JPH04299712A - Driving direction deciding system - Google Patents

Driving direction deciding system

Info

Publication number
JPH04299712A
JPH04299712A JP6425691A JP6425691A JPH04299712A JP H04299712 A JPH04299712 A JP H04299712A JP 6425691 A JP6425691 A JP 6425691A JP 6425691 A JP6425691 A JP 6425691A JP H04299712 A JPH04299712 A JP H04299712A
Authority
JP
Japan
Prior art keywords
azimuth
point
angle
rot
driving direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6425691A
Other languages
Japanese (ja)
Inventor
Takashi Shimizu
隆司 清水
Katsuhiko Kato
勝彦 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
NEC Engineering Ltd
Original Assignee
NEC Corp
NEC Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, NEC Engineering Ltd filed Critical NEC Corp
Priority to JP6425691A priority Critical patent/JPH04299712A/en
Publication of JPH04299712A publication Critical patent/JPH04299712A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Position Or Direction (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

PURPOSE:To attain the coincidence between the relationship between the present and instructed azimuths and the driving direction with no special setting operation by changing the drive limiting point up to the zero degree of coordinates. CONSTITUTION:A negative side driving limit point A of an antenna is turned up to a discontinuous point (zero degree) of coordinates. This rotation angle is defined as theta together with the polarity as positive side since the point A is turned in a positive direction. Then a positive side driving limit point B, the present azimuth Rn, and an instructed azimuth Rc are turned by +theta. Therefore the angles Rn and Rc are compared with each other for deciding the driving direction by using the angles of ROT(Rn)=Rn+theta and ROT(Rc)=Rc+theta. In such conditions, the negative and positive sides driving limit points ROT(A) and ROT(B) are set at O and (B+theta) respectively. Then the driving direction is decided based on the relationship between ROT(Rn) and ROT(Rc). Thus it is possible to eliminate the discontinuous points out of a driving range. The same effect is also secured when the point B is turned up to a discontinuous point.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は駆動方向判定方式に関し
、特に駆動限界を有するアンテナ等の回動部の方位角位
置制御システムにおける駆動方向の判定に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for determining a drive direction, and more particularly to determining a drive direction in an azimuth position control system for a rotating part such as an antenna that has a drive limit.

【0002】0002

【従来の技術】従来の方位角の位置制御システムにおけ
る駆動方向の判定は、図2に示すように現在角Rnと指
令角Rcの大小比較を行い、Rn>Rcの場合Rnが小
さくなる方向、つまりマイナス方向へ駆動し、Rn<R
cの場合プラス方向に駆動するようにしている。
2. Description of the Related Art In a conventional azimuth angle position control system, the driving direction is determined by comparing the current angle Rn and the command angle Rc in magnitude, as shown in FIG. In other words, drive in the negative direction, Rn<R
In the case of c, the drive is made in the positive direction.

【0003】ただし、この方法では駆動範囲内に座標の
不連続点(零度,360度)が存在する場合、図3に示
すように誤った判断をしてしまう場合がある。従って駆
動範囲内に不連続点が存在するか否かを事前に調査し不
連続点が存在する場合、前記と異なる処理を行なわなけ
ればならない。この処理例を図4に示す。これはRnと
Rcの相対角度関係が変わらなければ駆動方向の関係が
変わらないことを利用し、不連続点(零度)が駆動範囲
外になるように座標を回転し、同様にRn,Rcも同じ
量だけ回転させることにより計算上での不連続点を回避
している。
However, with this method, if there is a discontinuous point of coordinates (zero degrees, 360 degrees) within the drive range, an erroneous judgment may be made as shown in FIG. 3. Therefore, it is necessary to check in advance whether or not there is a discontinuous point within the drive range, and if a discontinuous point exists, a different process from the above must be performed. An example of this processing is shown in FIG. This takes advantage of the fact that the relationship in the driving direction does not change unless the relative angular relationship between Rn and Rc changes, and rotates the coordinates so that the discontinuity point (zero degree) is outside the driving range, and similarly, Rn and Rc. Discontinuities in calculations are avoided by rotating by the same amount.

