JPH04299835A - Semiconductor device and manufacture - Google Patents

Semiconductor device and manufacture

Info

Publication number
JPH04299835A
JPH04299835A JP3064981A JP6498191A JPH04299835A JP H04299835 A JPH04299835 A JP H04299835A JP 3064981 A JP3064981 A JP 3064981A JP 6498191 A JP6498191 A JP 6498191A JP H04299835 A JPH04299835 A JP H04299835A
Authority
JP
Japan
Prior art keywords
insulating film
gate electrode
gate
layer
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3064981A
Other languages
Japanese (ja)
Other versions
JP3016162B2 (en
Inventor
Yasuki Nakano
安紀 中野
Mutsuhiro Mori
睦宏 森
Toshiki Kurosu
黒須 俊樹
Yuji Shinno
新野 裕二
Katsuhiro Iwabuchi
岩淵 克弘
Shinichi Kurita
信一 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Power Semiconductor Device Ltd
Original Assignee
Hitachi Ltd
Hitachi Haramachi Electronics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Haramachi Electronics Ltd filed Critical Hitachi Ltd
Priority to JP3064981A priority Critical patent/JP3016162B2/en
Publication of JPH04299835A publication Critical patent/JPH04299835A/en
Application granted granted Critical
Publication of JP3016162B2 publication Critical patent/JP3016162B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66719With a step of forming an insulating sidewall spacer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors

Abstract

PURPOSE:To provide a semiconductor device and a manufacturing method which prevent the short circuit between a gate electrode and a source electrode. CONSTITUTION:An n<-> layer 12 is formed on a semiconductor substrate 11 having a drain electrode 41; insulating gates composed of three layers by a gate oxide film 21, a gate electrode 31 and an insulating film 22 are formed at equal intervals on the n<-> layer 12. P-type impurities, e.g. boron, are ion-implanted by making use of the insulating gates as a mask; a P-layer 13 is formed. An insulating film 24 which contains impurities is filled into a region in which both ends of the gate electrode 31 are retreated respectively to the inside from the end of the insulating film 22; it covers the whole side faces of both end parts of the insulating gates; it is used to insulate the gate electrode 31 from a source electrode 42. Impurities, e.g. phosphorus, in the insulating film 24 are diffused into the P-layer 13 from the film; an n<+> layer 15 is formed. The source electrode 42 comes into contact with the diffusion region in the transverse direction of the n<+> layer 14 and with the P-layer 13.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、絶縁ゲートの側面に絶
縁膜を有するIGBTやパワーMOSFETなどの半導
体装置に係り、特にゲート電極・ソース電極間の短絡防
止に好適な半導体素子及びその製造方法に関する。
[Field of Industrial Application] The present invention relates to semiconductor devices such as IGBTs and power MOSFETs having an insulating film on the side surface of an insulated gate, and in particular, a semiconductor element suitable for preventing short circuit between a gate electrode and a source electrode, and a method for manufacturing the same. Regarding.

【0002】0002

【従来の技術】従来の半導体素子は特開昭63−249
374号公報に開示され、その構成を図22により説明
する。アイ・イー・ディ・エム、インターナショナルエ
レクトロンデバイスミーティング、(1988年)第8
13頁から第816頁(IEDM,Internati
onal Electron Devices Mee
ting(1988)pp813−816)に記載のよ
うに、IGBTやパワーMOSFETの開発は高耐圧、
大電流化及び高速化の方向に進んでいる。大電流化する
とチップ面積が大きくなり、コスト高となる。一方チッ
プ面積を小さくするためには、出力電流密度の向上が必
要である。また、高耐圧化するとnマイナス層12が厚
くなり、抵抗が大きく大電流化できない。その結果、高
耐圧化でも出力電流密度の向上が必要となる。さらに、
高速化するには、nマイナス層12のライフタイムを小
さくする必要があるが、IGBTの場合、ホールの注入
量が減少し、nマイナス層12が伝導度変調され難くな
り、出力電流密度が低下する。そこで、本構造のIGB
TまたはパワーMOSFETは、MOS構造を微細化し
、ユニットセルを高密度に配列することによって、大電
流密度化を図ったものである。以下、その詳細な構造に
ついて説明する。
[Prior Art] Conventional semiconductor devices are disclosed in Japanese Patent Application Laid-open No. 63-249.
It is disclosed in Japanese Patent No. 374, and its configuration will be explained with reference to FIG. IDM, International Electron Device Meeting, (1988) No. 8
Pages 13 to 816 (IEDM, International
onal Electron Devices Mee
ting (1988) pp813-816), the development of IGBTs and power MOSFETs is based on high voltage resistance,
The trend is toward larger currents and faster speeds. When the current is increased, the chip area becomes larger, leading to higher costs. On the other hand, in order to reduce the chip area, it is necessary to improve the output current density. Furthermore, when the breakdown voltage is increased, the n-minus layer 12 becomes thicker, and the resistance becomes larger, making it impossible to increase the current. As a result, it is necessary to improve the output current density even when the breakdown voltage is increased. moreover,
In order to increase the speed, it is necessary to shorten the lifetime of the n-minus layer 12, but in the case of IGBT, the amount of holes injected decreases, the conductivity of the n-minus layer 12 becomes difficult to modulate, and the output current density decreases. do. Therefore, the IGB of this structure
The T or power MOSFET is designed to achieve a large current density by miniaturizing the MOS structure and arranging unit cells at high density. The detailed structure will be explained below.

