JPH04299975A - Apparatus for reforming air quality - Google Patents

Apparatus for reforming air quality

Info

Publication number
JPH04299975A
JPH04299975A JP3066284A JP6628491A JPH04299975A JP H04299975 A JPH04299975 A JP H04299975A JP 3066284 A JP3066284 A JP 3066284A JP 6628491 A JP6628491 A JP 6628491A JP H04299975 A JPH04299975 A JP H04299975A
Authority
JP
Japan
Prior art keywords
light
optical fiber
air
water
air quality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3066284A
Other languages
Japanese (ja)
Inventor
Toshiichi Tomioka
敏一 冨岡
Katsumi Tomita
勝己 冨田
Atsushi Nishino
敦 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3066284A priority Critical patent/JPH04299975A/en
Publication of JPH04299975A publication Critical patent/JPH04299975A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M31/00Means for providing, directing, scattering or concentrating light
    • C12M31/08Means for providing, directing, scattering or concentrating light by conducting or reflecting elements located inside the reactor or in its structure
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2

Abstract

PURPOSE:To provide the subject apparatus having a structure where light is sent through a specified optical fiber to a culture solution containing a photosynthetic microorganism such as green algae while bringing the air into contact therewith and capable of converting CO2 into O2 with an improved efficiency utilizing its light-absorption wave length. CONSTITUTION:Water containing dispersed photosynthetic living bodies or water 2 containing immersed fixed-living bodies on a carrier is accommodated in a vessel 1. The air is then sent through an air-supply pipe 3 into the vessel 1 so as to be brought into contact with the above-mentioned water 2. An optical fiber 8 carrying or containing a fluorescent substance capable of absorbing green light and converting it to red light is arranged in the vessel 1 so as to selectively converting light from a condenser 7 to a light having an intensity between a light-compensation point and a light-saturation point by the optical fiber itself 8 and to supply it to the living bodies.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は空気の酸素濃度制御およ
び炭酸ガスの酸素変換装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for controlling the oxygen concentration of air and converting carbon dioxide into oxygen.

【0002】0002

【従来の技術】近年、クロレラ等の緑藻類および藍藻類
をはじめとする光合成を行う生物体を利用した、炭酸ガ
スの酸素変換機能について注目されている。
BACKGROUND OF THE INVENTION In recent years, attention has been paid to the function of converting carbon dioxide into oxygen using photosynthetic organisms such as green algae such as chlorella and blue-green algae.

【0003】即ち、上記生物体を水中に分散させ、この
液体に炭酸ガスを含む空気を吹き込み、光を照射し、生
物体の光合成能力により炭酸ガス成分を酸素に変換する
空質変換装置が報告されている。
[0003] Specifically, an air quality conversion device has been reported that disperses the above living organisms in water, blows air containing carbon dioxide gas into this liquid, irradiates it with light, and converts the carbon dioxide gas component into oxygen using the photosynthetic ability of the living organisms. has been done.

【0004】上記空質変換装置については、さらに光利
用効率の向上が求められている。即ち、生物体を水中分
散した液体では、照射された光が液体水面近傍しか届か
ず、さらに緑色の光が反射されるため、反射光の有効利
用が望まれていた。
[0004] Regarding the above-mentioned air quality conversion device, there is a demand for further improvement in light utilization efficiency. That is, in a liquid in which living organisms are dispersed in water, the irradiated light reaches only the vicinity of the liquid water surface, and green light is reflected, so effective use of reflected light has been desired.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、一般的
に光合成機能を有する植物などの生物体では、光補償点
以下の光強度では、実質的に炭酸ガスを酸素に変換せず
、一方光飽和点以上の光強度では、その光を有効に利用
できない。
[Problem to be Solved by the Invention] However, living organisms such as plants that generally have a photosynthetic function do not substantially convert carbon dioxide into oxygen at light intensity below the light compensation point; At a light intensity above that level, the light cannot be used effectively.

【0006】本発明は上記問題点を解決するため、光補
償点と光飽和点の間の強度の光に変換選択し、生物体に
効率よく供給する装置を提供することを目的とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, it is an object of the present invention to provide an apparatus that converts and selects light with an intensity between a light compensation point and a light saturation point, and efficiently supplies the light to a living body.

