面歯車側を正、
歯数の多い面歯車側を負夫々等量偏位してピッチ円錐角
を合致して噛合せるために定圧力角のラック形工具で創
成される面歯車の噛合直角歯形は基準PCD点に於て工
具の圧力角と等しい凸系インボリュート曲線となるが、
揺動中心(0)から等位置で噛合う歯筋方向の定点に於
ける噛合断面歯形の圧力角は異なる。即ち歯筋方向には
凸形円錐曲面化した所謂凸形インボリュート多次元歯形
となる。ここでこの種歯形の解析をする積りも必要もな
いが要するに同一凸系インボリュート歯形同志が噛合う
面歯車機構には偏移面歯車を使用しなければならず、こ
の偏移面歯車を創成するには面擺歯車機構でワークに自
転と揺動を与えながら連続的にその歯形を創成する方法
が適している。
(G) Effects of the Invention The workpiece (10) is mounted at a fixed position from the center of oscillation (0) of the cradle unit, and the gear generating surface of the workpiece is given a motion equal to that of the surface gear in which the workpiece is incorporated. When approaching the tapered tooth tool line with a constant pressure angle, a division number of tooth ridges equal to the denominator of the rotation ratio is created for each number of molecules and one groove for each oscillation. The meshing right-angled tooth profile of a regular face gear created when the tool line is aligned with the center of oscillation (0) is a convex involute quadratic curve created by a rack-shaped tool, but for a shifted face gear, each The conical apex of is offset from the conical apex of the mating face gear by (number of teeth difference) × (module), so the side of the face gear with fewer teeth is positive.
The meshing right-angled tooth profile of the face gear, which is created using a rack-shaped tool with a constant pressure angle, is created by a rack-shaped tool with a constant pressure angle in order to deviate the face gear side with a large number of teeth by an equal amount and match the pitch cone angle. This results in a convex involute curve that is equal to the pressure angle of the tool, but
The pressure angles of the meshing cross-section tooth profiles at fixed points in the tooth trace direction that mesh at the same position from the swing center (0) are different. In other words, the tooth profile becomes a so-called convex involute multidimensional tooth profile, which is a convex conically curved surface in the direction of the tooth trace. There is no need to analyze this kind of tooth profile here, but in short, a shifted plane gear must be used in a plane gear mechanism in which identical convex involute tooth profiles mesh with each other, and this shifted plane gear is created. For this purpose, a method is suitable in which the tooth profile is created continuously by applying rotation and oscillation to the workpiece using a surface spiral gear mechanism.

併しこのクレイドルユニツトによる面歯車の創成方法で
はマスターギヤ歯車と噛合相手歯車との歯数差とによつ
てワーク面に創成される歯数と歯形が異なるために互換
、汎用性が少い欠点がある。
However, with this method of creating face gears using a cradle unit, the number of teeth and tooth profile created on the workpiece surface differs due to the difference in the number of teeth between the master gear gear and the mating gear, so it is less compatible and versatile. There is.

併しクレイドルユニツトは凡て面歯車で構成され、面歯
車はクレイドルユニツトで創成できるために繰返し、加
工による精度の向上と大量生産のメリットがある。次に
面擺歯車機構は累積ピッチ誤差が起らない特徴がある。
However, all cradle units are composed of face gears, and since face gears can be created using cradle units, there are advantages to improved precision through repeated machining and mass production. Next, the surface spiral gear mechanism has the characteristic that no cumulative pitch error occurs.

特に本のクレイドルユニツトのように可逆転によつて溝
巾を拡張し乍ら歯山の両面を仕上げる連続創成法では累
積ピッチ誤差は生じない。ツールラインに対して噛合位
相を変位させるとマスターギヤの隣接ピッチ誤差も加工
を繰返す程縮小される。
In particular, in the case of a continuous generation method such as the book cradle unit, in which the groove width is expanded by reversibility while finishing both sides of the tooth, no cumulative pitch error occurs. By displacing the meshing phase with respect to the tool line, the adjacent pitch error of the master gear is also reduced as machining is repeated.

ラック形工具によつて創成された同形凸形インボリュー
ト歯形同志の噛合は噛合ピッチ点が変つても同一角速度
で噛合が進行して等速回転ができるために噛合両面歯車
を等量正転位して予圧をかけて面擺させることができる
。従つて噛合背隙を除去することができるし歯山の摩耗
も補償することができる(参考文献、定量子圧形面擺歯
車機構、特願59−048783号)故にこの面擺歯車
背面に取付けたワーク(10)は多刃工具で重切削して
も振動、衝撃害が起らないので能率的な加工が行える。
The meshing between identical convex involute tooth profiles created by a rack-shaped tool is achieved by rotating the meshing double-sided gears by the same amount in the forward direction, as the meshing progresses at the same angular velocity even if the meshing pitch point changes, allowing for constant rotation. The surface can be bent by applying preload. Therefore, the meshing back gap can be eliminated and the wear of the gears can be compensated for (Reference document, Quantum Pressure Type Surface Screw Gear Mechanism, Patent Application No. 59-048783). Even if the workpiece (10) is subjected to heavy cutting with a multi-blade tool, no vibration or impact damage will occur, so efficient machining can be performed.

面歯車機構に於てはその面歯車のピッチ誤差は騒音、振
動、角速度、変動の原因となり、性能に悪影響を与える
が従来のインデックスを利用した単独創成法ではこのピ
ッチ誤差は避けられない。隣接ピッチ誤差はラッピング
によつてでも修正することが出来るが反対に歯形が崩れ
角速度が変動する。而も隣接ピッチ誤差が1歯山面に累
積して現われる関係上高精度な面擺歯車機構は得られな
い。
In a face gear mechanism, the pitch error of the face gear causes noise, vibration, angular velocity, and fluctuation, which adversely affects performance, but this pitch error is unavoidable in the conventional independent generation method using an index. Adjacent pitch errors can be corrected by lapping, but on the other hand, the tooth profile collapses and the angular velocity fluctuates. However, since adjacent pitch errors accumulate on one tooth surface, a highly accurate surface screw gear mechanism cannot be obtained.

之に反しこのクレイドルユニツトによる面歯車の連続創
成法ではワーク(10)が揺動点(0)を中心として揺
動する限り、隣接ピッチ誤差はマスターギヤの影響を受
けるが累積ピッチ誤差は生じない。即ち斜軸(12)の
自転比の逆数回転でワーク(10)は確実に1回転する
。隣接ピッチ誤差はツール位相に対するマスターギヤの
位相を変え乍ら創成を繰返すことによつて縮小すること
ができる。
On the other hand, in this continuous generation method of face gears using this cradle unit, as long as the workpiece (10) oscillates around the oscillation point (0), the adjacent pitch error is affected by the master gear, but no cumulative pitch error occurs. . That is, the workpiece (10) reliably rotates once with the reciprocal rotation ratio of the oblique shaft (12). Adjacent pitch errors can be reduced by repeating the generation while changing the phase of the master gear relative to the tool phase.

歯形修整の必要がある場合は歯形インボリュート曲線は
揺動中心とツールラインの距離、歯先曲線は工具圧力角
の変化によつて容易に修整することが出来る。
If tooth profile modification is necessary, the tooth profile involute curve can be easily modified by changing the distance between the swing center and the tool line, and the tooth tip curve can be modified by changing the tool pressure angle.

又歯筋方向歯形はクレイドル軸線X−Xとツールの相対
位置を曲線座標に従つてN、C、制御により円錐湾曲面
歯形とすることも容易である。
Further, the tooth profile in the tooth trace direction can easily be made into a conical curved tooth profile by controlling the relative position of the cradle axis XX and the tool to N, C, according to the curved coordinates.

本クレイドルユニツトは面擺歯車用漸増偏移直歯面歯車
の創成許りでなく、斜歯面歯車、傘歯車、凹系インボリ
ュート面歯車、正面歯車の創成にも利用することができ
る等その効果は多い。
This cradle unit can be used not only to create gradually increasing deviation straight face gears for face slope gears, but also to create bevel gears, bevel gears, concave involute face gears, and face gears. There are many.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はシングルギヤ式クレイドルユニットの各面歯車
が最大噛合位置で噛合つたときの縦断面図、第2図は逆
転形シンクルギヤ部に自転可能な揺動継手を設け、自転
面歯車と揺動継手の外周部を任意の位置で拘束すること
ができる一組の制動機を取付けた構造図である。 第3図はツールラインに対するワークの平断面図、第4
図は同正面図である。
Figure 1 is a longitudinal cross-sectional view of the single gear type cradle unit when each face gear is in mesh at its maximum meshing position. Figure 2 is a vertical cross-sectional view of the single gear type cradle unit when each face gear is in mesh with the maximum engagement position. FIG. 2 is a structural diagram in which a set of brakes that can restrain the outer circumference of the joint at an arbitrary position are installed. Figure 3 is a plan cross-sectional view of the workpiece relative to the tool line;
The figure is a front view of the same.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】定位置で固定することができる自転面歯車
(5) と斜軸(12)に転がり軸受を介して取付けた面擺歯車
(6)の背面揺動台部にワーク(10)を固定した面擺
歯車式クレイドルユニット(7)を、自転面歯車(5)
を固定して斜軸(12)を駆動し乍ら、ユニット軸線X
−Xと直交するツールラインY−Yには面擺歯車(6)
歯車と同一又は等約分割数の歯溝が刻まれる。自転面歯
車(5)を半径方向に偏位させることにより溝巾を拡大
するとこの溝と溝によつて構成される歯山の歯直角断面
はラック形工具によつて創成された凸系インボリュート
曲線歯形となる。 ツールラインに対して自転面歯車(5)の噛合位相を変
え乍ら歯山の創成を繰返すと溝巾はマスタギヤの最大ピ
ッチのもので統一され、ピッチ誤差の小さい歯山が得ら
れる特性を利用した面擺歯車式クレイドルユニットによ
る面歯車歯形の連続創成歯切、仕上方法。
Claim 1: A workpiece (10) is mounted on the back rocking platform of a rotating surface gear (5) that can be fixed in a fixed position and a surface sliding gear (6) that is attached to an inclined shaft (12) via a rolling bearing. The surface gear type cradle unit (7) fixed with the rotating surface gear (5)
is fixed and the oblique shaft (12) is driven, while the unit axis
-On the tool line Y-Y perpendicular to X, there is a plane gear (6).
A tooth groove with the same or equal number of divisions as the gear is carved. When the groove width is expanded by deflecting the rotating surface gear (5) in the radial direction, the cross-section perpendicular to the tooth of the gear formed by these grooves becomes a convex involute curve created by a rack-shaped tool. It becomes a tooth shape. By repeating gear creation while changing the meshing phase of the rotating surface gear (5) with respect to the tool line, the groove width is unified with the maximum pitch of the master gear, making use of the characteristic of obtaining gears with small pitch errors. Continuously generating gear cutting and finishing method for face gear tooth profile using a face gear type cradle unit.
【請求項2】特許請求範囲第1項の面擺歯車式クレイド
ルユニットに任意の位置で自転面歯車(1)を固定する
ことができるようにした反転形シングルギヤの斜軸(2
)を駆動用減速機(13)の出力軸とクレイドルユニッ
ト(7)の斜軸(12)に、その従動面歯車(4)を自
転面歯車(5)に夫々連結することにより、揺動台(6
)の歯数N6と自転面歯車(5)の歯数N5をワーク(
10)の歯数Z、及びその噛合相手歯車の歯数差(Z1
−Z2)に関係なく適宜の歯数と歯数差がとれるように
すると共に運転中ツールラインY−Yに対して各面歯車
の噛合位相が順次偏位することを特徴とする面歯車創成
用シングルギヤ式クレイドルユニット。
[Claim 2] A diagonal shaft (2) of a reversible single gear that is capable of fixing an autorotating surface gear (1) at an arbitrary position to the surface gear type cradle unit according to claim 1.
) to the output shaft of the drive reducer (13) and the oblique shaft (12) of the cradle unit (7), and the driven plane gear (4) to the rotation plane gear (5), respectively, to create a oscillating table. (6
) and the number of teeth N5 of the rotating surface gear (5) in the workpiece (
10), the number of teeth Z, and the difference in the number of teeth of the mating gear (Z1
- For creating a face gear, which is characterized in that an appropriate number of teeth and a difference in the number of teeth can be obtained regardless of Z2), and the meshing phase of each face gear is sequentially deviated with respect to the tool line Y-Y during operation. Single gear type cradle unit.
【請求項3】特許請求範囲第2項記載のシングルギヤ式
クレイドルユニットの面擺歯車(3)の外周部に自転可
能な揺動継手(17)(18)を設け、そのドラム部(
18)と自転面歯車(1)の外周部を夫々任意の位置で
固定することができる制動機(19)、(20)を取付
けて、運転中、面擺歯車(3)(6)とワーク(10)
の自転成分を制動機で停止させ、自転面歯車(1)を空
転させて、マスターギヤ(1)(2)の噛合位相を定量
宛偏位させたり、制動機(19)(20)を同時に開放
することによりワーク(10)に創成される溝巾を調整
することができるようにした面歯車創成用シンクルギヤ
式クレイドルユニット。
[Claim 3] Rotatable rocking joints (17) and (18) are provided on the outer periphery of the surface gear (3) of the single gear type cradle unit according to claim 2, and the drum portion (
Brakes (19) and (20) that can fix the outer periphery of the surface gear (18) and the rotating surface gear (1) at arbitrary positions are installed, and the surface gears (3), (6) and the workpiece are attached during operation. (10)
The rotation component of the brake is stopped by the brake, the rotation plane gear (1) is idled, and the meshing phase of the master gears (1) and (2) is deviated by a fixed amount, and the brakes (19 and 20) are simultaneously stopped. A sinkle gear type cradle unit for creating a face gear, which can adjust the groove width created on a workpiece (10) by opening it.
JP17368990A 1990-06-29 1990-06-29 Surface gear generation device Pending JPH04300119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17368990A JPH04300119A (en) 1990-06-29 1990-06-29 Surface gear generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17368990A JPH04300119A (en) 1990-06-29 1990-06-29 Surface gear generation device

Publications (1)

Publication Number Publication Date
JPH04300119A true JPH04300119A (en) 1992-10-23

Family

ID=15965286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17368990A Pending JPH04300119A (en) 1990-06-29 1990-06-29 Surface gear generation device

Country Status (1)

Country Link
JP (1) JPH04300119A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006272497A (en) * 2005-03-29 2006-10-12 Ogino Kogyo Kk Gear generating cutting device of rocking type gear device
JP2006315111A (en) * 2005-05-11 2006-11-24 Ogino Kogyo Kk Gear generating machining apparatus of rocking type gear device
JP2009228782A (en) * 2008-03-21 2009-10-08 Jtekt Corp Oscillating gear device and method of machining the same
JP2013506572A (en) * 2009-10-05 2013-02-28 クリンゲルンベルク・アクチェンゲゼルシャフト Method for producing bevel gears with internal cycloid teeth by a continuous forming method using corresponding tools

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006272497A (en) * 2005-03-29 2006-10-12 Ogino Kogyo Kk Gear generating cutting device of rocking type gear device
JP2006315111A (en) * 2005-05-11 2006-11-24 Ogino Kogyo Kk Gear generating machining apparatus of rocking type gear device
JP2009228782A (en) * 2008-03-21 2009-10-08 Jtekt Corp Oscillating gear device and method of machining the same
JP2013506572A (en) * 2009-10-05 2013-02-28 クリンゲルンベルク・アクチェンゲゼルシャフト Method for producing bevel gears with internal cycloid teeth by a continuous forming method using corresponding tools

Similar Documents

Publication Publication Date Title
JP5650762B2 (en) Continuous process for producing face gears
KR100188457B1 (en) Method of dressing a threaded grinding wheel
CN1110395C (en) Method of finishing gears, and gear
KR20130030224A (en) Semi-completing skiving method and device having corresponding skiving tool for executing a semi-completing skiving method
KR101900100B1 (en) Method for milling a bevel gear tooth system in the continuous milling process
JP7046920B2 (en) Pressure angle correction for power skiving without changing the tool shape
KR20120140634A (en) Robust method for skiving and corresponding apparatus comprising a skiving tool
CN101678488A (en) Method for designing and manufacturing a gear
JPH10246293A (en) Speed change gear device
CN107617795B (en) The processing method of curved tooth line gear
CN206047261U (en) The process equipment of curved tooth line gear
US7431635B2 (en) Internal gear grinding method
Zeyin et al. Parametric modeling and contact analysis of helical gears with modifications
US3757474A (en) Curved surface generator
JPS5993223A (en) Method of forming face mill of spiral bevel gear with integral central structure and spiral bevel gear formed through said method
Zhang et al. Tooth surface geometry optimization of spiral bevel and hypoid gears generated by duplex helical method with circular profile blade
JPH04300119A (en) Surface gear generation device
JPH04300120A (en) Rotary tool for generating bevel gear
CN109317764B (en) Multi-tooth part machining method and multi-tooth part cutting tool
JP2002011615A (en) Manufacturing method and machining device for face gear wheel
JPH01301015A (en) Precision working method of tooth surface of gear and tool proper to said method
CN111097973A (en) Method for half-expanding and processing herringbone gear by using finger-shaped cutter
CN111895067B (en) End-toothed disc and machining method
CN109702276B (en) Method for machining flanks of bevel gear workpieces
CN107617796A (en) The process equipment of curved tooth line gear