【0003】ドレイン電極41をもつ低抵抗のn型また
はP型の半導体基板11の上に、高抵抗のnマイナス層
12をもち、nマイナス層12上に、ゲート酸化膜21
、ゲート電極31、絶縁膜22の3層からなる絶縁ゲー
トが等間隔に形成されている。半導体基板11がn型の
場合がパワーMOSFET、P型の場合がIGBTであ
る。これらの絶縁ゲートをマスクとしてP型不純物例え
ばボロンをイオン注入し、P層13が形成されている。 絶縁ゲートの両端部の側面の全てには、不純物を含む絶
縁膜24が設けられており、この不純物を含む絶縁膜2
4から、膜中に含む不純物例えばリンをP層13中に拡
散し、nプラス型層15が形成されている。ソース電極
42は、nプラス型層15の横方向の拡散領域とP層1
3を短絡している。不純物を含む絶縁膜24は、nプラ
ス型層15を形成後そのままゲート電極31とソース電
極42の絶縁に用いられる。このように、P層13、n
プラス型層15、及びソース電極42用のコンタクト孔
を全て絶縁ゲートに対して自己整合で形成できる特徴を
もつ。その結果、チップ面積を小さくでき、出力電流密
度の大きなIGBT、パワーMOSFETを実現してい
る。
A high-resistance n-layer 12 is provided on a low-resistance n-type or p-type semiconductor substrate 11 having a drain electrode 41, and a gate oxide film 21 is formed on the n-layer 12.
, a gate electrode 31, and an insulating film 22, insulated gates are formed at regular intervals. When the semiconductor substrate 11 is n-type, it is called a power MOSFET, and when it is p-type, it is called IGBT. Using these insulated gates as a mask, P-type impurities such as boron are ion-implanted to form a P layer 13. An insulating film 24 containing impurities is provided on all side surfaces of both ends of the insulated gate.
4, an impurity contained in the film, such as phosphorus, is diffused into the P layer 13 to form an n-plus type layer 15. The source electrode 42 is connected to the lateral diffusion region of the n-plus type layer 15 and the p-layer 1.
3 is shorted. The insulating film 24 containing impurities is used to insulate the gate electrode 31 and the source electrode 42 immediately after the n-plus type layer 15 is formed. In this way, the P layer 13, n
The contact hole for the positive layer 15 and the source electrode 42 can all be formed in self-alignment with the insulated gate. As a result, the chip area can be reduced and IGBTs and power MOSFETs with high output current density have been realized.

【0004】0004

【発明が解決しようとする課題】上記、従来の構造では
、絶縁ゲートの側面に設けた絶縁膜が形状不良を生じ易
いという問題がある。以下、この絶縁膜に形状不良を生
じる場合の一例を図23、図24により説明する。絶縁
膜22上、絶縁ゲートの側面、露出したSi表面全体に
不純物を含む絶縁膜24を堆積し、これを異方性ドライ
エッチングによって絶縁ゲートの側面に不純物を含む絶
縁膜24を残す。しかし、異方性ドライエッチングの工
程では、nプラス型層15、P層13が露出したSi表
面に、不純物を含む絶縁膜24が残らないように過剰に
エッチングを施す。これをオーバエッチングという。 このオーバーエッチングにより、図23中のX、Yのよ
うに、側面に設けた絶縁膜24の形状が小さくなり、Y
の状態ではゲート電極31とソース電極42が短絡する
。また、ゲート電極31とソース電極が斜めに加工され
ると、図24に示すように、絶縁ゲートの側面に形成す
べき不純物を含む絶縁膜24が、ゲート電極31の側面
を覆うように加工されず、ゲート電極31とソース電極
42が短絡する。
SUMMARY OF THE INVENTION The conventional structure described above has a problem in that the insulating film provided on the side surface of the insulated gate tends to be defective in shape. An example of a case where a shape defect occurs in this insulating film will be described below with reference to FIGS. 23 and 24. An insulating film 24 containing impurities is deposited on the insulating film 22, the side surfaces of the insulated gate, and the entire exposed Si surface, and is subjected to anisotropic dry etching to leave the insulating film 24 containing impurities on the side surfaces of the insulated gate. However, in the anisotropic dry etching step, excessive etching is performed so that the insulating film 24 containing impurities does not remain on the Si surface where the n-plus type layer 15 and the P layer 13 are exposed. This is called over-etching. As a result of this over-etching, the shape of the insulating film 24 provided on the side surface becomes smaller as indicated by X and Y in FIG.
In this state, the gate electrode 31 and the source electrode 42 are short-circuited. Furthermore, when the gate electrode 31 and the source electrode are processed diagonally, the insulating film 24 containing impurities that should be formed on the side surfaces of the insulated gate is processed to cover the side surfaces of the gate electrode 31, as shown in FIG. First, the gate electrode 31 and the source electrode 42 are short-circuited.

【0005】本発明の目的は、ゲート電極とソース電極
間の短絡を防止することにある。
An object of the present invention is to prevent short circuits between the gate electrode and the source electrode.

【0006】[0006]

【課題を解決するための手段】上記課題は、ドレイン電
極を持つ一方導電型の半導体層表面に、ゲート絶縁膜、
ゲート電極、絶縁膜を順次積層した絶縁ゲートと、前記
半導体層内で該絶縁ゲート下に達し高不純物濃度を有す
る他方導電型のウエル層と、前記絶縁ゲートの側面に設
けた一方導電型の不純物を含む側面絶縁膜と、前記絶縁
膜、前記側面絶縁膜、前記ウエル層の上に形成し前記側
面絶縁膜から前記ウエル層内に不純物を拡散し前記ウエ
ル層より高不純物濃度の一方導電型のソース層を有する
半導体装置において、前記ゲート電極の端面が前記絶縁
膜の端面より後退した領域に前記側面絶縁膜を充填した
ことにより解決される。
[Means for solving the problem] The above problem is achieved by forming a gate insulating film on the surface of a semiconductor layer of one conductivity type having a drain electrode.
an insulated gate in which a gate electrode and an insulating film are sequentially laminated; a well layer of the other conductivity type that reaches below the insulated gate in the semiconductor layer and has a high impurity concentration; and an impurity of one conductivity type provided on a side surface of the insulated gate. a side insulating film including a side insulating film, formed on the insulating film, the side insulating film, and the well layer, and diffusing impurities from the side insulating film into the well layer to form a one conductivity type with a higher impurity concentration than the well layer. In a semiconductor device having a source layer, the problem is solved by filling a region where the end surface of the gate electrode is recessed from the end surface of the insulating film with the side surface insulating film.