【0004】0004

【発明が解決しようとする課題】従来の駆動方向判定方
式では、駆動範囲内に不連続点が存在しているか調査す
る必要があり、不連続点が存在する場合、前述のように
座標の回転を行なわなければならない。その際に何度回
転させれば不連続点を駆動範囲外に追い出せるか調べな
ければならず面倒である。また、不連続点が駆動範囲内
に存在しない場合、回転させてはいけないので、回転さ
せるか、させないかの選択も必要となってくる。このよ
うに従来方式は不連続点に関し神経質な調査設定を行わ
なければならない、という問題点があった。
[Problems to be Solved by the Invention] In the conventional drive direction determination method, it is necessary to investigate whether a discontinuous point exists within the drive range, and if a discontinuous point exists, the rotation of the coordinates is must be carried out. At that time, it is necessary to check how many times the discontinuity point should be moved out of the driving range, which is troublesome. Further, if the discontinuity point does not exist within the drive range, rotation is not allowed, so it is necessary to select whether or not to rotate. As described above, the conventional method has a problem in that it requires careful investigation settings regarding discontinuous points.

【0005】[0005]

【課題を解決するための手段】本発明の駆動方向判定方
式は、駆動限界を有する回転部の方位角の位置制御シス
テムにおいて、絶対方位角で示されるマイナス側駆動限
界点の絶対方位角の座標不連続点までの回転角を求め、
前記回動部の絶対方位角で示される現在方位角及び指令
方位角を前記回転角と同じ方向に同じ角度だけ回転させ
座標回転後の現在方位角及び指令方位角をそれぞれ求め
、この座標回転後の現在方位角と座標回転後の指令方位
角との大小関係を比較し前記回動部の駆動方向を判定す
る手段を有する第1の構成、あるいは、絶対方向角で示
されるプラス側駆動限界点の絶対方位角の座標不連続点
までの回転角を求め、前記回動部の絶対方位角で示され
る現在方位角及び指令方位角を前記回転角と同じ方向に
同じ角度だけ回転させ座標回転後の現在方位角及び指令
方位角をそれぞれ求め、この座標回転後の現在方位角と
座標回転後の指令方位角との大小関係を比較し前記回動
部の駆動方向を判定する手段を有する第2の構成を有し
ている。
[Means for Solving the Problems] The drive direction determination method of the present invention provides an absolute azimuth coordinate of a negative drive limit point indicated by an absolute azimuth in an azimuth position control system of a rotating part having a drive limit. Find the rotation angle to the discontinuity point,
The current azimuth and commanded azimuth indicated by the absolute azimuth of the rotating part are rotated by the same angle in the same direction as the rotation angle to obtain the current azimuth and commanded azimuth after coordinate rotation, respectively, and after this coordinate rotation a first configuration comprising means for determining the driving direction of the rotating part by comparing the magnitude relationship between the current azimuth angle and the commanded azimuth angle after coordinate rotation, or a positive drive limit point indicated by an absolute directional angle; After the coordinate rotation, the current azimuth and commanded azimuth indicated by the absolute azimuth of the rotating part are rotated by the same angle in the same direction as the rotation angle. a second azimuth having a means for determining a driving direction of the rotating portion by determining a current azimuth angle and a commanded azimuth angle, respectively, and comparing the magnitude relationship between the current azimuth angle after the coordinate rotation and the commanded azimuth angle after the coordinate rotation; It has the following structure.

【0006】[0006]

【実施例】次に本発明について図面を参照して説明する
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be explained with reference to the drawings.

【0007】図1は、本発明の一実施例を説明するため
の図である。ここで、本実施例の方位角位置制御システ
ムは、図示していないが、駆動限界を有して回動するア
ンテナの方位角を制御するシステムであり、あらかじめ
設定されたアンテナのマイナス側及びプラス側駆動限界
点の絶対方位角を記憶する手段と、アンテナが現在向い
ている現在方位角(絶対方位角)を検出する手段と、ア
ンテナが向くべき指令方位角(絶対方位角)を受信する
手段と、アンテナのマイナス側,又はプラス側駆動限界
点と絶対方位角の座標不連続点との角度差を算出する手
段と、この角度差に対応してアンテナの現在方位角及び
指令方位角を回転させ変換した現在方位角及び指令方位
角を算出する手段と、この変換後の現在方位角及び指令
方位角の大小を比較しアンテナの駆動方向を判定する手
段とを有している。
FIG. 1 is a diagram for explaining one embodiment of the present invention. Although not shown, the azimuth position control system of this embodiment is a system that controls the azimuth of an antenna that rotates with a drive limit, and is set in advance on the minus side and plus side of the antenna. means for storing the absolute azimuth of the side drive limit point; means for detecting the current azimuth (absolute azimuth) at which the antenna is currently oriented; and means for receiving a command azimuth (absolute azimuth) at which the antenna should be oriented. means for calculating the angular difference between the minus side or plus side drive limit point of the antenna and the coordinate discontinuity point of the absolute azimuth angle, and rotating the current azimuth angle and commanded azimuth angle of the antenna in accordance with this angular difference. and a means for calculating the converted current azimuth and commanded azimuth, and means for comparing the magnitude of the converted current azimuth and commanded azimuth to determine the driving direction of the antenna.

【0008】図1(A)において、アンテナのマイナス
側駆動限界点(A点)を不連続点(零度,360度)ま
で回転する。この回転角をθとし、極性はプラス方向に
回転したので‘+’とする。プラス側駆動限界点(B点
)、現在方位角(Rn点)、指令方位角(Rc点)を‘
+θ’回転する。従って駆動方向判定のためのRn,R
cの大小比較はROT(Rn)=Rn+θ、ROT(R
c)=Rc+θの角度を用いて行う(図1(B))。こ
の時のマイナス側駆動限界点ROT(A)は0度、プラ
ス側駆動限界点ROT(B)はB+θである。例として
各変数に角度を代入してみる。A=190度、B=17
0度、Rn=350度、Rc=10度、とするとθ=3
60−Aなのでθ=170度となる。これによりROT
(B)=170度+170度、ROT(Rn)=350
度+170度、ROT(Rc)=10度+170度とな
る。方位角は360進法なので、計算結果が360を越
える値は計算結果から360を引いてやると、ROT(
B)=340度、ROT(Rn)=160度、ROT(
Rc)=180度となる。よってROT(Rn)<RO
T(Rc)なので、アンテナをプラス方向に駆動する。
In FIG. 1A, the minus side drive limit point (point A) of the antenna is rotated to a discontinuous point (0 degrees, 360 degrees). This rotation angle is set as θ, and the polarity is set as '+' since it rotated in the positive direction. The plus side drive limit point (point B), the current azimuth (point Rn), and the commanded azimuth (point Rc).
+θ' rotation. Therefore, Rn, R for determining the driving direction.
To compare the size of c, ROT(Rn)=Rn+θ, ROT(R
c) using an angle of Rc+θ (FIG. 1(B)). At this time, the minus side drive limit point ROT(A) is 0 degrees, and the plus side drive limit point ROT(B) is B+θ. As an example, let's substitute the angle for each variable. A=190 degrees, B=17
If 0 degrees, Rn=350 degrees, Rc=10 degrees, θ=3
Since it is 60-A, θ=170 degrees. This allows R.O.T.
(B) = 170 degrees + 170 degrees, ROT (Rn) = 350
degree + 170 degrees, ROT (Rc) = 10 degrees + 170 degrees. Azimuth is in 360 decimal system, so if the calculation result exceeds 360, subtract 360 from the calculation result and get ROT (
B) = 340 degrees, ROT (Rn) = 160 degrees, ROT (
Rc)=180 degrees. Therefore, ROT(Rn)<RO
Since T(Rc), the antenna is driven in the positive direction.

【0009】上記の例を従来方式によりRn,Rcの大
小比較を行うと、Rn(350度)>Rc(10度)と
なるためマイナス方向に駆動してマイナス側駆動限界点
Aにかかってしまうので、座標の回転指示を外部より与
えなければならない。これに対して、本発明の駆動方向
判定方式は、駆動範囲のマイナス側限界点Aを不連続点
まで回転させ、同様に現在方位角Rn,指令方位角Rc
も回転させることにより不連続点を駆動範囲外に追い出
している。この方法を用いることにより不連続点が常に
マイナス側駆動限界点となるため絶対方位角の不連続点
(零度)の位置に関して従来のような配慮は不用となる
。ここで不連続点をマイナス側限界点とした理由は、位
置制御方式では通常、駆動範囲外の指令角を受付けない
ようにマイナス、プラスそれぞれの駆動限界点を絶対方
位角で設定しているため、この設定値を引用すれば特別
な設定が不要となるためである。
[0009] When comparing the magnitudes of Rn and Rc using the conventional method in the above example, Rn (350 degrees) > Rc (10 degrees), so the motor is driven in the negative direction and reaches the negative drive limit point A. Therefore, coordinate rotation instructions must be given externally. On the other hand, the driving direction determination method of the present invention rotates the negative limit point A of the driving range to a discontinuous point, and similarly, the current azimuth Rn and the commanded azimuth Rc
The point of discontinuity is pushed out of the driving range by rotating the motor. By using this method, the discontinuity point always becomes the minus side drive limit point, so there is no need to take conventional considerations regarding the position of the discontinuity point (zero degree) in the absolute azimuth. The reason why the discontinuity point is set as the negative limit point is that in position control systems, the negative and positive drive limit points are usually set in absolute azimuth so that command angles outside the drive range are not accepted. This is because, if you quote this setting value, no special settings are required.

【0010】また、プラス側限界点Bを不連続点まで回
転させ、同様に現在方位角Rn,指令方位角Rcを回転
させた場合も、上記と同様に不連続点を駆動範囲外に追
い出し、特別な設定の必要なしに駆動方法を判定するこ
とができる。
[0010] Also, when the plus side limit point B is rotated to a discontinuous point and the current azimuth Rn and commanded azimuth Rc are similarly rotated, the discontinuous point is driven out of the driving range in the same way as above, The driving method can be determined without the need for special settings.

【0011】[0011]

【発明の効果】以上説明したように本発明は、現在方位
角と指令方位角と駆動限界点との角度位置関係のそれぞ
れの場合ごとに異なる駆動方向判定を行うことなく、ど
のような角度位置関係であろうともすべて同一の手順に
よる正確な駆動方向の判定ができる。
[Effects of the Invention] As explained above, the present invention can determine any angular position without having to make a different driving direction determination for each case of the angular positional relationship between the current azimuth, the commanded azimuth, and the driving limit point. Regardless of the relationship, the driving direction can be accurately determined using the same procedure.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例を説明するための図であり、
同図(A)は実際の絶対角度を示し、同図(B)は本発
明に従って座標を回転したものである。
FIG. 1 is a diagram for explaining one embodiment of the present invention,
The figure (A) shows the actual absolute angle, and the figure (B) shows the coordinates rotated according to the present invention.

【図2】駆動方向の説明図である。FIG. 2 is an explanatory diagram of driving directions.

【図3】従来方法にて方向判定を行なうと、判定を誤っ
てしまう位置関係の例を示す図である。
FIG. 3 is a diagram illustrating an example of a positional relationship that would result in an incorrect direction determination using a conventional method.

【図4】従来方法にて不連続点の存在による駆動方向の
誤判定を回避する例を示す図であり、同図(A)は実際
の絶対角度を示し、同図(B)は従来方法により座標を
回転したものである。
FIG. 4 is a diagram showing an example of avoiding erroneous determination of the driving direction due to the presence of discontinuous points using the conventional method, in which (A) shows the actual absolute angle, and (B) the conventional method. The coordinates are rotated by

【符号の説明】 A    マイナス側駆動限界点 B    プラス側駆動限界点 Rn    現在方位角 Rc    指令方位角 θ    座標回転角[Explanation of symbols] A Negative drive limit point B Positive side drive limit point Rn Current azimuth Rc Command azimuth θ Coordinate rotation angle

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  駆動限界を有する回転部の方位角の位
置制御システムにおいて、絶対方位角で示されるマイナ
ス側駆動限界点の絶対方位角の座標不連続点までの回転
角を求め、前記回動部の絶対方位角で示される現在方位
角及び指令方位角を前記回転角と同じ方向に同じ角度だ
け回転させ座標回転後の現在方位角及び指令方位角をそ
れぞれ求め、この座標回転後の現在方位角と座標回転後
の指令方位角との大小関係を比較し前記回動部の駆動方
向を判定する手段を有することを特徴とする駆動方向判
定方式。
Claim 1. In a position control system for the azimuth angle of a rotating part having a drive limit, the rotation angle from a negative drive limit point indicated by an absolute azimuth to a coordinate discontinuity point in the absolute azimuth angle is determined; Rotate the current azimuth and commanded azimuth indicated by the absolute azimuth angle of A driving direction determining method, comprising means for determining the driving direction of the rotating portion by comparing the magnitude relationship between the angle and the commanded azimuth angle after coordinate rotation.
【請求項2】  駆動限界を有する回転部の方位角の位
置制御システムにおいて、絶対方位角で示されるプラス
側駆動限界点の絶対方位角の座標不連続点までの回転角
を求め、前記回動部の絶対方位角で示される現在方位角
及び指令方位角を前記回転角と同じ方向に同じ角度だけ
回転させ座標回転後の現在方位角及び指令方位角をそれ
ぞれ求め、この座標回転後の現在方位角と座標回転後の
指令方位角との大小関係を比較し前記回動部の駆動方向
を判定する手段を有することを特徴とする駆動方向判定
方式。
2. In a position control system for the azimuth angle of a rotating part having a drive limit, the rotation angle to the coordinate discontinuity point of the absolute azimuth angle of the positive drive limit point indicated by the absolute azimuth angle is determined, and the rotation angle is Rotate the current azimuth and commanded azimuth indicated by the absolute azimuth angle of A driving direction determining method, comprising means for determining the driving direction of the rotating portion by comparing the magnitude relationship between the angle and the commanded azimuth angle after coordinate rotation.
JP6425691A 1991-03-28 1991-03-28 Driving direction deciding system Pending JPH04299712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6425691A JPH04299712A (en) 1991-03-28 1991-03-28 Driving direction deciding system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6425691A JPH04299712A (en) 1991-03-28 1991-03-28 Driving direction deciding system

Publications (1)

Publication Number Publication Date
JPH04299712A true JPH04299712A (en) 1992-10-22

Family

ID=13252919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6425691A Pending JPH04299712A (en) 1991-03-28 1991-03-28 Driving direction deciding system

Country Status (1)

Country Link
JP (1) JPH04299712A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH047608A (en) * 1990-04-25 1992-01-13 Tachi S Co Ltd Motor controller and position detecting method for the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH047608A (en) * 1990-04-25 1992-01-13 Tachi S Co Ltd Motor controller and position detecting method for the same

Similar Documents

Publication Publication Date Title
JP2580832B2 (en) Mobile mounted antenna controller
US7225552B2 (en) Method and system to detect an orientation of a moving object
US8174581B2 (en) Moving object image tracking apparatus and method
JP6967630B2 (en) Automatic unloading equipment and systems for motor test platforms
JPH064133A (en) Obstacle evading method for moving body
JPH04299712A (en) Driving direction deciding system
JPH02109106A (en) Steering position detector for self-traveling vehicle
JP2007218778A (en) Position detection method and alignment method
WO2022205207A1 (en) Gimbal, and configuration recognition method and apparatus therefor
JP2002313887A (en) Detection of transfer atitude of wafer and method and device for pre-aligning wafer
JP2636675B2 (en) Guidance tracking device
KR100277827B1 (en) Automatic Satellite Tracking Method for Active Antenna System
JP2973919B2 (en) Acquisition control device for satellite antenna and control method therefor
JPH1183480A (en) Apparatus for measuring position, apparatus for recognizing proceeding direction of moving body, and apparatus for marking movement
JP2758461B2 (en) Steering control device for automatic traveling work vehicle
JP2766193B2 (en) Antenna drive control device
JP2526346B2 (en) Moving body orientation measuring method and device
JPH0581432A (en) Method for discriminating directivity of vector
JP2653715B2 (en) Vehicle turning angle detection device
JPH05289741A (en) Position calculating method for automatic guided vehicle
JPH0229102A (en) Radar equipment
JPH0830325A (en) Traveling controller for mobile object
JPH09126781A (en) Azimuth detector
JPH02109105A (en) Steering position detector for self-traveling vehicle
JPH07119610B2 (en) Direction display device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980127