【0007】[0007]

【課題を解決するための手段】本発明は、緑藻類および
藍藻類等光合成を行う生物体を水中分散あるいは、担持
体固定したものを水中浸漬したものに、緑色を吸収し赤
色に変換する蛍光物質を有する光ファイバーを近接させ
た構成を特徴とする。
[Means for Solving the Problems] The present invention provides a fluorescent substance that absorbs green color and converts it to red color by dispersing photosynthetic organisms such as green algae and blue-green algae in water or fixing them on a support and immersing them in water. It is characterized by a configuration in which optical fibers having .

【0008】また、光ファイバ−の水中浸漬部の表面に
、緑色を吸収し赤色に変換する蛍光物質を含有する透明
樹脂を点状あるいは線状に印刷あるいは塗布した構造を
特徴とする。
[0008] Furthermore, the optical fiber is characterized by a structure in which a transparent resin containing a fluorescent substance that absorbs green light and converts it to red is printed or applied in dots or lines on the surface of the underwater immersed portion of the optical fiber.

【0009】[0009]

【作用】本発明の空質変換装置は、緑藻類および藍藻類
等光合成を行う生物体を水中分散あるいは、担持体固定
したものを水中浸漬した生物体培養系と、光ファイバー
と緑色を吸収し赤色に変換する蛍光物質で構成された光
伝達系を構成要素とするから、前記生物体に有効な波長
の光を補償点以上で飽和点以下の適切な量を供給でき、
光合成効率を向上させることが可能になる。
[Operation] The air quality conversion device of the present invention uses an organism culture system in which organisms that perform photosynthesis such as green algae and blue-green algae are dispersed in water or fixed on a support and immersed in water, and an optical fiber and absorbs green light to turn it into red. Since the component is a light transmission system composed of a fluorescent substance that converts, it is possible to supply an appropriate amount of light with a wavelength effective for the living body above the compensation point and below the saturation point.
It becomes possible to improve photosynthetic efficiency.

【0010】0010

【実施例】まず、本発明の基本的なことについて説明す
る。本発明の空質変換装置は、緑藻類および藍藻類等光
合成を行う生物体を水中分散あるいは、担持体固定した
ものを水中浸漬した生物体培養系と、光ファイバーと緑
色を吸収し赤色に変換する蛍光物質で構成された光伝達
系からなる。太陽光など光合成のエネルギー源となる光
が空質変換装置の受光部に当たると、その光は光導入部
、伝達部、放出部を経て生物体培養部にある生物体に供
給される。生物体の光合成機能は、葉緑体で行われる。 特に緑藻類の場合、葉緑体中の色素クロロフィルa、ク
ロロフィルbおよびカロチノイドが関与していると報告
されている。
[Example] First, the basics of the present invention will be explained. The air quality conversion device of the present invention consists of an organism culture system in which organisms that perform photosynthesis such as green algae and blue-green algae are dispersed in water or fixed on a carrier and immersed in water, optical fibers and fluorescent light that absorbs green light and converts it into red. It consists of a light transmission system made up of substances. When light such as sunlight, which is an energy source for photosynthesis, hits the light receiving section of the air quality conversion device, the light is supplied to the organisms in the organism culture section through the light introducing section, the transmitting section, and the emitting section. The photosynthetic function of living organisms is carried out in chloroplasts. Particularly in the case of green algae, it has been reported that the pigments chlorophyll a, chlorophyll b, and carotenoids in the chloroplasts are involved.

【0011】図2に緑藻クロレラの光合成の量子収量と
クロロフィルとカロチノイドの相対吸光率を示す。図2
の10は緑藻の光合成量子収量スペクトル、11はクロ
ロフィルの相対吸光率スペクトル、12はカロチノイド
の相対吸光率スペクトルをそれぞれ示す。光合成反応の
指標としては、酸素発生量を用いた。図2から量子収量
は、約600nmより長波長ではほぼ一定であり、最大
収率を示すことがわかる。これに対して、これより短波
長域では、約500nmを極小値とするような収率の低
下がみられる。即ち500nmから600nmの領域で
はクロロフィルやカロチノイドの吸収帯が存在せず光の
利用効率が低い。
FIG. 2 shows the photosynthetic quantum yield and relative absorbance of chlorophyll and carotenoid in the green alga Chlorella. Figure 2
10 shows the photosynthetic quantum yield spectrum of green algae, 11 shows the relative absorbance spectrum of chlorophyll, and 12 shows the relative absorbance spectrum of carotenoid. The amount of oxygen generated was used as an index of photosynthetic reaction. It can be seen from FIG. 2 that the quantum yield is almost constant at wavelengths longer than about 600 nm and exhibits a maximum yield. On the other hand, in a wavelength range shorter than this, a decrease in yield is observed with a minimum value of about 500 nm. That is, in the region from 500 nm to 600 nm, there is no absorption band of chlorophyll or carotenoid, and the light utilization efficiency is low.

【0012】そこで、生物体に供給する光を効率よく供
給するため、500nmから600nmの波長の光を蛍
光物質により600nmより長波長の赤い可視光の光に
変換して供給することにより、光合成効率の向上を図る
ものである。
Therefore, in order to efficiently supply light to living organisms, photosynthesis efficiency can be improved by converting light with a wavelength of 500 nm to 600 nm into red visible light with a wavelength longer than 600 nm using a fluorescent substance. The aim is to improve

【0013】以下本発明の実施例の図1と共に詳細に説
明する。培養槽1中には緑藻類のクロレラ(Chlor
ella pyrenoidosa)を含むクロレラ培
養液2が充填されている。培養槽1には空気送入管3と
排出管4が設けられており、空気送入管3はその一端は
培養槽1の底部で開放し培養槽1低部で培養液2中にバ
ブリングできる構造となっている一方、他端はフィルタ
ー5を介して送風機6に接続されている。光合成のエネ
ルギー源になる光源からの光は、集光器7で集められ、
その焦点に配置された光ファイバー8の一端から上記集
光された光は光ファイバー8により培養槽1中に伝達さ
れる。
An embodiment of the present invention will be explained in detail below with reference to FIG. In culture tank 1, there is a green algae called Chlorella.
A chlorella culture solution 2 containing ella pyrenoidosa) is filled. The culture tank 1 is provided with an air inlet pipe 3 and an air outlet pipe 4. One end of the air inlet pipe 3 is open at the bottom of the culture tank 1, and air can be bubbled into the culture solution 2 at the bottom of the culture tank 1. The other end is connected to a blower 6 via a filter 5. The light from the light source, which becomes the energy source for photosynthesis, is collected by a concentrator 7,
The focused light is transmitted into the culture tank 1 by the optical fiber 8 from one end of the optical fiber 8 placed at the focal point.

【0014】上記光ファイバー8の他端は培養液2中に
浸漬されており、その浸漬された光ファイバー8の側面
に光の出口となる透明樹脂9が印刷されている。即ち、
光ファイバー8中の光は光ファイバー8の側面で鏡面反
射を繰り返し伝達されて行くが、その側面の一部に光フ
ァイバー8と同程度の屈折率を有する樹脂を塗布するこ
とにより、伝達されている光の一部がその塗布された部
分から放出される。
The other end of the optical fiber 8 is immersed in the culture solution 2, and a transparent resin 9 is printed on the side surface of the immersed optical fiber 8 to serve as an exit for light. That is,
The light in the optical fiber 8 is transmitted through repeated specular reflections on the side surfaces of the optical fiber 8, but by coating a portion of the side surfaces with a resin having a refractive index similar to that of the optical fiber 8, the transmitted light can be reduced. A portion is released from the applied area.

【0015】具体的には、アクリル樹脂に、500nm
から600nmに吸収帯があり600nmより長波長に
変換する蛍光物質を混合した塗料をアクリル樹脂製の光
ファイバー8の培養液2浸漬部分に点状に印刷してある
Specifically, acrylic resin is coated with 500 nm
A paint mixed with a fluorescent substance that has an absorption band from 600 nm to 600 nm and converts wavelengths longer than 600 nm is printed in dots on the part of the optical fiber 8 made of acrylic resin immersed in the culture solution 2.

【0016】上記構成により、送風器6により送り込ま
れた炭酸ガスを含む空気は、培養液2中を気泡となって
浮上する間にクロレラの光合成により、炭酸ガスを吸収
されその同モル数の酸素に変換され排出管4より排出さ
れることを確認できた。
With the above configuration, the air containing carbon dioxide sent by the blower 6 floats in the form of bubbles in the culture solution 2, while absorbing carbon dioxide through the photosynthesis of chlorella and converting it into the same number of moles of oxygen. It was confirmed that the water was converted to

【0017】なお、上記蛍光物質は、光放出部に設ける
例を示したが、光導入部あるいは伝達部、即ち集光器7
、光ファイバー8にそれぞれ混合した場合、または混合
したものを併設することにより同じ効果が得られた。 また、実施例として光合成生物としてクロレラを用いた
がこれに限るものではない。
Although the above-mentioned fluorescent substance is provided in the light emitting part, the fluorescent substance is provided in the light introducing part or the transmitting part, that is, in the light condenser 7.
, the same effect was obtained when they were mixed in the optical fiber 8, or when a mixture was installed together. Furthermore, although chlorella was used as a photosynthetic organism in the example, the present invention is not limited to this.