【0007】上記課題は、ドレイン電極を持つ一方導電
型の半導体層表面にゲート絶縁膜、ゲート電極、絶縁膜
を順次積層し、該絶縁膜上にゲート電極の形状に焼き付
けたフォトレジストをマスクとして異方性ドライエッチ
ングにより前記ゲート電極を加工して端面を形成し、該
ゲート電極の端面を等方性ドライエッチングにより加工
して前記絶縁膜の端面より後退させ、前記ゲート電極を
マスクとして不純物を注入してウエル拡散層を形成し、
前記絶縁膜の直下にゲート絶縁膜を残すように異方性ド
ライエッチングにより加工し、上記全面に不純物を含む
絶縁膜を形成しゲート電極の後退した領域にも充填し、
前記ゲート電極の側面にのみ不純物を含む絶縁膜が残る
ように異方性ドライエッチングにより加工し、熱処理を
行い前記不純物を含む絶縁膜中の不純物が前記拡散層に
拡散してnプラス層を形成し、上方よりソース電極を形
成することにより解決される。
The above problem was solved by sequentially laminating a gate insulating film, a gate electrode, and an insulating film on the surface of a semiconductor layer of one conductivity type having a drain electrode, and using a photoresist baked in the shape of the gate electrode on the insulating film as a mask. The gate electrode is processed by anisotropic dry etching to form an end face, the end face of the gate electrode is processed by isotropic dry etching to retreat from the end face of the insulating film, and impurities are removed using the gate electrode as a mask. implant to form a well diffusion layer,
processing by anisotropic dry etching so as to leave a gate insulating film directly under the insulating film, forming an insulating film containing impurities on the entire surface and filling the region where the gate electrode has retreated;
Processing is performed by anisotropic dry etching so that an insulating film containing impurities remains only on the side surfaces of the gate electrode, and heat treatment is performed to diffuse impurities in the insulating film containing impurities into the diffusion layer to form an n-plus layer. However, this problem can be solved by forming the source electrode from above.

【0008】[0008]

【作用】上記構成によれば、ゲート電極が絶縁膜、ゲー
ト絶縁膜の端部から後退しその領域に側面絶縁膜が充填
され、ゲート電極とソース電極を絶縁分離している側面
絶縁膜が、製造時のオーバエッチング等により縮小して
も、ゲート電極とソース電極が短絡することがない。ま
た、ゲート電極を後退させた後、熱処理を施し、後退し
たゲート電極の端部に熱酸化膜を形成し、または後退し
た領域を全て他の絶縁膜で充填することにより、さらに
短絡防止を確実にすることができる。
[Function] According to the above structure, the gate electrode recedes from the edge of the insulating film and the gate insulating film, and the side insulating film is filled in that region, and the side insulating film that insulates and separates the gate electrode and the source electrode. Even if the size is reduced due to over-etching or the like during manufacturing, the gate electrode and source electrode will not be short-circuited. In addition, after recessing the gate electrode, heat treatment is performed to form a thermal oxide film on the edge of the recessed gate electrode, or by filling the entire recessed area with another insulating film, further ensuring short circuit prevention. It can be done.

【0009】[0009]

【実施例】以下、本発明の一実施例を図により説明する
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0010】先ず本実施例の半導体素子の構成を示す。First, the structure of the semiconductor device of this embodiment will be explained.

【0011】図1は本実施例の半導体素子の断面図であ
る。本実施例が図22の従来例と異なる部分は、ゲート
電極31の両端がそれぞれ絶縁膜22の端より内側に後
退している点にある。後退した領域には、不純物を含む
絶縁膜24が充填されている。ゲート電極31と、ソー
ス電極42を絶縁分離する不純物を含む絶縁膜24は、
製造工程で、オーバエッチング等により、図23に示す
ような形状不良を生じることがある。本実施例によれば
、不純物を含む絶縁膜24が、図23に示すような形状
不良を生じても、絶縁ゲート端部から後退しているゲー
ト電極31の端部にも絶縁膜24が形成されているため
、ゲート電極31がソース電極42と短絡することがな
い。
FIG. 1 is a sectional view of the semiconductor element of this embodiment. The difference between this embodiment and the conventional example shown in FIG. 22 is that both ends of the gate electrode 31 are set back inward from the ends of the insulating film 22. The retreated region is filled with an insulating film 24 containing impurities. The insulating film 24 containing impurities that insulates and separates the gate electrode 31 and the source electrode 42 is
In the manufacturing process, over-etching or the like may cause a shape defect as shown in FIG. 23. According to this embodiment, even if the insulating film 24 containing impurities has a defective shape as shown in FIG. 23, the insulating film 24 is formed even at the end of the gate electrode 31 that is recessed from the end of the insulated gate. Therefore, the gate electrode 31 is not short-circuited with the source electrode 42.

【0012】次に本実施例の半導体素子の製造方法を示
す。
Next, a method for manufacturing the semiconductor device of this embodiment will be described.

【0013】図2に示すようにnマイナス層12上に、
ゲート酸化膜21、ゲート電極31、絶縁膜22を順次
形成し、ホトリソグラフィにてフォトレジスト10を所
定の形状に加工する。
As shown in FIG. 2, on the n-minus layer 12,
A gate oxide film 21, a gate electrode 31, and an insulating film 22 are sequentially formed, and the photoresist 10 is processed into a predetermined shape by photolithography.

【0014】図3に示すようにフォトレジスト10をマ
スクとし、絶縁膜22を異方性ドライエッチングにより
加工する。
As shown in FIG. 3, the insulating film 22 is processed by anisotropic dry etching using the photoresist 10 as a mask.

【0015】図4に示すようにさらに、同じフォトレジ
スト10をマスクとし、ゲート電極31を異方性ドライ
エッチングにより加工する。その後、例えばフッ化水素
酸と硝酸を含むエッチング液で絶縁ゲートの端部よりゲ
ート電極31のポリシリコンを等方性ドライエッチング
し後退させる。
As shown in FIG. 4, the gate electrode 31 is further processed by anisotropic dry etching using the same photoresist 10 as a mask. Thereafter, the polysilicon of the gate electrode 31 is isotropically dry etched from the end of the insulated gate using an etching solution containing, for example, hydrofluoric acid and nitric acid to retreat.

