JPH09126781A - Azimuth detector - Google Patents
Azimuth detectorInfo
- Publication number
- JPH09126781A JPH09126781A JP30819195A JP30819195A JPH09126781A JP H09126781 A JPH09126781 A JP H09126781A JP 30819195 A JP30819195 A JP 30819195A JP 30819195 A JP30819195 A JP 30819195A JP H09126781 A JPH09126781 A JP H09126781A
- Authority
- JP
- Japan
- Prior art keywords
- circular vector
- center
- data
- magnetic sensor
- azimuth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Measuring Magnetic Variables (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、自動車等に搭載さ
れて進行方位を検出したとえばナビゲーションにて用い
ることのできる方位検出装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an azimuth detecting device which is mounted on an automobile or the like to detect a traveling azimuth and can be used in, for example, navigation.
【0002】[0002]
【従来の技術】従来、自動車等の移動体に搭載して進行
方向を方位との対比にて把握できるようにしたナビゲー
ション表示等への方位信号を得るため、フラックスゲー
トのような磁気センサを備え、走行地域の磁場ベクトル
を測定するようにしている。2. Description of the Related Art Conventionally, a magnetic sensor such as a flux gate has been provided in order to obtain a direction signal to a navigation display or the like which is mounted on a moving body such as an automobile so that the traveling direction can be grasped by comparing with the direction. , I try to measure the magnetic field vector in the driving area.
【0003】このような磁気センサからなる方位検出装
置にあっては、搭載する自動車の車体固有の着磁による
影響を受けるため、検出出力に補正を加えて車体固有の
着磁影響をなくし真の磁場ベクトルを得るようにしてお
り、たとえば、特公昭62−30364号、特公平3−
14125号にて提案されているように、自動車の回転
により得られた円状のベクトルの中心を求め、検出座標
からこの中心座標を引くことにより車体固有の着磁によ
る誤差を補正するようにしている。In the azimuth detecting device composed of such a magnetic sensor, since it is affected by the magnetization peculiar to the vehicle body of the automobile in which it is mounted, the detection output is corrected to eliminate the magnetization effect peculiar to the vehicle body. A magnetic field vector is obtained, for example, Japanese Patent Publication No. 62-30364 and Japanese Patent Publication No. 3-.
As proposed in No. 14125, the center of a circular vector obtained by the rotation of the automobile is obtained, and the center coordinates are subtracted from the detected coordinates to correct the error due to the magnetization unique to the vehicle body. There is.
【0004】こうした円状ベクトルの中心算出による誤
差補正方法は、演算による簡易な手法で磁気センサをそ
のまま使えるという利点があり、円状ベクトルからの中
心算出手法がそのまま方位検出の精度を決定しかつ演算
ステップの簡素化に影響を及ぼす。The error correction method by calculating the center of the circular vector has an advantage that the magnetic sensor can be used as it is by a simple method by calculation, and the method of calculating the center from the circular vector directly determines the accuracy of direction detection. Affects simplification of calculation steps.
【0005】[0005]
【発明が解決しようとする課題】こうした補正方法にお
いて、前記従来構成においては円状ベクトルの座標上で
のX軸とY軸にて交差する4点を検出し、この4点から
中心を求める方法を採っているが、前者は円状ベクトル
の測定途中でXmin,Xmax,Ymin,Ymaxを逐次比較演
算して求めなければならず、この円状ベクトルを得るた
めの自動車の旋回動作においてその旋回軌跡のずれで測
定点が飛び飛びになり、特に高速旋回した場合にはこう
した測定変動への追従に高速性を必要とし、高性能マイ
コンが必要で高価となる。また後者においても、所定の
X軸線とY軸線を用意しこれら軸線と円状ベクトルの交
点座標を求め、こうして求めた4点の座標から中心を算
出するため、4つの交点算出ステップが必要となり、演
算データもこれら4点を取り込んでの演算となるため処
理が複雑になってしまう。In such a correction method, in the above-described conventional method, four points intersecting on the X-axis and Y-axis on the coordinates of the circular vector are detected, and the center is obtained from these four points. However, in the former case, Xmin, Xmax, Ymin, and Ymax must be successively calculated during the measurement of the circular vector, and the turning locus in the turning motion of the vehicle for obtaining the circular vector must be obtained. The measurement points become discontinuous due to the deviation of, and particularly when turning at high speed, high speed is required to follow such measurement fluctuations, and a high-performance microcomputer is required, which is expensive. Also in the latter case, four predetermined X-axis lines and Y-axis lines are prepared, the coordinates of the intersections of these axes and the circular vector are calculated, and the center is calculated from the coordinates of the four points thus calculated. The calculation data is also calculated by taking in these four points, which complicates the processing.
【0006】また、いずれの検出方法においても検出座
標データの中心を求めるものであるため、たとえば、正
常な地磁気以外の外乱磁気による影響や電気的ノイズに
よる影響により生じた信号を正規の検出信号として入力
してしまい、そのデータに基づいて中心点の算出を実行
するため、こうしたノイズ等による検出点が接近してい
る場合には中心点がきわめて大きなものとなり、方位検
出としては使用できないものとなってしまう。Further, since the center of the detected coordinate data is obtained in any of the detection methods, for example, a signal generated by the influence of disturbance magnetism other than the normal earth magnetism or the influence of electric noise is regarded as a normal detection signal. Since the input is done and the center point is calculated based on that data, the center point becomes extremely large when the detection points due to such noise are close, and it cannot be used for direction detection. Will end up.
【0007】本発明は、ノイズ等による誤検出データを
判定して中心算定のデータとして用いず正確な方位検出
を行なうことを目的とし、さらに前記円状のベクトル中
心を簡易な演算処理にて求め得るとともに、その結果と
して演算負荷を軽減して構成を簡単にできる方位検出装
置を提供することを目的とするものである。An object of the present invention is to detect erroneous detection data due to noise or the like and not to use it as data for center calculation for accurate azimuth detection, and to obtain the circular vector center by a simple arithmetic processing. It is an object of the present invention to provide an azimuth detecting device that can be obtained and, as a result, can reduce the calculation load and simplify the configuration.
【0008】[0008]
【課題を解決するための手段】本発明は、磁気センサか
らの同一平面上にて略90度の位相角をもつ地磁気に対
応した検出信号を受け、この信号に基づいて方位を検出
するとともに、前記磁気センサが搭載される移動体固有
の着磁特性による地磁気からの変動誤差を前記磁気セン
サの回転により得られた円状のベクトルからの中心点補
正によって補正する制御手段を備え、この制御手段は前
記円状のベクトル上にて一方の座標を共通とする少なく
とも3点の検出座標に対応する座標データに基づき、X
座標,Y座標の他方の座標データ中心を求めるととも
に、それら他方の座標データの差の絶対値が任意の固定
値R(円状ベクトルの任意の半径)を越えた場合のみ前
記座標データ中心算出処理を実行し、前記円状ベクトル
上の検出座標(X,Y)の各データから前記中心データ
を引くことにより前記変動誤差を補正することを特徴と
する。The present invention receives a detection signal from a magnetic sensor corresponding to geomagnetism having a phase angle of approximately 90 degrees on the same plane, and detects the azimuth based on this signal, The magnetic sensor is equipped with a control unit that corrects a variation error from the geomagnetism due to the magnetization characteristic of the moving body on which the magnetic sensor is mounted, by correcting the center point from a circular vector obtained by the rotation of the magnetic sensor. Is X based on the coordinate data corresponding to the detected coordinates of at least three points having one coordinate in common on the circular vector.
The coordinate data center calculation processing is performed only when the center of the other coordinate data of the coordinates and the Y coordinate is obtained and the absolute value of the difference between the other coordinate data exceeds an arbitrary fixed value R (arbitrary radius of the circular vector). Is performed, and the variation error is corrected by subtracting the center data from each data of the detected coordinates (X, Y) on the circular vector.
【0009】また本発明は、磁気センサからの同一平面
上にて略90度の位相角をもつ地磁気に対応した検出信
号を出力する磁気センサからの出力信号を受け、この信
号に基づいて方位を検出するとともに、前記磁気センサ
が搭載される移動体固有の着磁特性による地磁気からの
変動誤差を前記磁気センサの回転により得られた円状の
ベクトルからの中心点補正によって補正する制御手段を
備え、この制御手段は前記円状のベクトル上にて任意の
始点(X1,Y1)とこの始点座標の各一方の座標を共
通にする円状のベクトル上の他の2点、(X1,Y2)
および(X2,Y1)のデータに基づき前記円状のベク
トル中心を(X1+X2)/2と(Y1+Y2)/2に
て求め、前記円状のベクトル上の検出座標(X,Y)の
各データから前記中心データを引くことにより前記変動
誤差を補正するとともに、|X1−X2|>=R,|Y
1−Y2|>=R(Rは円状ベクトル半径の固定値)の
少なくとも一方の条件を満たすか否かを判定し、満たす
場合に前記円状ベクトルの中心補正を行なうことを特徴
とする。Further, the present invention receives an output signal from a magnetic sensor which outputs a detection signal corresponding to the earth magnetism having a phase angle of approximately 90 degrees on the same plane from the magnetic sensor, and based on this signal, the azimuth is determined. Control means for detecting and correcting a variation error from the earth magnetism due to the magnetization characteristic peculiar to the moving body on which the magnetic sensor is mounted by correcting the center point from a circular vector obtained by the rotation of the magnetic sensor. , The control means has an arbitrary starting point (X1, Y1) on the circular vector and the other two points on the circular vector having one of these starting point coordinates in common (X1, Y2).