【0018】[0018]

【発明の効果】以上のように本発明ににおいては、送風
器により送り込まれた炭酸ガスを含む空気は、培養液中
を気泡となって浮上する間に光合成生物の光合成により
、炭酸ガスを吸収されその同モル数の酸素に変換され排
出管より排出される過程において、光合成を行う生物体
に、有効な波長の光を補償点以上で飽和点以下の適切な
量を供給し、光合成効率を向上させることが可能になる
という効果がある。さらに、光合成産物の炭水化物/窒
素量比を約30%向上させる効果もあり、このことも併
せて炭酸ガスの固定化即ち炭酸ガスの酸素への変換の効
率向上に大きく寄与する。
[Effects of the Invention] As described above, in the present invention, the air containing carbon dioxide sent by the blower absorbs carbon dioxide gas through photosynthesis of photosynthetic organisms while floating in the culture solution as bubbles. In the process of converting it into the same number of moles of oxygen and discharging it from the exhaust pipe, the photosynthetic organisms are supplied with an appropriate amount of light with an effective wavelength above the compensation point and below the saturation point, increasing photosynthetic efficiency. This has the effect of making it possible to improve. Furthermore, it has the effect of increasing the carbohydrate/nitrogen ratio of photosynthetic products by about 30%, which also greatly contributes to improving the efficiency of carbon dioxide fixation, that is, the conversion of carbon dioxide to oxygen.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の空質変換装置の概念図[Fig. 1] Conceptual diagram of the air quality conversion device of the present invention

【図2】緑藻ク
ロレラの光合成の量子収量とクロロフィル、カロチノイ
ドの相対吸光率を示す特性図
[Figure 2] Characteristic diagram showing the quantum yield of photosynthesis and the relative absorbance of chlorophyll and carotenoids in the green alga Chlorella

【符号の説明】[Explanation of symbols]

1  培養槽 2  培養液 3  空気送入管 4  排出管 5  フィルター 6  送風機 7  集光器 8  光ファイバー 9  透明樹脂 10  緑藻の光合成量子収量スペクトル11  クロ
ロフィルの相対吸光率スペクトル12  カロチノイド
の相対吸光率スペクトル
1 Culture tank 2 Culture solution 3 Air inlet pipe 4 Discharge pipe 5 Filter 6 Air blower 7 Light collector 8 Optical fiber 9 Transparent resin 10 Photosynthetic quantum yield spectrum of green algae 11 Relative absorbance spectrum of chlorophyll 12 Relative absorbance spectrum of carotenoid

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  光合成を行う生物体を水中分散させた
水あるいは、担持体固定したものを浸漬した水を収納す
る容器と、前記容器に空気を送りその空気と前記水を接
触させる手段と、前記容器内に配した光ファイバ−を具
備し、前記光ファイバ−は緑色を吸収し赤色に変換する
蛍光物質を担持もしくは含むものであることを特徴とす
る空質変換装置。
1. A container for storing water in which photosynthetic organisms are dispersed or water in which a support is fixed, and means for sending air into the container and bringing the air into contact with the water, An air quality conversion device comprising an optical fiber disposed within the container, the optical fiber carrying or containing a fluorescent material that absorbs green light and converts it to red.
【請求項2】  光ファイバーは蛍光物質を含有する透
明樹脂であることを特徴とする請求項1記載の空質変換
装置。
2. The air quality conversion device according to claim 1, wherein the optical fiber is made of transparent resin containing a fluorescent substance.
【請求項3】  無色透明樹脂からなる光ファイバーの
端部に蛍光物質を含有する透明樹脂からなる光導入変換
部を設けたことを特徴とする請求項1記載の空質変換装
置。
3. The air quality conversion device according to claim 1, wherein a light introducing/converting portion made of a transparent resin containing a fluorescent substance is provided at an end of an optical fiber made of a colorless transparent resin.
【請求項4】  光ファイバーは、無色透明樹脂ファイ
バーからなる水中浸漬部を有し、前記水中浸漬部の表面
に、蛍光物質を含有する透明樹脂を点状あるいは線状に
担持させたことを特徴とする請求項1記載の空質変換装
置。
4. The optical fiber has an underwater immersion section made of a colorless transparent resin fiber, and a transparent resin containing a fluorescent substance is supported on the surface of the underwater immersion section in the form of dots or lines. The air quality conversion device according to claim 1.
JP3066284A 1991-03-29 1991-03-29 Apparatus for reforming air quality Pending JPH04299975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3066284A JPH04299975A (en) 1991-03-29 1991-03-29 Apparatus for reforming air quality

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3066284A JPH04299975A (en) 1991-03-29 1991-03-29 Apparatus for reforming air quality

Publications (1)

Publication Number Publication Date
JPH04299975A true JPH04299975A (en) 1992-10-23

Family

ID=13311379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3066284A Pending JPH04299975A (en) 1991-03-29 1991-03-29 Apparatus for reforming air quality

Country Status (1)

Country Link
JP (1) JPH04299975A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06277450A (en) * 1993-03-29 1994-10-04 Toda Constr Co Ltd Air purifying method and apparatus
JP2011169990A (en) * 2010-02-16 2011-09-01 Fujifilm Corp Light guiding film and method for growing plant using the light guiding film
JP2013521783A (en) * 2010-03-12 2013-06-13 ソリックス バイオシステムズ インコーポレイテッド System and method for deploying a flexible floating photobioreactor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06277450A (en) * 1993-03-29 1994-10-04 Toda Constr Co Ltd Air purifying method and apparatus
JP2011169990A (en) * 2010-02-16 2011-09-01 Fujifilm Corp Light guiding film and method for growing plant using the light guiding film
US8615925B2 (en) 2010-02-16 2013-12-31 Fujifilm Corporation Light guiding film and plant growing method using the light guiding film
JP2013521783A (en) * 2010-03-12 2013-06-13 ソリックス バイオシステムズ インコーポレイテッド System and method for deploying a flexible floating photobioreactor
US9145539B2 (en) 2010-03-12 2015-09-29 Solix Algredients, Inc. Systems and methods for positioning flexible floating photobioreactors

Similar Documents

Publication Publication Date Title
Matsunaga et al. TiO2-mediated photochemical disinfection of Escherichia coli using optical fibers
US5958761A (en) Bioreactor and system for improved productivity of photosynthetic algae
CN111411033B (en) Controllable particle size microbubble generator for economic microalgae culture
Takano et al. Effects of intensity and quality of light on phycocyanin production by a marine cyanobacterium Synechococcus sp. NKBG 042902
CN110280231A (en) A kind of secondary structure TiO2Optical fiber catalysis material of load and the preparation method and application thereof
Burger-Wiersma et al. Functional analysis of the photosynthetic apparatus of Prochlorothrix hollandica (Prochlorales), a chlorophyll b containing procaryote
JPH04299975A (en) Apparatus for reforming air quality
CN111039347B (en) Wettability-adjustable photocatalytic gas-solid-liquid three-phase interface and preparation method and application thereof
DE4416069C2 (en) Method and device for illuminating media
JP3085393B2 (en) Culture method and culture apparatus for photosynthetic organisms
Herzig et al. Photoacclimation, photosynthesis, and growth in phytoplankton
EP0081156B1 (en) Apparatus for photosynthesis
JPH04166017A (en) Method for promoting photosynthesis
CN114130323B (en) Photocatalytic reaction system, preparation method thereof and method for improving utilization rate of photons and photocatalyst
KR101130068B1 (en) Highly efficient carbon dioxide removal systems using plants
Takano et al. Production of ultrafine calcite particles by coccolithophorid algae grown in a biosolar reactor supplied with sunlight
IL108321A (en) Bioreactor and system for improved productivity of photosynthetic algae
JP3480706B2 (en) Light emitting carrier
Osborne et al. Photon requirement for growth of the diatom Phaeodactylum tricornutum Bohlin (Bacillariophyceae)
JPH10108665A (en) Photobioreactor which can introduce and diffuse solar energy
JPH02308786A (en) Fluorescent light irradiating device
JPS55157379A (en) Method of controlling red tide and substance used therefor
JP2023140836A (en) Co2 trapping device and co2 trapping method
CN220520462U (en) Pulse photo-bioreactor
CN108485936B (en) Microalgae experimental device