【0016】図5に示すように絶縁ゲートをマスクとし
、取り除かれた部分にP型不純物、例えばボロンをイオ
ン注入後、拡散し、P層13を形成する。
As shown in FIG. 5, using the insulated gate as a mask, a P-type impurity, such as boron, is ion-implanted into the removed portion and then diffused to form a P layer 13.

【0017】図6に示すようにここで再び異方性ドライ
エッチングを施し、絶縁膜22の直下にゲート酸化膜2
1を残すように加工する。
As shown in FIG. 6, anisotropic dry etching is performed again to form a gate oxide film 2 directly below the insulating film 22.
Process so that only 1 remains.

【0018】図7に示すように上面全面に不純物を含む
絶縁膜、例えばリンガラス24を堆積する。このとき、
ゲート電極31が後退した領域にもリンガラス24が充
填される。
As shown in FIG. 7, an insulating film containing impurities, such as phosphorus glass 24, is deposited over the entire upper surface. At this time,
The region where the gate electrode 31 has retreated is also filled with phosphorus glass 24.

【0019】図8に示すように絶縁ゲートの側面のみに
リンガラス24が残るように異方性ドライエッチングに
より加工する。
As shown in FIG. 8, processing is performed by anisotropic dry etching so that the phosphor glass 24 remains only on the side surfaces of the insulated gate.

【0020】図9に示すようにその後、熱処理すること
により、リンガラス24中のリンをP層13中に拡散し
、nプラス型層15を形成する。
As shown in FIG. 9, the phosphorus in the phosphor glass 24 is then diffused into the P layer 13 by heat treatment to form an n-plus type layer 15.

【0021】図10に示すように上方より、ソース電極
42を堆積し、ソース電極42とnプラス型層15、P
層13がコンタクトする。
As shown in FIG. 10, a source electrode 42 is deposited from above, and the source electrode 42, the n-plus type layer 15, and the P
Layer 13 makes contact.

【0022】次に本実施例の特徴であるゲート電極31
の後退限界について説明する。
Next, the gate electrode 31, which is a feature of this embodiment,
Explain the regression limit of.

【0023】図11は、ゲート電極31の後退量を示す
断面図である。ゲート電極31の後退量Aは、図11中
に示すように絶縁ゲートの端部より横方向に拡散したn
プラス型層15とP層13の接合界面Cまでの間とする
ことが望ましい。これはnプラス型層15とP層13の
接合界面を超えるまで後退すると、ゲート電極31に電
圧を印加しても、ゲート電極31直下のP層13の表面
近傍がn型に反転せず、nプラス型層15からの電子流
の流れる通路であるチャネルが形成されず、IGBTま
たはパワーMOSFETが動作しないという不具合を生
じるためである。
FIG. 11 is a cross-sectional view showing the amount of recession of the gate electrode 31. The amount of retreat A of the gate electrode 31 is determined by the amount of n diffused laterally from the edge of the insulated gate, as shown in FIG.
It is desirable to set the distance up to the bonding interface C between the plus type layer 15 and the P layer 13. This is because when it retreats beyond the junction interface between the n-plus type layer 15 and the P layer 13, even if a voltage is applied to the gate electrode 31, the vicinity of the surface of the P layer 13 directly under the gate electrode 31 will not be inverted to n-type. This is because a channel, which is a path through which electrons flow from the n-plus type layer 15, is not formed, resulting in a problem that the IGBT or power MOSFET does not operate.

【0024】図12は、ゲート電極31を後退させる他
の実施例を示す。ゲート電極31の加工に等方性ドライ
エッチングを用い、nマイナス層12上に残存していた
ゲート電極31の除去と同時にゲート電極31の端部を
後退させたものである。これによると、後退後のゲート
電極31の端部形状は、下部(図中A1)では、nプラ
ス型層15の端(図中C)を超えない範囲で止まるよう
にし、ゲート電極31の上部では等方性であるため、よ
り多くエッチングされ、図中Bのようにnプラス型層1
5の端(図中C)を越える領域まで後退させることがで
きる。ゲート電極31の後退量をさらに大きくできるの
で、ゲート電極31とソース電極42間の絶縁効果をさ
らに向上させることができる。
FIG. 12 shows another embodiment in which the gate electrode 31 is recessed. Isotropic dry etching is used to process the gate electrode 31, and the gate electrode 31 remaining on the n-minus layer 12 is removed and the end of the gate electrode 31 is set back at the same time. According to this, the end shape of the gate electrode 31 after retreating is such that the lower part (A1 in the figure) does not exceed the end of the n-plus type layer 15 (C in the figure), and the upper part of the gate electrode 31 Since it is isotropic, it is etched more, and the n-plus type layer 1 is etched as shown in B in the figure.
5 (C in the figure). Since the amount of recession of the gate electrode 31 can be further increased, the insulation effect between the gate electrode 31 and the source electrode 42 can be further improved.

【0025】次に本発明の他の実施例を示す。Next, another embodiment of the present invention will be shown.

【0026】図13は他の実施例の半導体素子の断面図
である。図12に示すように、ゲート電極31を後退さ
せた後、ゲート電極31の端部を熱酸化することにより
、ゲート電極31に使われているポリシリコンの熱酸化
膜32を形成する。これにより、ゲート電極31とソー
ス電極42間の絶縁効果を一層向上できる。
FIG. 13 is a sectional view of a semiconductor device according to another embodiment. As shown in FIG. 12, after the gate electrode 31 is retreated, the ends of the gate electrode 31 are thermally oxidized to form a polysilicon thermal oxide film 32 used for the gate electrode 31. Thereby, the insulation effect between the gate electrode 31 and the source electrode 42 can be further improved.

【0027】更に本発明の他の実施例を示す。Further, other embodiments of the present invention will be described.

【0028】図14は他の実施例の半導体素子の断面図
である。図12のように後退後のゲート電極31の端部
と、絶縁ゲートの側面に設けた不純物を含む膜24の間
で、この絶縁ゲートの側面に接するように他の絶縁膜、
例えばSiO2やSiNを形成する。この絶縁膜33を
形成する方法の一例を以下図により説明する。
FIG. 14 is a cross-sectional view of a semiconductor device according to another embodiment. As shown in FIG. 12, between the end of the gate electrode 31 after retreating and the impurity-containing film 24 provided on the side surface of the insulated gate, another insulating film is placed in contact with the side surface of the insulated gate.
For example, SiO2 or SiN is formed. An example of a method for forming this insulating film 33 will be explained below with reference to the drawings.

【0029】図15に示すようにゲート酸化膜21、ゲ
ート電極31、絶縁膜22の3層からなる絶縁ゲートを
加工する工程までは、図2から図10と同じである。
As shown in FIG. 15, the steps up to processing an insulated gate consisting of three layers of gate oxide film 21, gate electrode 31, and insulating film 22 are the same as those in FIGS. 2 to 10.

【0030】図16に示すように上面全面に絶縁膜33
、例えばSiO2、SiNを堆積する。
As shown in FIG. 16, an insulating film 33 is formed on the entire upper surface.
, for example, depositing SiO2, SiN.

【0031】図17に示すように絶縁ゲートの側面のみ
に前工程で堆積した絶縁膜33が残るように異方性ドラ
イエッチングにより加工する。
As shown in FIG. 17, processing is performed by anisotropic dry etching so that the insulating film 33 deposited in the previous step remains only on the side surfaces of the insulated gate.

【0032】図18に示すようにさらに、上面全面に不
純物を含む絶縁膜24例えばリンガラスを堆積する。
As shown in FIG. 18, an insulating film 24 containing impurities, such as phosphorus glass, is further deposited over the entire upper surface.

【0033】図19に示すように絶縁ゲートの側面に、
前工程で形成した絶縁膜33に接する面のみにリンガラ
ス24が残るように異方性ドライエッチングにより加工
する。
As shown in FIG. 19, on the side of the insulated gate,
Processing is performed by anisotropic dry etching so that the phosphor glass 24 remains only on the surface in contact with the insulating film 33 formed in the previous step.

【0034】図20に示すように前工程で形成したリン
ガラス24中に含まれているリンを熱処理することによ
りP層13中に拡散し、nプラス型層15を形成し、最
後に上方よりソース電極42を堆積して完成する。
As shown in FIG. 20, phosphorus contained in the phosphorus glass 24 formed in the previous step is diffused into the P layer 13 by heat treatment, forming an n-plus type layer 15, and finally, from above. A source electrode 42 is deposited to complete the process.

【0035】以上の実施例により、ゲート電極31とソ
ース電極42がさらに確実に絶縁分離できる。
According to the embodiments described above, the gate electrode 31 and the source electrode 42 can be insulated and separated more reliably.

【0036】そして、本実施例の半導体素子の応用例を
説明する。
Next, an example of application of the semiconductor device of this embodiment will be explained.

【0037】図21は、本実施例を応用したラテラル型
(横型)のIGBTまたはパワーMOSFETの断面図
を示す。縦型の場合もラテラル型と同様の効果を得るこ
とができる。
FIG. 21 shows a sectional view of a lateral type IGBT or power MOSFET to which this embodiment is applied. In the case of the vertical type, the same effect as the lateral type can be obtained.

【0038】以上に述べた実施例はゲート電極31を絶
縁ゲートの端から後退させているので、ゲート電極31
の直下にゲート酸化膜のある領域が少なくなり、ゲート
電極とソース電極間の入力容量を例えば図10のA領域
のように後退させた量に比例して入力容量を低減するこ
とができる。
In the embodiment described above, since the gate electrode 31 is set back from the end of the insulated gate, the gate electrode 31
The area where the gate oxide film is located directly below is reduced, and the input capacitance can be reduced in proportion to the amount by which the input capacitance between the gate electrode and the source electrode is set back, as in area A in FIG. 10, for example.

【0039】本実施例によれば、ゲート電極31が絶縁
ゲートの端部から後退しているので、絶縁ゲートの側面
に形成する不純物を含む絶縁膜24が形状不良を生じて
も、後退した領域に形成した絶縁膜により、ゲート電極
とソース電極間を確実に絶縁することができる。したが
って、短絡による製品不良を防止し、ゲート電極とソー
ス電極間耐圧の歩留りは従来の60%から90%に向上
する効果がある。
According to this embodiment, since the gate electrode 31 is recessed from the end of the insulated gate, even if the insulating film 24 containing impurities formed on the side surface of the insulated gate has a defective shape, the recessed region can be removed. With the insulating film formed in the above, it is possible to reliably insulate between the gate electrode and the source electrode. Therefore, product defects due to short circuits can be prevented, and the yield of breakdown voltage between the gate electrode and the source electrode can be improved from 60% to 90%.

【0040】また、ゲート電極31の後退後の端部を熱
酸化により酸化すれば、さらに確実に絶縁できる。
Further, if the end portion of the gate electrode 31 after retreating is oxidized by thermal oxidation, the insulation can be further ensured.

【0041】そして、後退後のゲート電極31の端部と
絶縁ゲートの側面に設けた不純物を含む絶縁膜24の間
で、後退した領域と絶縁ゲートの側面に接する部分に、
例えばSiO2、SiN等の絶縁膜33を設ければ、さ
らに確実に絶縁することができる。また、ゲート電極3
1を後退させることにより、ゲート電極31直下にゲー
ト酸化膜21の存在する領域が少なくなるので、入力容
量を小さくでき、その結果スイッチングを高速化できる
[0041] Then, between the end of the gate electrode 31 after retreating and the insulating film 24 containing impurities provided on the side surface of the insulated gate, a region in contact with the retreated region and the side surface of the insulated gate is
For example, if an insulating film 33 made of SiO2, SiN, etc. is provided, insulation can be further ensured. In addition, the gate electrode 3
By recessing the gate electrode 1, the area where the gate oxide film 21 exists directly under the gate electrode 31 is reduced, so that the input capacitance can be reduced, and as a result, the switching speed can be increased.

【0042】[0042]

【発明の効果】本発明によれば、ゲート電極が絶縁膜、
ゲート絶縁膜の端部から後退しその領域に側面絶縁膜が
充填されているので、ゲート電極とソース電極間の短絡
を防止する効果が得られる。
[Effects of the Invention] According to the present invention, the gate electrode is an insulating film,
Since the region is set back from the end of the gate insulating film and filled with the side insulating film, an effect of preventing short circuit between the gate electrode and the source electrode can be obtained.

【0043】また、ゲート電極を後退させた後、熱処理
を施し、後退したゲート電極の端部に熱酸化膜を形成し
、または後退した領域を全て他の絶縁膜で充填すること
により、さらに短絡防止を確実にする効果が得られる。
Furthermore, after recessing the gate electrode, heat treatment is performed to form a thermal oxide film on the end of the recessed gate electrode, or by filling the entire recessed region with another insulating film, further short circuiting can be achieved. The effect of ensuring prevention can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の半導体装置の構成を示す縦断面図であ
る。
FIG. 1 is a longitudinal cross-sectional view showing the configuration of a semiconductor device of the present invention.

【図2】本発明の半導体装置の製造工程を示す縦断面図
である。
FIG. 2 is a vertical cross-sectional view showing the manufacturing process of the semiconductor device of the present invention.

【図3】本発明の半導体装置の製造工程を示す縦断面図
である。
FIG. 3 is a longitudinal cross-sectional view showing the manufacturing process of the semiconductor device of the present invention.

【図4】本発明の半導体装置の製造工程を示す縦断面図
である。
FIG. 4 is a vertical cross-sectional view showing the manufacturing process of the semiconductor device of the present invention.

【図5】本発明の半導体装置の製造工程を示す縦断面図
である。
FIG. 5 is a longitudinal cross-sectional view showing the manufacturing process of the semiconductor device of the present invention.

【図6】本発明の半導体装置の製造工程を示す縦断面図
である。
FIG. 6 is a vertical cross-sectional view showing the manufacturing process of the semiconductor device of the present invention.

【図7】本発明の半導体装置の製造工程を示す縦断面図
である。
FIG. 7 is a vertical cross-sectional view showing the manufacturing process of the semiconductor device of the present invention.

【図8】本発明の半導体装置の製造工程を示す縦断面図
である。
FIG. 8 is a longitudinal cross-sectional view showing the manufacturing process of the semiconductor device of the present invention.

【図9】本発明の半導体装置の製造工程を示す縦断面図
である。
FIG. 9 is a longitudinal cross-sectional view showing the manufacturing process of the semiconductor device of the present invention.

【図10】本発明の半導体装置の製造工程を示す縦断面
図である。
FIG. 10 is a vertical cross-sectional view showing the manufacturing process of the semiconductor device of the present invention.

【図11】本発明の半導体装置のゲート電極の後退量を
示す縦断面図である。
FIG. 11 is a longitudinal cross-sectional view showing the amount of recession of the gate electrode of the semiconductor device of the present invention.

【図12】本発明の半導体装置のゲート電極を後退させ
る他の実施例を示す縦断面図である。
FIG. 12 is a longitudinal sectional view showing another embodiment in which the gate electrode of the semiconductor device of the present invention is retracted.

【図13】本発明の半導体装置のゲート電極を後退させ
その端部を熱処理した縦断面図である。
FIG. 13 is a longitudinal cross-sectional view of the semiconductor device of the present invention in which the gate electrode is retreated and its end portions are heat-treated.

【図14】本発明の半導体装置のゲート電極を後退させ
た領域に他の絶縁膜を充填した縦断面図である。
FIG. 14 is a vertical cross-sectional view of the semiconductor device of the present invention in which the region where the gate electrode is set back is filled with another insulating film.

【図15】本発明の半導体装置の他の製造工程を示す縦
断面図である。
FIG. 15 is a longitudinal cross-sectional view showing another manufacturing process of the semiconductor device of the present invention.

【図16】本発明の半導体装置の他の製造工程を示す縦
断面図である。
FIG. 16 is a vertical cross-sectional view showing another manufacturing process of the semiconductor device of the present invention.

【図17】本発明の半導体装置の他の製造工程を示す縦
断面図である。
FIG. 17 is a vertical cross-sectional view showing another manufacturing process of the semiconductor device of the present invention.

【図18】本発明の半導体装置の他の製造工程を示す縦
断面図である。
FIG. 18 is a longitudinal sectional view showing another manufacturing process of the semiconductor device of the present invention.

【図19】本発明の半導体装置の他の製造工程を示す縦
断面図である。
FIG. 19 is a longitudinal cross-sectional view showing another manufacturing process of the semiconductor device of the present invention.

【図20】本発明の半導体装置の他の製造工程を示す縦
断面図である。
FIG. 20 is a longitudinal sectional view showing another manufacturing process of the semiconductor device of the present invention.

【図21】本発明の半導体装置を応用したIGBTまた
はパワーMOSFETの断面図である。
FIG. 21 is a cross-sectional view of an IGBT or power MOSFET to which the semiconductor device of the present invention is applied.

【図22】従来の半導体装置の構成を示す縦断面図であ
る。
FIG. 22 is a longitudinal cross-sectional view showing the configuration of a conventional semiconductor device.

【図23】従来の半導体装置の製造時にゲート電極とソ
ース電極が短絡した状態を示す縦断面図である。
FIG. 23 is a longitudinal cross-sectional view showing a state in which a gate electrode and a source electrode are short-circuited during manufacturing of a conventional semiconductor device.

【図24】従来の半導体装置の製造時にゲート電極とソ
ース電極が短絡した状態を示す縦断面図である。
FIG. 24 is a longitudinal cross-sectional view showing a state in which a gate electrode and a source electrode are short-circuited during manufacturing of a conventional semiconductor device.

【符号の説明】[Explanation of symbols]

1    半導体装置 10  フォトレジスト 11  半導体基板 12  nマイナス層 13  P層 15  nプラス型層 21  ゲート酸化膜 22  絶縁膜 24  不純物を含む絶縁膜 31  ゲート電極 32  熱酸化膜 33  他の絶縁膜 41  ドレイン電極 42  ソース電極 1 Semiconductor device 10 Photoresist 11 Semiconductor substrate 12 n-minus layer 13 P layer 15 n-plus type layer 21 Gate oxide film 22 Insulating film 24 Insulating film containing impurities 31 Gate electrode 32 Thermal oxide film 33 Other insulation films 41 Drain electrode 42 Source electrode

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】  ドレイン電極を持つ一方導電型の半導
体層表面に、ゲート絶縁膜、ゲート電極、絶縁膜を順次
積層した絶縁ゲートと、前記半導体層内で該絶縁ゲート
下に達し高不純物濃度を有する他方導電型のウエル層と
、前記絶縁ゲートの側面に設けた一方導電型の不純物を
含む側面絶縁膜と、前記絶縁膜、前記側面絶縁膜、前記
ウエル層の上に形成し前記側面絶縁膜から前記ウエル層
内に不純物を拡散し前記ウエル層より高不純物濃度の一
方導電型のソース層を有する半導体装置において、前記
ゲート電極の端面が前記絶縁膜の端面より後退した領域
に前記側面絶縁膜を充填したことを特徴とする半導体装
置。
1. An insulated gate in which a gate insulating film, a gate electrode, and an insulating film are sequentially laminated on the surface of a semiconductor layer of one conductivity type having a drain electrode, and a high impurity concentration that reaches below the insulated gate in the semiconductor layer. a side insulating film containing an impurity of one conductivity type provided on a side surface of the insulated gate, and a side insulating film formed on the insulating film, the side insulating film, and the well layer; In a semiconductor device having a source layer of one conductivity type which has an impurity concentration higher than that of the well layer and has an impurity diffused into the well layer, the side insulating film is provided in a region where the end face of the gate electrode is set back from the end face of the insulating film. A semiconductor device characterized by being filled with.
【請求項2】  前記ゲート電極は前記絶縁膜側の後退
量が前記ゲート絶縁膜の後退量より大きく形成されてい
ることを特徴とする請求項1に記載の半導体装置。
2. The semiconductor device according to claim 1, wherein the gate electrode is formed so that the amount of recession on the side of the insulating film is larger than the amount of recession of the gate insulating film.
【請求項3】  少なくとも前記ゲート電極の前記ゲー
ト絶縁膜側の後退位置は前記ゲート絶縁膜の端面と、前
記一方導電型の絶縁ゲート下に伸びたソース層の端部の
間であることを特徴とする請求項1または請求項2に記
載の半導体装置。
3. At least a recessed position of the gate electrode on the side of the gate insulating film is between an end surface of the gate insulating film and an end of the source layer extending below the insulated gate of one conductivity type. The semiconductor device according to claim 1 or claim 2.
【請求項4】  前記ゲート電極と、前記絶縁ゲートの
側面に設けた側面絶縁膜との間に他の絶縁膜を設けるこ
とを特徴とする請求項1から請求項3のうち何れかの請
求項に記載の半導体装置。
4. Another insulating film is provided between the gate electrode and a side insulating film provided on a side surface of the insulated gate. The semiconductor device described in .
【請求項5】  前記他の絶縁膜が熱酸化膜であること
を特徴とする請求項4に記載の半導体装置。
5. The semiconductor device according to claim 4, wherein the other insulating film is a thermal oxide film.
【請求項6】  前記絶縁ゲートの側面に設けた前記側
面絶縁膜膜がSiO2、SiN、PSG、ポリシリコン
で、前記他の絶縁膜が、SiO2、SiN、PSG、B
SGであることを特徴とする請求項5に記載の半導体装
置。
6. The side insulating film provided on the side surface of the insulated gate is made of SiO2, SiN, PSG, or polysilicon, and the other insulating film is made of SiO2, SiN, PSG, or B.
6. The semiconductor device according to claim 5, wherein the semiconductor device is SG.
【請求項7】  請求項1または請求項2に記載の半導
体装置を用いたことを特徴とするIGBT。
7. An IGBT using the semiconductor device according to claim 1 or 2.
【請求項8】  請求項1または請求項2に記載の半導
体装置を用いたことを特徴とするMOSFET。
8. A MOSFET characterized by using the semiconductor device according to claim 1 or claim 2.
【請求項9】  ドレイン電極を持つ一方導電型の半導
体層表面にゲート絶縁膜、ゲート電極、絶縁膜を順次積
層し、該絶縁膜上にゲート電極の形状に焼き付けたフォ
トレジストをマスクとして異方性ドライエッチングによ
り前記ゲート電極を加工して端面を形成し、該ゲート電
極の端面を等方性ドライエッチングにより加工して前記
絶縁膜の端面より後退させ、前記ゲート電極をマスクと
して不純物を注入してウエル拡散層を形成し、前記絶縁
膜の直下にゲート絶縁膜を残すように異方性ドライエッ
チングにより加工し、上記全面に不純物を含む絶縁膜を
形成しゲート電極の後退した領域にも充填し、前記ゲー
ト電極の側面にのみ前記不純物を含む絶縁膜が残るよう
に異方性ドライエッチングにより加工し、熱処理を行い
前記不純物を含む絶縁膜中の不純物が前記拡散層に拡散
してnプラス層を形成し、上方よりソース電極を形成す
ることを特徴とする半導体装置の製造方法。
9. A gate insulating film, a gate electrode, and an insulating film are sequentially laminated on the surface of a semiconductor layer of one conductivity type having a drain electrode, and a photoresist baked in the shape of the gate electrode is used as a mask on the insulating film. The gate electrode is processed by isotropic dry etching to form an end face, the end face of the gate electrode is processed by isotropic dry etching to retreat from the end face of the insulating film, and impurities are implanted using the gate electrode as a mask. A well diffusion layer is formed using the insulating film, and the gate insulating film is processed by anisotropic dry etching to leave the gate insulating film directly under the insulating film, and an insulating film containing impurities is formed on the entire surface of the insulating film, filling the area where the gate electrode has receded. Then, the insulating film containing the impurity is processed by anisotropic dry etching so that the insulating film containing the impurity remains only on the side surface of the gate electrode, and heat treatment is performed so that the impurity in the insulating film containing the impurity is diffused into the diffusion layer and becomes an n+ 1. A method of manufacturing a semiconductor device, comprising forming a layer and forming a source electrode from above.
【請求項10】  ドレイン電極を持つ一方導電型の半
導体層表面にゲート絶縁膜、ゲート電極、絶縁膜を順次
積層し、該絶縁膜上にゲート電極の形状に焼き付けたフ
ォトレジストをマスクとして異方性ドライエッチングに
より前記ゲート電極を加工して端面を形成し、該ゲート
電極の端面を等方性ドライエッチングにより加工して前
記絶縁膜の端面より後退させ、前記ゲート電極をマスク
として不純物を注入してウエル拡散層を形成し、前記絶
縁膜の直下にゲート絶縁膜を残すように異方性ドライエ
ッチングにより加工し、上記全面に他の絶縁膜を形成し
前記ゲート電極の後退した領域にも充填し、前記ゲート
電極の側面にのみ前記他の絶縁膜が残るように異方性ド
ライエッチングにより加工し、上記全面に不純物を含む
絶縁膜を形成し、前記ゲート電極の側面にのみ前記不純
物を含む絶縁膜が残るように異方性ドライエッチングに
より加工し、熱処理を行い前記不純物を含む絶縁膜中の
不純物が前記拡散層に拡散してnプラス層を形成し、上
方よりソース電極を形成することを特徴とする半導体装
置の製造方法。
10. A gate insulating film, a gate electrode, and an insulating film are sequentially laminated on the surface of a semiconductor layer of one conductivity type having a drain electrode, and a photoresist baked in the shape of the gate electrode on the insulating film is used as a mask to conduct an anisotropic process. The gate electrode is processed by isotropic dry etching to form an end face, the end face of the gate electrode is processed by isotropic dry etching to retreat from the end face of the insulating film, and impurities are implanted using the gate electrode as a mask. A well diffusion layer is formed by forming a well diffusion layer, and processed by anisotropic dry etching so as to leave a gate insulating film directly under the insulating film, and another insulating film is formed on the entire surface, filling the area where the gate electrode has receded. and processing by anisotropic dry etching so that the other insulating film remains only on the side surfaces of the gate electrode, forming an insulating film containing impurities on the entire surface, and containing the impurities only on the side surfaces of the gate electrode. Processing is performed by anisotropic dry etching so that the insulating film remains, and heat treatment is performed so that the impurity in the insulating film containing the impurity is diffused into the diffusion layer to form an n-plus layer, and a source electrode is formed from above. A method for manufacturing a semiconductor device, characterized by:
JP3064981A 1991-03-28 1991-03-28 Semiconductor device and manufacturing method Expired - Fee Related JP3016162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3064981A JP3016162B2 (en) 1991-03-28 1991-03-28 Semiconductor device and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3064981A JP3016162B2 (en) 1991-03-28 1991-03-28 Semiconductor device and manufacturing method

Publications (2)

Publication Number Publication Date
JPH04299835A true JPH04299835A (en) 1992-10-23
JP3016162B2 JP3016162B2 (en) 2000-03-06

Family

ID=13273744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3064981A Expired - Fee Related JP3016162B2 (en) 1991-03-28 1991-03-28 Semiconductor device and manufacturing method

Country Status (1)

Country Link
JP (1) JP3016162B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014501042A (en) * 2010-11-29 2014-01-16 シーエスエムシー テクノロジーズ ファブ1 カンパニー リミテッド Method for manufacturing metal oxide semiconductor field effect transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014501042A (en) * 2010-11-29 2014-01-16 シーエスエムシー テクノロジーズ ファブ1 カンパニー リミテッド Method for manufacturing metal oxide semiconductor field effect transistor

Also Published As

Publication number Publication date
JP3016162B2 (en) 2000-03-06

Similar Documents

Publication Publication Date Title
JPH0774352A (en) Mosfet and preparation thereof
US6160288A (en) Vertical type misfet having improved pressure resistance
US5691555A (en) Integrated structure current sensing resistor for power devices particularly for overload self-protected power MOS devices
US5970344A (en) Method of manufacturing semiconductor device having gate electrodes formed in trench structure before formation of source layers
US5202573A (en) Dual anode mos scr with anti crosstalk collecting region
KR100360416B1 (en) Power semiconductor device having high breakdown voltage and method for fabricating the same
JPH0286136A (en) Semiconductor element and manufacture thereof
CN112103184A (en) Method of forming semiconductor device
JP3294001B2 (en) Method for manufacturing insulated gate semiconductor device
JP3502509B2 (en) Integrated circuit having CMOS structure and method of manufacturing the same
EP0034341B1 (en) Method for manufacturing a semiconductor device
US5716886A (en) Method of fabricating a high voltage metal-oxide semiconductor (MOS) device
US8329548B2 (en) Field transistors for electrostatic discharge protection and methods for fabricating the same
US5143859A (en) Method of manufacturing a static induction type switching device
JPH04299835A (en) Semiconductor device and manufacture
JPH0493083A (en) Semiconductor device and manufacture thereof
JPH0555583A (en) Manufacture of insulated-gate bipolar transistor
US5264381A (en) Method of manufacturing a static induction type switching device
JP2841865B2 (en) Manufacturing method of vertical MOSFET
KR100498406B1 (en) Power mos device having trench gate and fabricating method therefor
KR0170891B1 (en) Method of manufacturing semiconductor mosfet
JP2982421B2 (en) Semiconductor device
JPH02296342A (en) Manufacture of mosfet
KR100257148B1 (en) Semiconductor device and its manufacture
KR0167669B1 (en) Method for fabricating semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees