JPH04300077A - Method and device for controlling resistance welding - Google Patents

Method and device for controlling resistance welding

Info

Publication number
JPH04300077A
JPH04300077A JP8967891A JP8967891A JPH04300077A JP H04300077 A JPH04300077 A JP H04300077A JP 8967891 A JP8967891 A JP 8967891A JP 8967891 A JP8967891 A JP 8967891A JP H04300077 A JPH04300077 A JP H04300077A
Authority
JP
Japan
Prior art keywords
current
control
constant
welding
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8967891A
Other languages
Japanese (ja)
Other versions
JP2761814B2 (en
Inventor
Keiichiro Kitsunai
橘内 敬一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyachi Technos Corp
Original Assignee
Miyachi Technos Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyachi Technos Corp filed Critical Miyachi Technos Corp
Priority to JP3089678A priority Critical patent/JP2761814B2/en
Publication of JPH04300077A publication Critical patent/JPH04300077A/en
Application granted granted Critical
Publication of JP2761814B2 publication Critical patent/JP2761814B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To stabilize the welding electric conduction and to allow it to have a high quality by the constant-current control for preventing a splash generated by a current overshoot in the beginning of the electric conduction. CONSTITUTION:A current comparing part 44 compares a current measured value Si from a secondary current detecting circuit 34 with a current set value Qi from a current setting part 42, and outputs a current comparison error deltai. A current comparing part 48 compares a power measured value Sp from a welding power arithmetic circuit 36 with a power set value Qp from a power setting part 46, and outputs a power comparison error deltap. A DELTAR fall point detecting part 54 outputs a prescribed timing signal for finishing the electric conduction at the time point when a measured value SR of an inter-tip resistance value arithmetic circuit 38 falls by a set value DELTARZ from a peak value RMAX. A sequence control part 56 switches a switching part 58 to 48 side and starts the electric conduction, and allows an inverter control signal generating part 60 to output inverter control signals (fa), (fb) for the constant-current control. When deltai from 44 becomes zero, 58 is switched to 44 side, and 60 is allowed to output (fa) and (fb) for the constant-current control.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、抵抗溶接機の通電制御
に係り、特に定電流制御方式を改善する方法および装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to energization control of a resistance welding machine, and more particularly to a method and apparatus for improving a constant current control system.

【0002】0002

【従来の技術】抵抗溶接の通電では、一定の電流を被溶
接材に流すようにフィードバックをかける定電流制御が
最も多く用いられており、最近普及しているインバータ
式抵抗溶接機でも定電流制御が主流になっている。その
主な理由としては、加圧力および通電時間とともに電流
が抵抗溶接の3大溶接条件とされていること、トロイダ
ルコイルやカレントトランス等によって容易に電流を測
定することができるためフィードバックループを構成し
やすいこと等が挙げられる。
[Prior Art] Constant current control, which applies feedback so that a constant current flows through the material to be welded, is most often used in resistance welding, and constant current control is also used in recently popular inverter-type resistance welding machines. has become mainstream. The main reasons for this are that current, along with pressure and energization time, are the three major welding conditions for resistance welding, and that current can be easily measured using toroidal coils, current transformers, etc., which form a feedback loop. For example, it is easy to use.

【0003】0003

【発明が解決しようとする課題】ところが、定電流制御
によると、通電初期に、一時的(過渡的)ではあるが、
電流が設定値を大きく越えてしまう、つまりオーバシュ
ートする現象が生じる。特に、インバータ式抵抗溶接機
では、高速のフィードバック制御を行うにもかかわらず
、そのような電流オーバシュート現象が顕著に現れる。
[Problem to be solved by the invention] However, according to constant current control, at the beginning of energization, although temporary (transient),
A phenomenon occurs in which the current greatly exceeds the set value, that is, overshoot. In particular, in an inverter-type resistance welding machine, such a current overshoot phenomenon appears conspicuously despite high-speed feedback control.

【0004】定電流制御において、電流オーバシュート
現象が生じる原因としては、通電が開始すると電流が零
の値から設定値に向かってフィードバック制御により急
激・高速に立ち上げられるために設定値に達してもその
勢いが直には止まらないことや、抵抗溶接機の二次側回
路に含まれるインダクタンスが電流に慣性力を与えるこ
と等が考えられる。いずれにしても、このような電流オ
ーバシュート現象が生じると、スプラッシュの発生する
おそれがあり、具合が悪かった。
[0004] In constant current control, the cause of the current overshoot phenomenon is that when energization starts, the current increases rapidly and rapidly from a zero value toward the set value due to feedback control, so that the current does not reach the set value. Possible causes include that the force of the current does not stop immediately, and that the inductance included in the secondary circuit of the resistance welding machine imparts an inertial force to the current. In any case, if such a current overshoot phenomenon occurs, there is a risk that splash will occur, which is inconvenient.

【0005】本発明は、かかる問題点に鑑みてなされた
もので、通電初期に電流オーバシュート現象が出ないよ
うにしてスプラッシュを防止し、定電流制御による溶接
通電の安定化・高品質化をはかる抵抗溶接制御方法およ
び装置を提供することを目的とする。
The present invention has been made in view of these problems, and it prevents the current overshoot phenomenon from occurring at the initial stage of energization, thereby preventing splash, and stabilizing and improving the quality of welding energization through constant current control. An object of the present invention is to provide a resistance welding control method and device for measuring resistance welding.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の第1の抵抗溶接制御方法は、定電力制御に
よって通電を立ち上げ、被溶接材に供給される電流が所
定の電流設定値に達した時に定電力制御から定電流制御
に切り換える方法とした。
[Means for Solving the Problems] In order to achieve the above object, the first resistance welding control method of the present invention starts energization by constant power control so that the current supplied to the workpiece is a predetermined current. The method was to switch from constant power control to constant current control when the set value was reached.

【0007】また、本発明の第2の抵抗溶接制御方法は
、定電圧制御によって通電を立ち上げ、被溶接材に供給
される電流が所定の電流設定値に達した時に定電圧制御
から定電流制御に切り換える方法とした。
Further, in the second resistance welding control method of the present invention, energization is started by constant voltage control, and when the current supplied to the material to be welded reaches a predetermined current setting value, the constant current is changed from constant voltage control. The method was to switch to control.

【0008】また、本発明の第3の抵抗溶接制御方法は
、第1または第2の抵抗溶接制御方法において、定電流
制御の下で被溶接材の抵抗値がピーク値に達したのちピ
ーク値から所定の値だけ下がった時に通電を停止する方
法とした。
Further, in the third resistance welding control method of the present invention, in the first or second resistance welding control method, after the resistance value of the welded material reaches the peak value under constant current control, the resistance value is reduced to the peak value. The method was to stop energization when the value drops by a predetermined value.

【0009】また、本発明の第1の抵抗溶接制御装置は
、被溶接材に供給される電流を検出するための電流検出
手段と、被溶接材に供給される電流を溶接電流設定値に
一致させるための定電流制御を行う定電流制御手段と、
被溶接材に供給される電力を溶接電力設定値に一致させ
るための定電力制御を行う定電力制御手段と、この定電
力制御手段によって通電を開始し、電流検出手段より得
られる電流測定値が所定の溶接電流設定値に達した時に
定電流制御手段による通電に切り換える通電制御切換手
段とを具備する構成とした。
The first resistance welding control device of the present invention further includes a current detection means for detecting the current supplied to the welded material, and a current detection means for detecting the current supplied to the welded material; constant current control means for performing constant current control to
A constant power control means performs constant power control to match the power supplied to the welding material with a welding power setting value, and the constant power control means starts energization, and the current measurement value obtained from the current detection means is The present invention is configured to include energization control switching means for switching to energization by constant current control means when a predetermined welding current setting value is reached.

【0010】また、本発明の第2の抵抗溶接制御装置は
、被溶接材に供給される電流を検出するための電流検出
手段と、被溶接材に供給される電流を溶接電流設定値に
一致させるための定電流制御を行う定電流制御手段と、
被溶接材に印加される電圧を溶接電圧設定値に一致させ
るための定電圧制御を行う定電圧制御手段と、定電圧制
御手段によって通電を開始し、電流検出手段より得られ
る電流測定値が所定の溶接電流設定値に達した時に定電
流制御手段による通電に切り換える通電制御切換手段と
を具備する構成とした。
The second resistance welding control device of the present invention further includes a current detection means for detecting the current supplied to the welded material, and a current detection means for detecting the current supplied to the welded material, and a current detection means for detecting the current supplied to the welded material. constant current control means for performing constant current control to
A constant voltage control means performs constant voltage control to match the voltage applied to the material to be welded with a welding voltage setting value, and the constant voltage control means starts energization, and the current measurement value obtained from the current detection means is set to a predetermined value. and energization control switching means for switching to energization by the constant current control means when the welding current set value is reached.

【0011】[0011]

【作用】第1の抵抗溶接制御方法または第1の抵抗溶接
制御装置では、通電が開始されると、定電圧制御が行わ
れ、被溶接材に供給される電力が設定値に一致(到達)
するように、フィードバックがかかる。こうして、被溶
接材に対する電流および電圧は立ち上がるが、定電力制
御による通電では電圧のほうがより急激に立ち上がるた
め、そのぶん電流は少し抑え気味に立ち上がる。したが
って、電流オーバシュート現象は生じない。そして、電
流が設定値に達すると、その時点で定電力制御から定電
流制御に切り換えられ、以後通電終了まで定電流制御に
よる通電が実行される。
[Operation] In the first resistance welding control method or the first resistance welding control device, when energization is started, constant voltage control is performed and the power supplied to the welded material matches (reaches) the set value.
As you like, it takes feedback. In this way, the current and voltage to the material to be welded rise, but since the voltage rises more rapidly when energizing is conducted under constant power control, the current rises slightly more suppressed. Therefore, no current overshoot phenomenon occurs. When the current reaches the set value, constant power control is switched to constant current control at that point, and from then on, energization is performed under constant current control until the end of energization.

【0012】第2の抵抗溶接制御方法または第2の抵抗
溶接制御装置では、上記のような定電圧制御に代えて定
電圧制御が行われる。この場合でも、電流が抑え気味に
立ち上がるので、電流オーバシュート現象は生ぜず、電
流が設定値に達した時点から定電流制御に切り換えられ
る。
In the second resistance welding control method or the second resistance welding control device, constant voltage control is performed instead of the constant voltage control as described above. Even in this case, since the current rises in a controlled manner, no current overshoot phenomenon occurs, and the control is switched to constant current control from the time when the current reaches the set value.

【0013】第3の抵抗溶接制御方法では、第1または
第2の抵抗溶接制御方法において、定電流制御に切り換
えられた後はΔR制御によって被溶接部の抵抗値変化が
監視され、ナゲット形成にとって最適な時点で通電が止
められる。
In the third resistance welding control method, after switching to constant current control in the first or second resistance welding control method, changes in the resistance value of the part to be welded are monitored by ΔR control, and Power can be turned off at the optimal point.

【0014】[0014]

【実施例】以下、添付図を参照して本発明の実施例を説
明する。図1は本発明の一実施例を適用したインバータ
式抵抗溶接システムの主要な回路構成を示すブロック図
、図2はこの実施例におけるCPUの機能を示すブロッ
ク図、図3は実施例の作用を示すための波形図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. Fig. 1 is a block diagram showing the main circuit configuration of an inverter-type resistance welding system to which an embodiment of the present invention is applied, Fig. 2 is a block diagram showing the functions of the CPU in this embodiment, and Fig. 3 shows the operation of the embodiment. FIG.

【0015】図1において、商用の3相交流(S,T,
U)が3相全波整流回路10に入力され、この整流回路
10の出力端子に得られる直流電圧はコンデンサ12で
平滑されてからインバータ回路14に入力される。この
インバータ回路14は4つのトランジスタTR1 〜T
R4 を有し、インバータ駆動回路70からのインバー
タ駆動信号Fa,Fb にしたがってトランジスタTR
1,TR3 とトランジスタTR2,TR4 とが商用
交流周波数よりも十分に高い所定の周波数で交互にオン
・オフすることにより、出力端子OUT0 ,OUT1
 に高周波の交流矩形波パルスが得られる。
In FIG. 1, commercial three-phase alternating current (S, T,
U) is input to a three-phase full-wave rectifier circuit 10 , and the DC voltage obtained at the output terminal of this rectifier circuit 10 is smoothed by a capacitor 12 and then input to an inverter circuit 14 . This inverter circuit 14 includes four transistors TR1 to T
R4, and according to inverter drive signals Fa and Fb from the inverter drive circuit 70, the transistor TR
1, TR3 and transistors TR2, TR4 are turned on and off alternately at a predetermined frequency that is sufficiently higher than the commercial AC frequency, so that the output terminals OUT0 and OUT1
A high frequency AC rectangular wave pulse is obtained.

【0016】インバータ回路14より出力された高周波
の交流矩形波パルスは溶接トランス16の一次側コイル
に供給され、二次側コイルに低電圧・大電流のパルスが
得られる。この二次側パルスが一対のダイオードD1,
D2 からなる整流回路で直流に変換され、この直流の
二次電流(溶接電流)I2 が電極チップ20,22お
よびワーク24,26を流れ、ワーク24,26で抵抗
発熱が発生する。
The high frequency alternating current rectangular wave pulse output from the inverter circuit 14 is supplied to the primary coil of the welding transformer 16, and a low voltage, large current pulse is obtained in the secondary coil. This secondary side pulse is transmitted through a pair of diodes D1,
This DC secondary current (welding current) I2 flows through the electrode tips 20, 22 and the works 24, 26, and resistance heat generation occurs in the works 24, 26.

【0017】本実施例のシステムでは、ワーク24,2
6に供給される二次電流I2 を検出するために、二次
側回路にトロイダルコイル28が設けられ、このトロイ
ダルコイル28の出力端子が二次電流検出回路30の入
力端子に接続される。二次回路で二次電流I2 が流れ
ると、トロイダルコイル28の出力端子より二次電流I
2の微分波形を表す信号が得られる。二次電流検出回路
30は、その微分波形信号を積分することにより二次電
流I2 の波形を復元し、その波形から瞬時的な電流測
定値Si を割り出す。この電流測定値Si は、CP
U40に与えられるとともに溶接電力演算回路36の一
方の入力端子に与えられる。
In the system of this embodiment, the works 24, 2
In order to detect the secondary current I2 supplied to the secondary current detection circuit 6, a toroidal coil 28 is provided in the secondary circuit, and an output terminal of the toroidal coil 28 is connected to an input terminal of a secondary current detection circuit 30. When the secondary current I2 flows in the secondary circuit, the secondary current I2 flows from the output terminal of the toroidal coil 28.
A signal representing a differential waveform of 2 is obtained. The secondary current detection circuit 30 restores the waveform of the secondary current I2 by integrating the differential waveform signal, and determines the instantaneous current measurement value Si from the waveform. This current measurement value Si is CP
It is applied to U40 and also to one input terminal of the welding power calculation circuit 36.

【0018】また、ワーク24,26に印加される電圧
および供給される電力を検出するために、電極チップ2
0,22が電圧検出線32,32を介してチップ間電圧
検出回路34の入力端子に接続される。このチップ間電
圧検出回路34は、入力した電圧検出信号を増幅したう
えで、これを瞬時的な電圧測定値Sv に変換する。こ
の電圧測定値Sv は、溶接電力演算回路36の他方の
入力端子に与えられるとともに、CPU40に与えられ
る。
Further, in order to detect the voltage applied to the works 24 and 26 and the power supplied, the electrode tip 2
0 and 22 are connected to the input terminal of an interchip voltage detection circuit 34 via voltage detection lines 32 and 32, respectively. This interchip voltage detection circuit 34 amplifies the input voltage detection signal and then converts it into an instantaneous voltage measurement value Sv. This voltage measurement value Sv is applied to the other input terminal of the welding power calculation circuit 36 and also to the CPU 40.

【0019】溶接電力演算回路36は、溶接電圧検出回
路34からの電圧測定値Sv に二次電流検出回路30
からの電流測定値Si を乗算することにより、ワーク
24,26に供給される瞬時的な電力測定値Sp を割
り出し、この電力測定値Sp をCPU40に与える。 なお、電圧測定値Svは厳密にはワーク24,26に電
極チップ20,22の先端部を加えた導体路の電圧降下
を表す値であるが、電極チップ20,22の先端部にお
ける電圧降下分は事実上無視し得る程に低いので、電圧
測定値Svを近似的にワーク24,26に印加される電
圧の値とみなすことができる。
The welding power calculation circuit 36 applies the voltage measurement value Sv from the welding voltage detection circuit 34 to the secondary current detection circuit 30.
The instantaneous power measurement Sp supplied to the workpieces 24, 26 is determined by multiplying by the current measurement Si from , and this power measurement Sp is provided to the CPU 40. Strictly speaking, the voltage measurement value Sv is a value representing the voltage drop in the conductor path including the workpieces 24 and 26 plus the tips of the electrode tips 20 and 22, but the voltage drop at the tips of the electrode tips 20 and 22 is Since Sv is practically negligible, the measured voltage value Sv can be approximately regarded as the value of the voltage applied to the works 24 and 26.

【0020】また、ワーク24,26の抵抗値を検出す
るために、チップ間電圧検出回路30からの電圧測定値
Sv と二次電流検出回路34からの電流測定値Si 
とがチップ間抵抗値演算回路38の入力端子に与えられ
る。 チップ間抵抗値演算回路38は、電圧測定値Sv を電
流測定値Si で割算することにより、電極チップ20
,22間の瞬時的な抵抗値SR を演算し、このチップ
間抵抗値SR をCPU40に与える。電極チップ20
,22の先端部の抵抗値は事実上無視し得る程に低いの
で、チップ間抵抗値SR を近似的にワーク24,26
の抵抗値を表すデータとみなすことができる。
Furthermore, in order to detect the resistance values of the works 24 and 26, the voltage measurement value Sv from the inter-chip voltage detection circuit 30 and the current measurement value Si from the secondary current detection circuit 34 are used.
is applied to the input terminal of the inter-chip resistance value calculation circuit 38. The inter-chip resistance value calculation circuit 38 divides the voltage measurement value Sv by the current measurement value Si, thereby calculating the electrode tip 20.
, 22 is calculated, and this inter-chip resistance value SR is provided to the CPU 40. Electrode tip 20
, 22 is so low that it can be virtually ignored, the inter-chip resistance SR can be approximated by the workpieces 24, 26.
It can be regarded as data representing the resistance value of .

【0021】CPU40は、入力部70から各種設定値
等のデータを取り込むとそれらをメモリ72に格納し、
設定値、測定値、溶接結果等を表示出力するときは表示
部(図示せず)に表示データを送る。電源回路74は、
交流電源電圧から各種の直流動作電圧を生成し、それら
をCPU40その他の各部に供給する。電流トランス7
6および一次電流検出回路78は二次側で溶接電流を検
出できない場合に使用されるもので、これらの電流検出
手段によって検出された一次電流に溶接トランス16の
巻線比を乗じることで、二次電流(溶接電流)の値が割
り出される。インバータ駆動回路80は、CPU40か
らのインバータ制御信号fa,fb を増幅してインバ
ータ駆動信号Fa,Fb としたうえで、これらの信号
Fa,Fb によってインバータ回路14のトランジス
タTR1 〜TR4 をスイッチング制御する。
The CPU 40 takes in data such as various setting values from the input section 70 and stores them in the memory 72.
When displaying set values, measured values, welding results, etc., display data is sent to a display section (not shown). The power supply circuit 74 is
Various DC operating voltages are generated from the AC power supply voltage and supplied to the CPU 40 and other parts. current transformer 7
6 and the primary current detection circuit 78 are used when the welding current cannot be detected on the secondary side, and by multiplying the primary current detected by these current detection means by the turns ratio of the welding transformer 16, the secondary current is detected. The value of the next current (welding current) is determined. The inverter drive circuit 80 amplifies the inverter control signals fa and fb from the CPU 40 to provide inverter drive signals Fa and Fb, and controls the switching of the transistors TR1 to TR4 of the inverter circuit 14 using these signals Fa and Fb.

【0022】CPU40は、メモリ72に格納されてい
る制御プログラムにしたがって本抵抗溶接機システムの
全体・各部の制御を行う。本実施例の通電制御に関して
、CPU40は、機能的には図2に示すように、電流設
定部42、電流比較部44、電力設定部46、電力比較
部48、ΔR設定部50、ピーク値検出部52、ΔR降
下点検出部54、シーケンス制御部56、切換部58、
インバータ制御信号生成部60からなる。
The CPU 40 controls the entire resistance welding machine system and each part according to a control program stored in the memory 72. Regarding the energization control of this embodiment, the CPU 40 functionally includes a current setting section 42, a current comparison section 44, a power setting section 46, a power comparison section 48, a ΔR setting section 50, and a peak value detection section, as shown in FIG. section 52, ΔR drop point detection section 54, sequence control section 56, switching section 58,
It consists of an inverter control signal generation section 60.

【0023】電流設定部42は、入力部70より設定入
力された定電流制御用の設定値Qiを電流比較部44に
与える。電流比較部44は、二次電流検出回路34から
受け取った電流測定値Si を該電流設定値Qi と比
較し、その差分(電流比較誤差)δiを切換部58に与
えるとともにシーケンス制御部56にも与える。
The current setting section 42 supplies the constant current control set value Qi input from the input section 70 to the current comparison section 44 . The current comparison unit 44 compares the current measurement value Si received from the secondary current detection circuit 34 with the current set value Qi, and provides the difference (current comparison error) δi to the switching unit 58 and also to the sequence control unit 56. give.

【0024】電力設定部46は、入力部70より設定入
力された定電力制御用の設定値Qpを電力比較部48に
与える。電力比較部48は、溶接電力演算回路36から
受け取った溶接電力測定値Sp を該電力設定値Qp 
と比較し、その差分(電力比較誤差)δpを切換部58
に与える。
The power setting unit 46 supplies the constant power control setting value Qp input from the input unit 70 to the power comparison unit 48. The power comparison unit 48 converts the welding power measurement value Sp received from the welding power calculation circuit 36 into the power setting value Qp.
The difference (power comparison error) δp is determined by the switching unit 58.
give to

【0025】ΔR設定部50は、入力部70より設定入
力されたΔR制御用の設定値ΔRZをΔR降下点検出部
54に与える。ΔR制御とは、定電流制御においてナゲ
ット径ないし溶接強度を最適化するための通電時間制御
である。定電流制御による通電においては、ワークの抵
抗値がある時点でピーク値に達したのち単調に降下する
現象が見られ、そのピーク値から適当な値(ΔR)だけ
降下した時点で通電を止めると、最適な溶接強度が得ら
れるという特質がある。しかして、ピーク値検出部52
は、チップ間抵抗値演算回路38からの抵抗測定値SR
 を監視し、チップ間抵抗のピーク値RMAX を検出
し、そのピーク値RMAX をΔR降下点検出部54に
与える。ΔR降下点検出部54は、チップ間抵抗値演算
回路38からの抵抗測定値SR を受け取り、ピーク値
検出部52でピーク値RMAX が検出されると、その
時から抵抗測定値SR を監視し、その値がピーク値R
MAX から設定値ΔRZだけ下がった時にシーケンス
制御部56に所定のタイミング信号を出力する。
The ΔR setting section 50 provides the ΔR control setting value ΔRZ input from the input section 70 to the ΔR drop point detection section 54 . ΔR control is current application time control for optimizing the nugget diameter or welding strength in constant current control. When applying electricity using constant current control, there is a phenomenon in which the resistance of the workpiece reaches a peak value at a certain point and then drops monotonically, and if the electricity is stopped when the resistance falls by an appropriate value (ΔR) from the peak value, , it has the characteristic that optimum welding strength can be obtained. Therefore, the peak value detection section 52
is the resistance measurement value SR from the inter-chip resistance value calculation circuit 38
is monitored, the peak value RMAX of the inter-chip resistance is detected, and the peak value RMAX is provided to the ΔR drop point detection section 54. The ΔR drop point detection unit 54 receives the resistance measurement value SR from the inter-chip resistance value calculation circuit 38, and when the peak value detection unit 52 detects the peak value RMAX, it monitors the resistance measurement value SR from that time and detects the resistance measurement value SR. The value is the peak value R
A predetermined timing signal is output to the sequence control section 56 when the set value ΔRZ decreases from MAX.

【0026】シーケンス制御部56は、通電を開始する
時、インバータ制御信号生成部54を起動させるととも
に、切換部58を電力比較部48側に切り換える。そう
すると、電力比較部48からの電力比較誤差δpが切換
部58を通ってインバータ制御信号生成部60に与えら
れる。インバータ制御信号生成部60は、電力比較誤差
δpを零にするようにクロック周波数CKでパルス幅変
調したインバータ制御信号fa,fb を出力する。こ
のようにして、定電力制御で通電が開始される。
When starting energization, the sequence control section 56 activates the inverter control signal generation section 54 and switches the switching section 58 to the power comparison section 48 side. Then, the power comparison error δp from the power comparison section 48 is given to the inverter control signal generation section 60 through the switching section 58. The inverter control signal generation unit 60 outputs inverter control signals fa and fb that are pulse width modulated at the clock frequency CK so as to make the power comparison error δp zero. In this way, energization is started under constant power control.

【0027】通電を開始した後、シーケンス制御部56
は、電流比較部44からの電流比較誤差δiを監視する
。二次電流I2 は零の値から立ち上がるので、立ち上
がり期間中はδi<0の比較誤差が得られる。そして、
立ち上がりが終了し、二次電流I2 が電流設定値Qi
 に達してδi=0になると、これに応動してシーケン
ス制御部56は切換部58を電流比較部44側へ切り換
える。これにより、電流比較部44からの電流比較誤差
δiが切換部58を通ってインバータ制御信号生成部6
0に与えられ、インバータ制御信号生成部60は、電流
比較誤差δiを零にするようなインバータ制御信号fa
,fb を生成する。このように、二次電流I2 が電
流設定値Qi に達した時から定電流制御による通電が
行われ、一定の電流がワーク24,26に供給される。 そして、ΔR降下点検出部54より上記タイミング信号
が発生されると、その時点でシーケンス制御部56はイ
ンバータ制御信号生成部60の動作を停止させる。
After starting the energization, the sequence control unit 56
monitors the current comparison error δi from the current comparator 44. Since the secondary current I2 rises from a value of zero, a comparison error of δi<0 is obtained during the rising period. and,
The rising has finished, and the secondary current I2 reaches the current setting value Qi
When δi=0, the sequence control section 56 switches the switching section 58 to the current comparison section 44 side in response. As a result, the current comparison error δi from the current comparison section 44 passes through the switching section 58 to the inverter control signal generation section 6.
0, and the inverter control signal generation unit 60 generates an inverter control signal fa that makes the current comparison error δi zero.
, fb. In this way, when the secondary current I2 reaches the current set value Qi, energization is performed by constant current control, and a constant current is supplied to the works 24 and 26. Then, when the timing signal is generated by the ΔR drop point detection section 54, the sequence control section 56 stops the operation of the inverter control signal generation section 60 at that point.

【0028】図3は、本実施例の通電制御の作用を示す
図である。この図において、ts は二次電流I2 が
設定値Qi に達した時刻で、te はΔR制御によっ
て通電停止指令が出された時刻である。しかして、通電
開始時刻から切換時刻ts までの期間は定電力制御に
よる波形であり、切換時刻ts から通電停止時刻te
 までの期間は定電流制御による波形である。本実施例
によれば、定電力制御によって通電を立ち上げるので、
鎖線SHのような電流オーバシュート現象が現れず、ス
プラッシュが発生するおそれがない。
FIG. 3 is a diagram showing the operation of the energization control in this embodiment. In this figure, ts is the time when the secondary current I2 reaches the set value Qi, and te is the time when the energization stop command is issued by ΔR control. Therefore, the period from the energization start time to the switching time ts is a waveform due to constant power control, and from the switching time ts to the energization stop time te.
The period up to is a waveform based on constant current control. According to this embodiment, since energization is started by constant power control,
A current overshoot phenomenon as indicated by the chain line SH does not occur, and there is no risk of splash occurring.

【0029】なお、上述した実施例では、切換タイミン
グを検出するための設定値と定電流制御用の設定値とを
同じ電流設定値Qi で共用したが、両者を別々の値に
選択することも可能である。また、ΔR制御法によらず
に、予め設定された通電時間で通電を止めることも可能
である。
In the above embodiment, the setting value for detecting the switching timing and the setting value for constant current control are shared by the same current setting value Qi, but it is also possible to select different values for both. It is possible. Furthermore, it is also possible to stop the energization after a preset energization time without using the ΔR control method.

【0030】また、上述した実施例では定電力制御によ
って通電を立ち上げたが、定電圧制御によって立ち上げ
ることも可能であり、その場合は、たとえば図2におい
て溶接電力演算回路36、電力設定部46、電力比較部
48をそれぞれチップ間電圧検出回路30、電圧設定部
、電圧比較部に置き換えるような変形を行えばよい。 定電圧制御によって立ち上げた場合でも、図3と同様な
波形が得られ、定電力制御による場合と同様な効果が得
られる。
Further, in the above-described embodiment, the energization was started by constant power control, but it is also possible to start by constant voltage control. In that case, for example, in FIG. 46, the power comparator 48 may be replaced with an interchip voltage detection circuit 30, a voltage setting section, and a voltage comparison section, respectively. Even when starting up using constant voltage control, a waveform similar to that shown in FIG. 3 can be obtained, and the same effects as when using constant power control can be obtained.

【0031】また、本発明は、上述したようなインバー
タ式抵抗溶接機において特に顕著な効果を奏するもので
あるが、単相交流式、3相交流式等の他の形式の抵抗溶
接機にも適用可能である。
Although the present invention is particularly effective in the above-mentioned inverter type resistance welding machine, it is also applicable to other types of resistance welding machines such as single-phase AC type and three-phase AC type. Applicable.

【0032】[0032]

【発明の効果】本発明は、上述したような構成を有する
ことにより、以下のような効果を奏する。
[Effects of the Invention] By having the above-described configuration, the present invention achieves the following effects.

【0033】請求項1の抵抗溶接制御方法または請求項
4の抵抗溶接制御装置によれば、定電力制御によって通
電を立ち上げてから定電流制御を実行するようにしたの
で、電流オーバシュート現象ひいてはスプラッシュの生
じない溶接が可能であり、高品質の溶接結果を得ること
ができる。
According to the resistance welding control method according to claim 1 or the resistance welding control device according to claim 4, since the constant current control is executed after energization is started by constant power control, the current overshoot phenomenon and even the It is possible to weld without splashing, and high-quality welding results can be obtained.

【0034】請求項2の抵抗溶接制御方法または請求項
5の抵抗溶接制御装置によれば、定電圧制御によって通
電を立ち上げてから定電流制御を実行するようにしたの
で、電流オーバシュート現象ひいてはスプラッシュの生
じない溶接が可能であり、高品質の溶接結果を得ること
ができる。
According to the resistance welding control method of claim 2 or the resistance welding control device of claim 5, since the constant current control is executed after starting the current supply by constant voltage control, the current overshoot phenomenon and the It is possible to weld without splashing, and high-quality welding results can be obtained.

【0035】請求項3の抵抗溶接制御方法によれば、第
1または第2の抵抗溶接制御方法において、定電流制御
に切り換えた後はΔR制御法によって被溶接部の抵抗値
変化を監視して、ナゲット形成にとって最適な時点で通
電を止めるようにしたので、良好な溶接強度を得ること
ができる。
According to the resistance welding control method of claim 3, in the first or second resistance welding control method, after switching to constant current control, changes in the resistance value of the welded part are monitored by the ΔR control method. Since the current is turned off at the optimum time for nugget formation, good welding strength can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例を適用したインバータ式抵抗
溶接システムの主要な回路構成を示すブロック図である
FIG. 1 is a block diagram showing the main circuit configuration of an inverter-type resistance welding system to which an embodiment of the present invention is applied.

【図2】実施例におけるCPUの機能を示すブロック図
である。
FIG. 2 is a block diagram showing the functions of a CPU in the embodiment.

【図3】実施例の作用を示すための波形図である。FIG. 3 is a waveform chart showing the effect of the embodiment.

【符号の説明】[Explanation of symbols]

14    インバータ回路 20    電極チップ 22    電極チップ 24    ワーク 26    ワーク 30    チップ間電圧検出回路 34    二次電流検出回路 36    溶接電力検出回路 40    CPU 42    電流設定部 44    電流比較部 46    電力設定部 48    電力比較部 50    ΔR設定部 52    ピーク値検出部 54    ΔR降下点検出部 58    切換部 14 Inverter circuit 20 Electrode tip 22 Electrode tip 24 Work 26 Work 30 Chip-to-chip voltage detection circuit 34 Secondary current detection circuit 36 Welding power detection circuit 40 CPU 42 Current setting section 44 Current comparison section 46 Power setting section 48 Power comparison section 50 ΔR setting section 52 Peak value detection section 54 ΔR descent point detection section 58 Switching section

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  定電力制御によって通電を立ち上げ、
被溶接材に供給される電流が所定の電流設定値に達した
時に前記定電力制御から定電流制御に切り換えることを
特徴とする抵抗溶接制御方法。
[Claim 1] Starting energization by constant power control,
A resistance welding control method, characterized in that the constant power control is switched to constant current control when the current supplied to the workpiece reaches a predetermined current setting value.
【請求項2】  定電圧制御によって通電を立ち上げ、
被溶接材に供給される電流が所定の電流設定値に達した
時に前記定電圧制御から定電流制御に切り換えることを
特徴とする抵抗溶接制御方法。
[Claim 2] Starting energization by constant voltage control,
A resistance welding control method, characterized in that the constant voltage control is switched to constant current control when the current supplied to the workpiece reaches a predetermined current setting value.
【請求項3】  前記定電流制御の下で前記被溶接材の
抵抗値がピーク値に達したのち前記ピーク値から所定の
値だけ下がった時に通電を停止することを特徴とする請
求項1または2記載の抵抗溶接制御方法。
3. The current supply is stopped when the resistance value of the welded material reaches a peak value under the constant current control and then decreases by a predetermined value from the peak value. 2. The resistance welding control method according to 2.
【請求項4】  被溶接材に供給される電流を検出する
ための電流検出手段と、前記被溶接材に供給される電流
を溶接電流設定値に一致させるための定電流制御を行う
定電流制御手段と、前記被溶接材に供給される電力を溶
接電力設定値に一致させるための定電力制御を行う定電
力制御手段と、前記定電力制御手段によって通電を開始
し、前記電流検出手段より得られる電流測定値が所定の
溶接電流設定値に達した時に前記定電流制御手段による
通電に切り換える通電制御切換手段と、を具備したこと
を特徴とする抵抗溶接制御装置。
4. Current detection means for detecting the current supplied to the welded material, and constant current control that performs constant current control to match the current supplied to the welded material with a welding current setting value. means, constant power control means for performing constant power control to match the electric power supplied to the welding material with the welding power set value, and a constant power control means for starting energization by the constant power control means, and a constant power control means for controlling the electric power supplied to the welding material to match the welding power setting value; 1. A resistance welding control device comprising: energization control switching means for switching to energization by the constant current control means when a measured current value reaches a predetermined welding current setting value.
【請求項5】  被溶接材に供給される電流を検出する
ための電流検出手段と、前記被溶接材に供給される電流
を溶接電流設定値に一致させるための定電流制御を行う
定電流制御手段と、前記被溶接材に印加される電圧を溶
接電圧設定値に一致させるための定電圧制御を行う定電
圧制御手段と、前記定電圧制御手段によって通電を開始
し、前記電流検出手段より得られる電流測定値が所定の
溶接電流設定値に達した時に前記定電流制御手段による
通電に切り換える通電制御切換手段と、を具備したこと
を特徴とする抵抗溶接制御装置。
5. Current detection means for detecting the current supplied to the welded material, and constant current control that performs constant current control to match the current supplied to the welded material with a welding current setting value. means, constant voltage control means for performing constant voltage control to match the voltage applied to the welding material with the welding voltage set value, and a constant voltage control means for starting energization by the constant voltage control means, and a voltage obtained by the current detection means. 1. A resistance welding control device comprising: energization control switching means for switching to energization by the constant current control means when a measured current value reaches a predetermined welding current setting value.
JP3089678A 1991-03-28 1991-03-28 Resistance welding control method and apparatus Expired - Lifetime JP2761814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3089678A JP2761814B2 (en) 1991-03-28 1991-03-28 Resistance welding control method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3089678A JP2761814B2 (en) 1991-03-28 1991-03-28 Resistance welding control method and apparatus

Publications (2)

Publication Number Publication Date
JPH04300077A true JPH04300077A (en) 1992-10-23
JP2761814B2 JP2761814B2 (en) 1998-06-04

Family

ID=13977418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3089678A Expired - Lifetime JP2761814B2 (en) 1991-03-28 1991-03-28 Resistance welding control method and apparatus

Country Status (1)

Country Link
JP (1) JP2761814B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1048388A2 (en) * 1999-04-23 2000-11-02 Miyachi Technos Corporation Resistance welding power supply apparatus
KR100470920B1 (en) * 2001-08-27 2005-02-21 이호영 Introduction Wire Resistance Welding Method For Monitor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63180384A (en) * 1987-01-22 1988-07-25 Dengensha Mfg Co Ltd Inter-tip power control type control system for resistance welding
JPS63122773U (en) * 1987-01-30 1988-08-10
JPH0275476A (en) * 1988-09-12 1990-03-15 Kobe Steel Ltd Spot welding method
JPH0464473U (en) * 1990-10-08 1992-06-02

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63180384A (en) * 1987-01-22 1988-07-25 Dengensha Mfg Co Ltd Inter-tip power control type control system for resistance welding
JPS63122773U (en) * 1987-01-30 1988-08-10
JPH0275476A (en) * 1988-09-12 1990-03-15 Kobe Steel Ltd Spot welding method
JPH0464473U (en) * 1990-10-08 1992-06-02

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1048388A2 (en) * 1999-04-23 2000-11-02 Miyachi Technos Corporation Resistance welding power supply apparatus
EP1048388A3 (en) * 1999-04-23 2003-05-02 Miyachi Technos Corporation Resistance welding power supply apparatus
KR100470920B1 (en) * 2001-08-27 2005-02-21 이호영 Introduction Wire Resistance Welding Method For Monitor

Also Published As

Publication number Publication date
JP2761814B2 (en) 1998-06-04

Similar Documents

Publication Publication Date Title
JP2602778B2 (en) High frequency power supply
US4973815A (en) Resistance welder using an inverter
US5786558A (en) Method and apparatus for controlling inverter resistance welding
US6046424A (en) Resistance welding control apparatus
JP2742544B2 (en) Resistance welding control method and apparatus
JP3507843B2 (en) Resistance welding control method and apparatus
JPH04300077A (en) Method and device for controlling resistance welding
GB2321539A (en) Controlling current in an inverter controlled DC resistance welding apparatus
JPH1085947A (en) Method and device for controlling resistance welding
JP2732154B2 (en) Inverter type resistance welding control method
JP3253822B2 (en) Welding machine control device
JPH0753313B2 (en) Power control device for inverter type resistance welding machine
JPH04300076A (en) Method and device for controlling resistance welding
JPH04300078A (en) Method and device for controlling inverter type resistance welding
JPH1052754A (en) Power source device for arc working
US20230283200A1 (en) Variable pwm frequency responsive to power increase event in welding system
JP3752947B2 (en) Control device and method for resistance welding machine
JP2512911B2 (en) Arc welding machine
JP3291183B2 (en) Resistance welding control device
JPH0753314B2 (en) Power control device for inverter type resistance welding machine
JP3638700B2 (en) Resistance welding machine control device
KR950003575B1 (en) Output control method and device of welding electric power
JP2540116B2 (en) Arc welding equipment
JPH11346479A (en) Controller for inverter welding equipment
JPH10128551A (en) Method and equipment for resistance welding