Based on the data of (X2, Y1), the center of the circular vector is obtained by (X1 + X2) / 2 and (Y1 + Y2) / 2, and from each data of the detected coordinates (X, Y) on the circular vector. The variation error is corrected by subtracting the center data, and | X1-X2 |> = R, | Y
It is characterized in that it is determined whether or not at least one of 1-Y2 |> = R (R is a fixed value of the radius of the circular vector) is satisfied, and if so, the center correction of the circular vector is performed.
【0010】[0010]
【発明の実施の形態】磁気センサを回転して得られる地
磁気に対応した円状のベクトルに対し、検出入力した座
標データの差の絶対値が任意の半径に対応した値Rを越
えているか否かを判定することにより、ノイズ等による
誤検出を防止して方位検出に際して正確な演算結果を得
ることのできる方位検出装置を提供し得るものである。BEST MODE FOR CARRYING OUT THE INVENTION Whether or not the absolute value of the difference between detected and input coordinate data with respect to a circular vector corresponding to the geomagnetism obtained by rotating a magnetic sensor exceeds a value R corresponding to an arbitrary radius. It is possible to provide an azimuth detecting device capable of preventing an erroneous detection due to noise or the like and determining an accurate calculation result in azimuth detection by determining whether or not.
【0011】また、磁気センサを回転して得られる地磁
気に対応した円状のベクトルに対し、任意の始点(X
1,Y1)とこの始点座標の各一方の座標を共通にする
他の2点、(X1,Y2)および(X2,Y1)に基づ
き前記円状のベクトル中心を(X1+X2),(Y1,
Y2)として求め、検出座標(X,Y)の各座標データ
からこの中心データを引いて誤差補正を行なう制御手段
を設けたことにより、少ない検出点データに基づいての
演算が可能となり、さらに始点付近でのノイズ等による
誤検出を防止する判定機能を備えながら制御手段の演算
負荷を軽減して安価な装置を提供できるものである。For a circular vector corresponding to the geomagnetism obtained by rotating the magnetic sensor, an arbitrary starting point (X
1, Y1) and the other two points that share one of the starting point coordinates, (X1, Y2) and (X2, Y1), and the circular vector center is (X1 + X2), (Y1,
Y2), and by providing the control means for performing error correction by subtracting this central data from each coordinate data of the detected coordinates (X, Y), calculation based on a small amount of detected point data becomes possible, and the start point can be further calculated. It is possible to provide an inexpensive device by reducing the calculation load of the control means while having a determination function for preventing erroneous detection due to noise or the like in the vicinity.
【0011】[0011]
【実施例】図1は、本発明に適用する典型的装置ブロッ
ク図であり、磁気センサ1にはいわゆるフラックスゲー
トタイプのものを用いており、環状コア2に巻線した励
振コイル3に発振器4から励磁信号を与え、前記環状コ
アに略直交して巻線した出力巻線5,6から地磁気に対
応した略90度の位相角をもつ出力信号を得るようにし
ている。FIG. 1 is a block diagram of a typical apparatus applied to the present invention. A so-called flux gate type magnetic sensor 1 is used, and an oscillator 4 is provided in an excitation coil 3 wound around an annular core 2. From the output windings 5 and 6 wound substantially orthogonal to the annular core to obtain an output signal having a phase angle of about 90 degrees corresponding to the earth's magnetism.
【0012】前記磁気センサ1からの出力信号はノイズ
フィルターを含む信号増幅回路7およびデジタル処理の
ためのデジタル信号に変換するA/D変換器8を経由し
てマイクロコンピュータからなる制御手段9に入力さ
れ、この制御手段9にて演算処理された方位信号が例え
ばナビゲーション等に用いられる表示装置10に供給さ
れる。An output signal from the magnetic sensor 1 is input to a control means 9 composed of a microcomputer via a signal amplification circuit 7 including a noise filter and an A / D converter 8 for converting it into a digital signal for digital processing. Then, the azimuth signal arithmetically processed by the control means 9 is supplied to the display device 10 used for navigation, for example.
【0013】こうした方位検出装置は、磁気センサ1と
ともに自動車等の着磁されやすい移動体に搭載され、こ
の移動体としての自動車の走行地点における地磁気を検
出して方位を演算し表示するようにするが、磁気センサ
1の出力信号はこの搭載自動車固有の着磁特性による誤
差を含んでのものであるため、制御手段9にてこの誤差
を補正するような演算をなすことになる。Such an azimuth detecting device is mounted together with the magnetic sensor 1 on a moving body such as an automobile which is easily magnetized, and detects the geomagnetism at the traveling point of the automobile as this moving body to calculate and display the azimuth. However, since the output signal of the magnetic sensor 1 includes an error due to the magnetization characteristic peculiar to the mounted vehicle, the control means 9 performs an operation to correct this error.
【0014】本発明では、制御手段9にて、自動車固有
の着磁特性による誤差を含んだA/D変換器8の出力信
号を補正し地磁気による忠実な方位を求める処理を行な
うが、補正の仕方については図2で示す典型的なベクト
ル検出にて実行するよう制御手段9の実行プログラミン
グを設定する。In the present invention, the control means 9 performs a process of correcting the output signal of the A / D converter 8 including an error due to the magnetizing characteristic peculiar to the vehicle to obtain a faithful azimuth by the geomagnetism. Regarding the method, the execution programming of the control means 9 is set so as to execute the typical vector detection shown in FIG.
【0015】すなわち、走行地域での走行に当たって自
動車をその場で旋回走行させると、搭載される磁気セン
サ1も同様にその地域における地磁気の磁場内で回転し
地磁気に対応した座標出力を出すことになるが、自動車
の着磁特性の影響を受けない真の地磁気のみによる検出
出力特性は原点座標Oを中心とした円状のベクトル軌跡
として得られるのに対し、自動車固有の着磁特性の分が
誤差としてその検出成分に加わるため、その検出出力は
図2に示すように円状のベクトル中心が大きくずれ、た
とえば(X0,Y0)という座標を中心とした円状のベ
クトル出力が制御手段9に入力される。That is, when the vehicle turns in the traveling area during traveling in the traveling area, the mounted magnetic sensor 1 also rotates in the magnetic field of the geomagnetic field in the area and outputs the coordinate output corresponding to the geomagnetic field. However, while the detection output characteristic only by the true geomagnetism, which is not affected by the magnetizing characteristic of the vehicle, is obtained as a circular vector locus with the origin coordinate O as the center, the characteristic characteristic of the vehicle is Since an error is added to the detected component, the detected output is largely deviated from the center of the circular vector as shown in FIG. 2, and the circular vector output centered on the coordinates (X0, Y0) is sent to the control means 9. Is entered.
【0016】制御手段9では、図2の円状のベクトル出
力データ(X,Y)においてまず演算始点を決定する
が、この演算始点は自動車を旋回させるに際しての旋回
開始初期値を採用することでよい。この旋回開始初期値
はたとえば補正値の決定をなす旋回作業に際して制御手
段9に補正値決定指令を出し、この指令による補正値決
定演算処理のための検出信号取り込み動作の最初の入力
値を始点(X1,Y1)とするよう構成すればよい。こ
の補正値決定演算処理の実行については、たとえば予め
運転者の操作可能なスイッチを用意し、このスイッチ操
作によって制御手段9が補正値演算を行なうようにする
こともでき、補正値が決定すればその後は磁気センサ1
における誤差を含んだ検出出力に対してこの補正値に基
づく補正演算を実行して地磁気に対応した正しい方位デ
ータを求め出力することができ、方位表示装置において
もこの正しい方位データによる方位表示が可能となる。The control means 9 first determines the calculation start point in the circular vector output data (X, Y) of FIG. 2, but this calculation start point is set by adopting the turning start initial value when turning the vehicle. Good. The initial value of the turning start is, for example, a correction value determination command is issued to the control means 9 during the turning operation for determining the correction value, and the first input value of the detection signal fetching operation for the correction value determination calculation process based on this command is set as the starting point ( X1, Y1). Regarding the execution of the correction value determination calculation process, for example, a switch operable by the driver may be prepared in advance, and the control means 9 may perform the correction value calculation by operating this switch. After that, magnetic sensor 1
Corrected azimuth data corresponding to geomagnetism can be obtained and output by executing a correction calculation based on this correction value for the detection output including the error in azimuth, and the azimuth display device can also display the azimuth according to this correct azimuth data. Becomes
【0017】補正値すなわち円状のベクトルの中心座標
(X0,Y0)の決定プロセスについては、図2にて示
すように始点をaとしたaの座標を始点(X1,Y1)
とすれば、これを始点として旋回させた時の検出出力
(X,Y)は中心(X0,Y0)を中心とした円状のベ
クトルとして得られることとなり、この円状のベクトル
上での前記始点(X1,Y1)と各一方の座標を共通と
する他の2点(X1,Y2),(X2,Y1)を選択し
てこれらデータをもとに円状のベクトルの中心座標を各
々、X0=(X1+X2)/2,Y0=(Y1+Y2)
/2にて求めるものである。Regarding the process of determining the correction value, that is, the center coordinates (X0, Y0) of the circular vector, the coordinates of a with the starting point a as shown in FIG. 2 are the starting points (X1, Y1).
Then, the detection output (X, Y) when the vehicle is turned with this as the starting point is obtained as a circular vector centered on the center (X0, Y0), and The other two points (X1, Y2), (X2, Y1) that have one coordinate in common with the starting point (X1, Y1) are selected, and the center coordinates of the circular vector are respectively calculated based on these data. X0 = (X1 + X2) / 2, Y0 = (Y1 + Y2)
/ 2 is obtained.
【0018】このようにして始点(X1,Y1)および
他の2点(X1,Y2),(X2,Y1)の3点の座標
データのみで円状のベクトル中心(X0,Y0)を簡単
に求めることができるため、後は検出データ(X,Y)
からこの補正値である中心データ(X0,Y0)を引く
ことにより自動車固有の着磁特性による誤差を補正した
地磁気に忠実な方位データを得ることができる。すなわ
ち、この方位データを(XM,YM)とすれば制御手段
9における方位の補正演算は、各座標毎に、XM=X−
(X1+X2)/2,YM=Y−(Y1+Y2)/2に
て実行されることになる。In this way, the circular vector center (X0, Y0) can be easily defined only by the coordinate data of the starting point (X1, Y1) and the other two points (X1, Y2), (X2, Y1). Since it can be obtained, the detection data (X, Y)
By subtracting the center data (X0, Y0), which is the correction value, from, it is possible to obtain the azimuth data faithful to the geomagnetism in which the error due to the magnetization characteristic of the automobile is corrected. That is, if the azimuth data is (XM, YM), the azimuth correction calculation in the control means 9 is XM = X− for each coordinate.
It is executed by (X1 + X2) / 2, YM = Y- (Y1 + Y2) / 2.
【0019】このようにして得られた地磁気に対応した
方位データはたとえば図1における表示装置10に出力
され、自動車の走行地域の方位に対する進行方向表示を
正しく行なうことができる。こうした本発明の検出装置
による3点の座標検出と演算については、図2にて示し
た円状ベクトル軌跡における始点の決定と他の2点の選
択による演算処理にて代表されるが、始点aが図3に示
すように円状ベクトルの中心座標X0もしくはY0と同
じ座標に一致する場合はその座標(X1,Y1)が始点
(X0,Y1)として得られるため、他の2点のうち
(X2,Y1)に相当する座標は共通の座標(X0,Y
1)となり、この場合の演算はX1=X0としてただち
にX座標の中心が得られることになる。The azimuth data corresponding to the geomagnetism thus obtained is output to, for example, the display device 10 shown in FIG. 1 so that the traveling direction can be correctly displayed with respect to the azimuth of the traveling area of the automobile. The coordinate detection and calculation of three points by the detection device of the present invention is represented by the calculation processing by determining the starting point and selecting the other two points in the circular vector locus shown in FIG. When is coincident with the center coordinate X0 or Y0 of the circular vector as shown in FIG. 3, that coordinate (X1, Y1) is obtained as the starting point (X0, Y1), so that among the other two points ( The coordinates corresponding to (X2, Y1) are common coordinates (X0, Y
1), and in this case, the center of the X coordinate is immediately obtained by setting X1 = X0.
【0020】従って、XM=X−(X1+X2)/2と
いったX座標の演算自体も不要となり、演算ステップも
より簡易になるため、こうした特徴を生かして少なくと
も一方の座標についてのみ始点を予めこの座標に選定す
ることで同様の演算軽減を行なうことができる。すなわ
ち、補正値決定プロセスで磁気センサ1から取り込んだ
検出信号から円状ベクトルのMIN座標もしくはMAX
座標を検出し、この座標を始点aとして決定することで
その後の検出点数を少なくすることができ、補正値を含
んだ演算ステップを軽減することができるものである。Therefore, the calculation itself of the X coordinate such as XM = X- (X1 + X2) / 2 is not necessary, and the calculation step becomes simpler. Therefore, the starting point of at least one of the coordinates is set in advance to this coordinate by utilizing such characteristics. The same calculation can be reduced by selecting the same. That is, the MIN coordinates of the circular vector or MAX from the detection signal taken from the magnetic sensor 1 in the correction value determination process.
By detecting the coordinates and determining the coordinates as the starting point a, the number of detection points thereafter can be reduced, and the calculation step including the correction value can be reduced.
【0021】また、本発明においては、任意の始点(X
1,Y1)を決定した後他の2点(X1,Y2),(X
2,Y1)を検出するに際して、これら2点が始点付近
での地磁気以外の外乱磁気や電気ノイズを拾って検出し
た場合の大きな誤差を防止する目的で、円状ベクトル中
心演算と補正演算に先立ってそれら検出データが正しく
円状ベクトル中心を求める上で採用し得るものか否かの
判定プロセスを実行するよう構成している。In the present invention, an arbitrary starting point (X
1, Y1) and then the other two points (X1, Y2), (X
2, Y1), in order to prevent a large error when these two points pick up and detect disturbance magnetism and electric noise other than geomagnetism near the starting point, prior to the circular vector center calculation and the correction calculation. Then, it is configured to execute a determination process as to whether or not the detected data can be adopted in correctly obtaining the center of the circular vector.
【0022】すなわち、始点(X1,Y1)を決定し車
体を旋回し始めた直後、つまり始点付近にて地磁気以外
の外乱磁気や電気的ノイズによって他の2点(X1,Y
2),(X2,Y1)として検出したとすると、図4に
示すように正常の破線軌跡上とはずれた点にてそれら2
点が検出され、そのまま中心点を演算により求めると図
の(X0’,Y0’)が中心点として認識され、真の求
めたい中心点(X0,Y0)に対して誤差を生じること
になる。That is, immediately after the starting point (X1, Y1) is determined and the vehicle body starts to turn, that is, near the starting point, the other two points (X1, Y1) due to disturbance magnetism other than geomagnetism and electrical noise.
2), (X2, Y1), they are detected at points deviated from the normal broken line locus as shown in FIG.
When a point is detected and the center point is calculated as it is, (X0 ', Y0') in the figure is recognized as the center point, and an error occurs with respect to the true center point (X0, Y0) to be obtained.
【0023】このような誤検出による誤差は、始点から
離れた場所では正常の破線軌跡からの多少の誤差として
許容できるものであるが、検出開始(旋回開始)直後の
始点付近でのこうしたノイズ誤差は、図示するようにそ
れを円状ベクトル軌跡上の点とした中心点を求めるデー
タとした場合にはきわめて大きなものとなり、補正を行
なうデータとしては到底使い物にならないものとなる。The error due to such erroneous detection can be tolerated as a slight error from the normal broken line locus at a place away from the starting point, but such a noise error near the starting point immediately after the start of detection (start of turning). Is extremely large when it is used as the data for obtaining the center point with the point on the circular vector locus as shown in the figure, and is extremely unusable as data for correction.
【0024】そこで本発明では、このような始点(X
1,Y1)付近での誤検出データか否かを判定して始点
付近でのデータと判定した時には円状ベクトル中心を求
めず、これによる誤った中心データによる方位検出を行
なわないようにした判定機能を備えている。Therefore, in the present invention, such a starting point (X
1, Y1) It is judged whether or not the data is near the start point by judging whether or not the data is near the start point, and the judgment is made so that the center of the circular vector is not obtained and the azimuth detection by the wrong center data is not performed. It has a function.
【0025】すなわち、制御手段9では、始点(X1,
Y1)を検出した直後、ノイズ等により他の2点として
図4に示す(X1,Y2),(X2,Y1)を検出した
とすると、まず|X1−X2|>=R,|Y1−Y2|
>=Rか否かを判定し、この何れか一方が満たされた時
に正常の検出入力として(X1+X2)/2,(Y1+
Y2)/2の演算を行い、円状ベクトルの中心を求める
とともに、検出座標(X,Y)の各データから前記中心
データを引くことにより変動誤差を補正する演算を実行
するものであり、このときの半径Rは、車両の旋回軌跡
によって得られる円状ベクトルに相当する円の半径に近
似させて任意に設定すればよい。That is, in the control means 9, the starting point (X1,
Immediately after detecting Y1), if (X1, Y2) and (X2, Y1) shown in FIG. 4 are detected as the other two points due to noise or the like, first, | X1-X2 |> = R, | Y1-Y2 |
> = R is determined, and when either one of these is satisfied, the normal detection input is (X1 + X2) / 2, (Y1 +
Y2) / 2 is calculated to obtain the center of the circular vector, and the fluctuation error is corrected by subtracting the center data from each data of the detected coordinates (X, Y). The radius R at this time may be arbitrarily set by approximating the radius of the circle corresponding to the circular vector obtained from the turning trajectory of the vehicle.
【0026】こうした判定機能により、図4にて示すよ
うに、始点の付近にてノイズ等による検出入力が発生
し、これを(X1,Y2),(X2,Y1)として入力
した場合には、|X1−X2|,|Y1−Y2|がいず
れも設定した半径Rよりも小さいものと判定し、それ以
降のベクトル中心算出演算に移行しないため、大きな検
出誤差を生ずることなく、方位検出における正確な演算
結果のみを得ることができるものである。With such a determination function, as shown in FIG. 4, when a detection input due to noise or the like occurs near the start point and this is input as (X1, Y2), (X2, Y1), It is determined that both | X1-X2 | and | Y1-Y2 | are smaller than the set radius R, and the subsequent vector center calculation calculation is not performed, so that a large detection error does not occur and the accuracy in azimuth detection is high. It is possible to obtain only such calculation results.
【0027】なお、上記実施例は始点(X1,Y1)を
共通とする他の2点との3点座標による中心検出につい
て説明したが、ノイズ等による誤検出を防止して正しい
検出データを得るための、任意の半径相当の値Rに対す
る座標差の絶対値の大小判定による検出判定機能は、特
にこうした3点検出に限られるものではなく、円状ベク
トル上の2点の座標の中心を求める方式を採用するもの
であればいずれの構成にも適用できることはいうまでも
ない。In the above embodiment, the center detection by three-point coordinates with the other two points having the common start point (X1, Y1) has been described. However, erroneous detection due to noise or the like is prevented and correct detection data is obtained. The detection / determination function for determining the absolute value of the coordinate difference with respect to the value R corresponding to an arbitrary radius is not particularly limited to such three-point detection, and the center of coordinates of two points on the circular vector is obtained. It goes without saying that any configuration can be applied as long as it adopts the method.
【0028】[0028]
【発明の効果】以上のように、本発明になる方位検出装
置によれば、車両を旋回しての円状ベクトル上の検出デ
ータにノイズ等による異常なデータが入力されても、容
易にそれを判定して誤検出データとして採用することを
防ぎ正確な方位を求めることができ、さらに始点座標と
他の2点の座標の一方の軸座標とを一致比較し補正値で
ある中心座標を求めるだけの簡単な演算ステップで実行
すればよいため、マイクロコンピュータから制御手段を
構成する場合にも、その演算処理回数が少なくて済み、
クロック周波数の低周波数化や低ビットプロセッサの使
用による消費電流の低下による周辺回路の簡素化さらに
は低価格化を実現できるものである。As described above, according to the azimuth detecting apparatus of the present invention, even if abnormal data due to noise or the like is input to the detection data on the circular vector when the vehicle turns, it can be easily detected. It is possible to obtain a correct azimuth by avoiding the determination as to erroneous detection data, and further compare the start point coordinates with one axis coordinate of the coordinates of the other two points to obtain a center coordinate as a correction value. Since it suffices to carry out the calculation with only simple calculation steps, even when the control means is configured from a microcomputer, the number of times of the calculation processing is small,
The peripheral frequency can be simplified and the price can be reduced by lowering the clock frequency and reducing the current consumption by using a low bit processor.
【0029】[0029]
【図1】本発明を適用する方位検出装置の代表的な回路
ブロック図。FIG. 1 is a typical circuit block diagram of a direction detection device to which the present invention is applied.
【図2】本発明の方位検出装置における補正値演算のた
めの検出出力説明図。FIG. 2 is an explanatory diagram of a detection output for calculating a correction value in the azimuth detecting device of the present invention.
【図3】本発明の方位検出装置における検出出力の他の
実施例を示す検出出力説明図。FIG. 3 is a detection output explanatory diagram showing another embodiment of the detection output in the azimuth detecting device of the present invention.
【図4】本発明の方位検出装置におけるノイズ等での誤
検出を説明する検出出力説明図。FIG. 4 is a detection output explanatory diagram for explaining erroneous detection due to noise or the like in the azimuth detecting device of the present invention.
1 磁気センサ 2 環状コア 5,6 出力巻線 8 A/D変換器 9 制御手段 10 表示装置 1 magnetic sensor 2 annular core 5, 6 output winding 8 A / D converter 9 control means 10 display device
Claims (2)
度の位相角をもつ地磁気に対応した検出信号を受け、こ
の信号に基づいて方位を検出するとともに、前記磁気セ
ンサが搭載される移動体固有の着磁特性による地磁気か
らの変動誤差を前記磁気センサの回転により得られた円
状のベクトルからの中心点補正によって補正する制御手
段を備え、この制御手段は前記円状のベクトル上にて一
方の座標を共通とする少なくとも3点の検出座標に対応
する座標データに基づき、X座標,Y座標の他方の座標
データ中心を求めるとともに、それら他方の座標データ
の差の絶対値が任意の固定値R(円状ベクトルの任意の
半径)を越えた場合のみ前記座標データ中心算出処理を
実行し、前記円状ベクトル上の検出座標(X,Y)の各
データから前記中心データを引くことにより前記変動誤
差を補正することを特徴とする方位検出装置。1. The magnetic sensor is approximately 90 on the same plane.
The detection signal corresponding to the geomagnetism having a phase angle of 10 degrees is received, the azimuth is detected based on this signal, and the variation error from the geomagnetism due to the magnetization characteristic peculiar to the moving body on which the magnetic sensor is mounted is detected by the magnetic sensor. Is provided with a center point correction from a circular vector obtained by the rotation of the circular vector, and the control means corresponds to at least three detected coordinates having one common coordinate on the circular vector. When the center of the other coordinate data of the X coordinate and the Y coordinate is obtained based on the coordinate data, and the absolute value of the difference between the other coordinate data exceeds an arbitrary fixed value R (arbitrary radius of the circular vector). Only the coordinate data center calculation process is executed, and the variation error is corrected by subtracting the center data from each data of the detected coordinates (X, Y) on the circular vector. Azimuth detecting device according to claim.
度の位相角をもつ地磁気に対応した検出信号を受け、こ
の信号に基づいて方位を検出するとともに、前記磁気セ
ンサが搭載される移動体固有の着磁特性による地磁気か
らの変動誤差を前記磁気センサの回転により得られた円
状のベクトルからの中心点補正によって補正する制御手
段を備え、この制御手段は前記円状のベクトル上にて任
意の始点(X1,Y1)とこの始点座標の各一方の座標
を共通にする円状のベクトル上の他の2点、(X1,Y
2)および(X2,Y1)のデータに基づき前記円状の
ベクトル中心を(X1+X2)/2と(Y1+Y2)/
2にて求め、前記円状のベクトル上の検出座標(X,
Y)の各データから前記中心データを引くことにより前
記変動誤差を補正するとともに、前記始点(X1,Y
1)と他の2点(X1,Y2),(X2,Y1)のデー
タに基づいて円状ベクトル中心補正を行なうに際し、|
X1−X2|>=Rまたは|Y1−Y2|>=R(Rは
円状ベクトル半径の固定値)の少なくとも一方の条件を
満足するか否かを判定し、満足する場合に前記円状ベク
トルの中心点と補正の演算を行なうことを特徴とする方
位検出装置。2. The magnetic sensor is approximately 90 on the same plane.
The detection signal corresponding to the geomagnetism having a phase angle of 10 degrees is received, the azimuth is detected based on this signal, and the variation error from the geomagnetism due to the magnetization characteristic peculiar to the moving body on which the magnetic sensor is mounted is detected by the magnetic sensor. Is provided with a center point correction from a circular vector obtained by the rotation of the circular vector, and the control means has an arbitrary starting point (X1, Y1) and one of the starting point coordinates on the circular vector. The other two points (X1, Y
2) and (X2, Y1) based on the data of (X1 + X2) / 2 and (Y1 + Y2) /
2 and the detected coordinates (X,
The variation error is corrected by subtracting the central data from each data of (Y) and the start point (X1, Y
1) and the other two points (X1, Y2), (X2, Y1), the circular vector center correction is performed.
It is determined whether at least one of X1-X2 |> = R or | Y1-Y2 |> = R (R is a fixed value of the radius of the circular vector) is satisfied, and if so, the circular vector is determined. An azimuth detecting apparatus characterized by performing a correction operation with a center point of.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30819195A JP3277778B2 (en) | 1995-10-31 | 1995-10-31 | Direction detection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30819195A JP3277778B2 (en) | 1995-10-31 | 1995-10-31 | Direction detection device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09126781A true JPH09126781A (en) | 1997-05-16 |
JP3277778B2 JP3277778B2 (en) | 2002-04-22 |
Family
ID=17978018
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30819195A Expired - Fee Related JP3277778B2 (en) | 1995-10-31 | 1995-10-31 | Direction detection device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3277778B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109798884A (en) * | 2019-02-21 | 2019-05-24 | 广东工业大学 | A kind of multi-rotor unmanned aerial vehicle magnetometer dynamic realtime calibration method |
CN111906590A (en) * | 2020-06-15 | 2020-11-10 | 北京航天万鸿高科技有限公司 | Self-compensation three-point method for measuring roundness error and rotation error |
-
1995
- 1995-10-31 JP JP30819195A patent/JP3277778B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109798884A (en) * | 2019-02-21 | 2019-05-24 | 广东工业大学 | A kind of multi-rotor unmanned aerial vehicle magnetometer dynamic realtime calibration method |
CN109798884B (en) * | 2019-02-21 | 2021-04-23 | 广东工业大学 | Dynamic real-time calibration method for magnetometer of multi-rotor unmanned aerial vehicle |
CN111906590A (en) * | 2020-06-15 | 2020-11-10 | 北京航天万鸿高科技有限公司 | Self-compensation three-point method for measuring roundness error and rotation error |
Also Published As
Publication number | Publication date |
---|---|
JP3277778B2 (en) | 2002-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0629729B2 (en) | Direction detector for mobile | |
US4738031A (en) | Method for establishing the driving direction of a vehicle with an electronic compass | |
JPS62287115A (en) | Output correcting device for azimuth detecting device | |
JPH07101174B2 (en) | Vehicle compass | |
JP3277778B2 (en) | Direction detection device | |
JP3277771B2 (en) | Direction detection device | |
JPH10153428A (en) | Vehicle azimuth detecting device | |
JP3278950B2 (en) | Direction detection device | |
JP2876634B2 (en) | Magnetization correction device for geomagnetic direction sensor | |
JPH03152412A (en) | Computing method for azimuth of vehicle | |
CA1299859C (en) | Apparatus and method for determining azimuth, pitch and roll | |
JPS62255814A (en) | Correcting method for vehicle azimuth error | |
JPS5824811A (en) | Bearing detecting device | |
JPS62255815A (en) | Correcting method for vehicle azimuth error | |
JP2526346B2 (en) | Moving body orientation measuring method and device | |
JPH0629731B2 (en) | Vehicle compass | |
JPS62140013A (en) | Apparatus for correcting earth magnetism sensor | |
JPH06167347A (en) | Gyro correction device for vehicle | |
JP3019965B2 (en) | Direction measurement device | |
JP2886010B2 (en) | Body direction detection device | |
JPH0676890B2 (en) | Vehicle route display device | |
JPS62255816A (en) | Output correcting device for bearing detector | |
JPS6348415A (en) | Correcting method for magnetism error of azimuth detecting device | |
JPS6332317A (en) | Azimuth meter for vehicle | |
JPH0511457Y2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |