JPH04299607A - Charge amplifier - Google Patents

Charge amplifier

Info

Publication number
JPH04299607A
JPH04299607A JP6416291A JP6416291A JPH04299607A JP H04299607 A JPH04299607 A JP H04299607A JP 6416291 A JP6416291 A JP 6416291A JP 6416291 A JP6416291 A JP 6416291A JP H04299607 A JPH04299607 A JP H04299607A
Authority
JP
Japan
Prior art keywords
amplifier
operational amplifier
frequency
capacitor
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6416291A
Other languages
Japanese (ja)
Other versions
JPH0687529B2 (en
Inventor
Hirohisa Iwasaki
岩崎 博彌
Yoshiaki Shimada
好昭 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP6416291A priority Critical patent/JPH0687529B2/en
Publication of JPH04299607A publication Critical patent/JPH04299607A/en
Publication of JPH0687529B2 publication Critical patent/JPH0687529B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Amplifiers (AREA)

Abstract

PURPOSE:To attain stable charge amplification by connecting a T-shaped primary low pass filter composed of a negative feedback static capacitance element, a resistor and a capacitor in parallel between an output terminal and the inverting input terminal of a differential input operational amplifier. CONSTITUTION:A weight converter S is connected to the inverting input terminal of an operational amplifier A and a T-type primary low pass filter F is connected between the input terminal and an output terminal. The resistance of a resistor Rf connected in parallel with a capacitor Cf in a feedback circuit is divided into R1 and R2 to form a T-type filter F. The bias current of the operational amplifier A is supplied through the resistor Rf at a very low frequency region including DC and the function of the charge amplifier is enhanced by using the capacitor Cf for a frequency region in which the transfer admittance of the T-type circuit is negligible. Since the gain of a general-purpose operational amplifier is abnormally increased for the frequency of 100-400Hz, phase lead compensation is applied to the amplifier for a narrow frequency range in the vicinity of the frequencies. The frequency characteristic is made slow by the insertion of a phase compensation circuit J composed of the resistors R1, R2 and a capacitor C2 and a stable amplifier is realized and a flat characteristic is obtained over a wide frequency range.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は容量性高インピーダンス
センサに発生した電荷または電圧を安定したアナログ電
圧に変換する電荷増幅器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charge amplifier that converts charge or voltage generated in a capacitive high impedance sensor into a stable analog voltage.

【0002】0002

【従来の技術】容量性高インピーダンスセンサとは、具
体的には水晶振動子、セラミックス圧電素子およびロッ
シェル塩などを応用した圧電トランスデューサ、静電容
量式センサを挙げることができる。
2. Description of the Related Art Capacitive high impedance sensors include, specifically, piezoelectric transducers using crystal oscillators, ceramic piezoelectric elements, Rochelle salt, and the like, and capacitive sensors.

【0003】周知のように、図5の(a)に示した圧電
トランスデューサの等価回路は図5(b)のように表す
ことができ、圧電トランスデューサに作用した荷重によ
って発生する電荷ΔQは、静電容量Co と発生電圧Δ
Vの電源との直列回路と等価である。一般的にCo は
さほど大きな静電容量ではないので、出力信号をシール
ド線などで引き廻すと図6に示すように出力電圧ΔVが
シールド線など浮遊容量Cs によって分圧され、大き
な誤差を生ずる。
As is well known, the equivalent circuit of the piezoelectric transducer shown in FIG. 5(a) can be expressed as shown in FIG. 5(b), and the charge ΔQ generated by the load acting on the piezoelectric transducer is Capacity Co and generated voltage Δ
This is equivalent to a series circuit with a V power supply. Generally, Co does not have a very large capacitance, so if the output signal is routed through a shielded wire or the like, the output voltage ΔV will be divided by the stray capacitance Cs of the shielded wire, as shown in FIG. 6, resulting in a large error.

【0004】よって、図7に示すように入力インピーダ
ンスが零に近い電流増幅器で受ければ浮遊容量の影響が
なくなる。
Therefore, as shown in FIG. 7, if the input impedance is received by a current amplifier close to zero, the influence of stray capacitance is eliminated.

【0005】[0005]

【発明が解決しようとする課題】電荷増幅器の一例を図
8に示すが、反転入力端子(−)は仮想接地であり、先
に述べた入力インピーダンスは演算増幅器Aの利得が大
きければ限りなく零に近づき理想的な動作をするが、出
力端子OUTと反転入力端子(−)の間に接続されてい
る帰還回路の抵抗Rf と静電容量Cf に着目すると
、演算増幅器Aの帰還回路を抵抗Rf のみで形成する
ときは、出力電圧はトランスデューサ出力を微分したも
のとなるため、静電容量Cf と並列接続することによ
り、入力電流比を積分してΔQに比例した出力として取
り出している。静電容量Cf の使用周波数におけるリ
アクタンスは非常に大きいので、並列に接続する抵抗R
f を極めて高抵抗とする必要があり、特殊な性能の演
算増幅器でなければならない。
[Problems to be Solved by the Invention] An example of a charge amplifier is shown in FIG. 8, but the inverting input terminal (-) is a virtual ground, and the input impedance mentioned above becomes zero as long as the gain of operational amplifier A is large. However, if we focus on the resistance Rf and capacitance Cf of the feedback circuit connected between the output terminal OUT and the inverting input terminal (-), we can see that the feedback circuit of operational amplifier A is connected to the resistance Rf. When forming the transducer only, the output voltage is obtained by differentiating the transducer output, so by connecting it in parallel with the capacitance Cf, the input current ratio is integrated and taken out as an output proportional to ΔQ. Since the reactance of the capacitance Cf at the operating frequency is very large, the resistor R connected in parallel is
It is necessary that f has a very high resistance, and it must be an operational amplifier with special performance.

【0006】それでもなお抵抗Rf の存在は高精度の
電荷増幅器の製作を不可能にしている。上記した従来の
技術は、次のような問題点を有していた。 (1) 前述した従来の電荷増幅器においては非常に大
きな抵抗Rf を必要とするので汎用の演算増幅器は使
用に耐えない。
Nevertheless, the presence of resistor Rf precludes the fabrication of highly accurate charge amplifiers. The above-mentioned conventional technology had the following problems. (1) Since the conventional charge amplifier described above requires a very large resistance Rf, a general-purpose operational amplifier cannot be used.

【0007】(2) 高インピーダンス回路を含むので
、商用周波数の誘導や外来雑音に弱い。 (3) 利得を上げるために静電容量Cf を極く小さ
くすることが不可能。 (4) 電荷増幅器の精度が低い。
(2) Since it includes a high impedance circuit, it is susceptible to commercial frequency induction and external noise. (3) It is impossible to minimize the capacitance Cf in order to increase the gain. (4) The accuracy of the charge amplifier is low.

【0008】電荷増幅器の負帰還回路は静電容量Cfが
主体で、抵抗Rfは演算増幅器Aのバイアス電流を安定
に供給することが目的であり、特性上制約がなければ高
抵抗でないほうがよい。しかし電荷増幅器の周波数応答
は、 fL =1/(2・π・Cf・Rf)      ‥‥
(1)を低域遮断周波数としており、トランスデューサ
が広帯域であっても、低域特性は電荷増幅器が制限を加
える。 例えばCf=100pF,Rf=10MΩのときfL 
≒159 Hzであり、これを改善するため静電容量C
fを大きくすると、電荷増幅器の増幅度Avが下記(2
) 式のようにAv=−Co/Cf         
           ‥‥(2)となって、Coとの
関係において増幅度の低下を免れない。
The negative feedback circuit of the charge amplifier is mainly composed of a capacitance Cf, and the purpose of the resistor Rf is to stably supply a bias current to the operational amplifier A, and it is better not to have a high resistance unless there are restrictions on the characteristics. However, the frequency response of the charge amplifier is fL = 1/(2・π・Cf・Rf) ‥‥
(1) is set as the low cutoff frequency, and even if the transducer has a wide band, the charge amplifier imposes a limit on the low frequency characteristics. For example, when Cf=100pF, Rf=10MΩ, fL
≒159 Hz, and to improve this, the capacitance C
When f is increased, the amplification degree Av of the charge amplifier becomes as follows (2
) As in the formula Av=-Co/Cf
. . . (2), and the degree of amplification inevitably decreases in relation to Co.

【0009】すなわち、積(Cf・Rf)を適当に小さ
な値に保ちつつ、必要な周波数特性と増幅器の安定動作
を確保することが解決すべき問題点である。本発明は、
バイアス電流供給回路として適切な抵抗値のRfで直流
パスを得つつ、これによって低域遮断周波数fL が上
昇しないよう、信号電流が抵抗Rfを通過することを防
止する。さらに位相特性変化のため生ずる周波数特性の
乱れや不安定を防止して、良好な電荷増幅器を提供する
ことを目的とする。
That is, the problem to be solved is to maintain the necessary frequency characteristics and stable operation of the amplifier while keeping the product (Cf·Rf) at an appropriately small value. The present invention
While obtaining a DC path with Rf having an appropriate resistance value as a bias current supply circuit, the signal current is prevented from passing through the resistor Rf so that the low cut-off frequency fL does not rise thereby. Furthermore, it is an object of the present invention to provide a good charge amplifier by preventing disturbance and instability of frequency characteristics caused by changes in phase characteristics.

【0010】0010

【課題を解決するための手段】本発明の電荷増幅器は、
差動入力演算増幅器の出力端子と反転入力端子の間に接
続される負帰還用静電容量素子と、これと並列に接続さ
れる直流バイアス電流供給回路として、抵抗および静電
容量よりなるT型の一次低域濾波器を接続したことを特
徴とする。
[Means for Solving the Problems] The charge amplifier of the present invention includes:
A negative feedback capacitance element connected between the output terminal and the inverting input terminal of the differential input operational amplifier, and a T-type resistor and capacitance as a DC bias current supply circuit connected in parallel with the negative feedback capacitance element. It is characterized by connecting a first-order low-pass filter.

【0011】[0011]

【作用】この構成によると、バイアス電流供給回路とし
て適切な抵抗値のRfで直流パスを得つつ、これによっ
て低域遮断周波数fL が上昇しないよう、信号電流が
Rfを通過することを防止する。さらに、位相特性変化
のため生ずる周波数特性の乱れや不安定を防止する補償
回路を設けて、良好な電荷増幅器を実現している。
[Operation] According to this configuration, a DC path is obtained with Rf having an appropriate resistance value as a bias current supply circuit, and the signal current is thereby prevented from passing through Rf so that the low cutoff frequency fL does not rise. Furthermore, a compensation circuit is provided to prevent disturbance and instability of frequency characteristics caused by changes in phase characteristics, thereby realizing a good charge amplifier.

【0012】0012

【実施例】以下、本発明の一実施例を図1〜図4に基づ
いて説明する。なお、従来例を示す図5〜図8と同様の
作用をなすものには、同一の符号を付けて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. 1 to 4. It should be noted that the same reference numerals are given to the parts having the same functions as in FIGS. 5 to 8 showing the conventional example.

【0013】本発明の荷重変換器用の電荷増幅器は、図
1に示すように荷重変換器用の圧電トランスデューサS
は、演算増幅器Aの反転入力端子(−)に接続され、演
算増幅器Aの出力端子OUTと反転入力端子(−)間に
T型の一次低域濾波器Fが接続されている。
The charge amplifier for a load transducer according to the present invention is a piezoelectric transducer S for a load transducer as shown in FIG.
is connected to the inverting input terminal (-) of the operational amplifier A, and a T-type primary low-pass filter F is connected between the output terminal OUT of the operational amplifier A and the inverting input terminal (-).

【0014】この一次低域濾波器Fについて説明する。 まず抵抗Rfの抵抗値を決定したら、図2に示すように
その抵抗値をR1とR1に2分して、T型の一次低域濾
波器(一次遅れ回路)を構成する。このT型回路は図6
と等価であるから、その遮断周波数fT は、fT =
  1/π・C1・R1              
  ‥‥(3)一般的にfT は使用周波数の下限値の
さらに1/100 〜1/1000を選べば、増幅器出
力に現われる信号成分は大きな減衰を受け、R1を通じ
て反転入力端子(−)へ帰還される信号は微小であり、
本来の直流バスの役目を果たす。
This first-order low-pass filter F will be explained. First, after determining the resistance value of the resistor Rf, as shown in FIG. 2, the resistance value is divided into R1 and R1 to form a T-type first-order low-pass filter (first-order lag circuit). This T-type circuit is shown in Figure 6.
Therefore, its cutoff frequency fT is fT =
1/π・C1・R1
(3) In general, if fT is selected to be 1/100 to 1/1000 of the lower limit of the frequency used, the signal component appearing at the amplifier output will be greatly attenuated and will be returned to the inverting input terminal (-) through R1. The signal received is minute,
It fulfills the original role of a DC bus.

【0015】すなわち、直流を含む極く低い周波数域で
は抵抗Rfを通じて演算増幅器Aのバイアス電流を供給
し、電荷増幅器としてはT型回路の伝達アドミッタンス
が無視出来る周波数域で、Cfによりその機能を分担、
発揮せしめる。
That is, in an extremely low frequency range including direct current, the bias current of the operational amplifier A is supplied through the resistor Rf, and as a charge amplifier, the function is shared by Cf in the frequency range where the transfer admittance of the T-type circuit can be ignored. ,
Demonstrate.

【0016】一般的に汎用の演算増幅器の利得は、低周
波数、例えば10Hz程度に1次の極を持って居り、こ
れ以上の周波数では−6dB/octで利得は単調に減
少している。つまり、1次遅れの特性を有し、数百Hz
ではほぼ−(π/2)rad の位相回転を伴う。この
ことは、先のT型回路の位相特性を考慮するとき位相遅
れが−π〔rad 〕にほぼ近くなり、かつループゲイ
ンが正となる周波数が生ずる。すなわちループゲインベ
クトルが(I・jo)に非常に近いところを通過し、そ
の周波数が電荷増幅器は利得の異常な上昇をみる。一般
的にこの周波数は100〔Hz〕〜400〔Hz〕とな
る。このためこの周波数で位相補償を行うことにより周
波数特性はなだらかとなり安定な増幅器をうることが出
来る。位相補償はさきの異常利得を生じる点を中心に狭
い周波数範囲で位相の進み補償を行なう。図4は抵抗R
1,R2と静電容量C2からなるこのような補償回路J
を含めた新たな帰還回路網であって、このT型の一次低
域濾波器Fが演算増幅器Aの出力端子OUTと反転入力
端子(−)間に接続されている。
Generally, the gain of a general-purpose operational amplifier has a first-order pole at a low frequency, for example, about 10 Hz, and at frequencies above this, the gain monotonically decreases at -6 dB/oct. In other words, it has first-order lag characteristics and has a frequency of several hundred Hz.
In this case, a phase rotation of approximately -(π/2) rad is involved. This means that when considering the phase characteristics of the T-shaped circuit described above, a frequency occurs where the phase delay is almost close to -π [rad] and the loop gain is positive. That is, the loop gain vector passes through a point very close to (I.jo), and at that frequency the charge amplifier sees an abnormal increase in gain. Generally, this frequency is between 100 [Hz] and 400 [Hz]. Therefore, by performing phase compensation at this frequency, the frequency characteristics become gentle and a stable amplifier can be obtained. Phase compensation is performed in a narrow frequency range around the point where the abnormal gain occurs. Figure 4 shows the resistance R
1, such a compensation circuit J consisting of R2 and capacitance C2
This T-type first-order low-pass filter F is connected between the output terminal OUT and the inverting input terminal (-) of the operational amplifier A.

【0017】[0017]

【発明の効果】以上のように本発明によれば、差動入力
演算増幅器の出力端子と反転入力端子間にT型の一次低
域濾波器を接続したため、帰還抵抗値を過大にすること
なく安定な動作を確保することができ、つぎのような効
果が達成される。
[Effects of the Invention] As described above, according to the present invention, since the T-type primary low-pass filter is connected between the output terminal and the inverting input terminal of the differential input operational amplifier, the feedback resistance value can be prevented from becoming excessive. Stable operation can be ensured, and the following effects can be achieved.

【0018】(1) CfおよびRfの効果がそれぞれ
本来の目的別に達成され互いに干渉しあうことが非常に
小さい。 (2) 非常に小さいCfでも有効に動作する。
(1) The effects of Cf and Rf are each achieved according to their original purpose, and interference with each other is extremely small. (2) Effective operation even with very small Cf.

【0019】(3) 広い周波数範囲に亘って平坦な特
性をもっているので矩形波パルス波等の増幅にも適して
いる。 (4) 高精度である。
(3) Since it has flat characteristics over a wide frequency range, it is also suitable for amplifying rectangular pulse waves and the like. (4) High accuracy.

【0020】(5) 汎用の演算増幅器を使用できる。 (6) 誘導・雑音に強い。(5) A general-purpose operational amplifier can be used. (6) Strong against induction and noise.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の電荷増幅器の構成図である。FIG. 1 is a configuration diagram of a charge amplifier of the present invention.

【図2】同装置の演算増幅器の反転入力端子と出力端子
の間に介装した回路の説明図である。
FIG. 2 is an explanatory diagram of a circuit interposed between an inverting input terminal and an output terminal of an operational amplifier of the same device.

【図3】図2の回路の説明図である。FIG. 3 is an explanatory diagram of the circuit of FIG. 2;

【図4】同装置の演算増幅器の反転入力端子と出力端子
の間に介装した回路図である。
FIG. 4 is a circuit diagram interposed between an inverting input terminal and an output terminal of an operational amplifier in the same device.

【図5】圧電トランスジューサの回路図と等価回路図で
ある。
FIG. 5 is a circuit diagram and an equivalent circuit diagram of a piezoelectric transducer.

【図6】圧電トランスジューサの出力信号を増幅器に接
続したときの等価回路図である。
FIG. 6 is an equivalent circuit diagram when the output signal of the piezoelectric transducer is connected to an amplifier.

【図7】一般的な増幅器の構成図である。FIG. 7 is a configuration diagram of a general amplifier.

【図8】従来の電荷増幅器の構成図である。FIG. 8 is a configuration diagram of a conventional charge amplifier.

【符号の説明】[Explanation of symbols]

A    演算増幅器〔差動入力演算増幅器〕F   
 一次低域濾波器 S    圧電トランスデューサ J    位相補償回路
A Operational amplifier [differential input operational amplifier] F
Primary low-pass filter S Piezoelectric transducer J Phase compensation circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  差動入力演算増幅器の出力端子と反転
入力端子の間に接続される負帰還用静電容量素子と、こ
れと並列に接続される直流バイアス電流供給回路として
、抵抗および静電容量よりなるT型の一次低域濾波器を
接続した電荷増幅器。
Claim 1: A negative feedback capacitance element connected between the output terminal and the inverting input terminal of a differential input operational amplifier, and a DC bias current supply circuit connected in parallel with the negative feedback capacitance element, including a resistor and a capacitance element. A charge amplifier connected to a T-type primary low-pass filter consisting of a capacitor.
JP6416291A 1991-03-28 1991-03-28 Charge amplifier Expired - Lifetime JPH0687529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6416291A JPH0687529B2 (en) 1991-03-28 1991-03-28 Charge amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6416291A JPH0687529B2 (en) 1991-03-28 1991-03-28 Charge amplifier

Publications (2)

Publication Number Publication Date
JPH04299607A true JPH04299607A (en) 1992-10-22
JPH0687529B2 JPH0687529B2 (en) 1994-11-02

Family

ID=13250099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6416291A Expired - Lifetime JPH0687529B2 (en) 1991-03-28 1991-03-28 Charge amplifier

Country Status (1)

Country Link
JP (1) JPH0687529B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07167661A (en) * 1993-12-14 1995-07-04 Murata Mfg Co Ltd Vibrating gyro
JP2011169783A (en) * 2010-02-19 2011-09-01 Honda Motor Co Ltd Output circuit of charge change type sensor
JP4961425B2 (en) * 2006-11-30 2012-06-27 パナソニック株式会社 Operational amplifier
CN108627686A (en) * 2018-06-27 2018-10-09 北京励芯泰思特测试技术有限公司 It is a kind of measure amplifier bias current circuit and method and shielding control unit
CN111865225A (en) * 2020-07-28 2020-10-30 哈尔滨工业大学 Weak pulse signal amplifying circuit and micro-dust detector
US10914583B2 (en) 2018-02-20 2021-02-09 Analog Devices, Inc. Sense amplifiers for gyroscopes and related systems and methods

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07167661A (en) * 1993-12-14 1995-07-04 Murata Mfg Co Ltd Vibrating gyro
JP4961425B2 (en) * 2006-11-30 2012-06-27 パナソニック株式会社 Operational amplifier
JP2011169783A (en) * 2010-02-19 2011-09-01 Honda Motor Co Ltd Output circuit of charge change type sensor
US8508217B2 (en) 2010-02-19 2013-08-13 Honda Motor Co., Ltd. Output circuit of charge mode sensor
US10914583B2 (en) 2018-02-20 2021-02-09 Analog Devices, Inc. Sense amplifiers for gyroscopes and related systems and methods
CN108627686A (en) * 2018-06-27 2018-10-09 北京励芯泰思特测试技术有限公司 It is a kind of measure amplifier bias current circuit and method and shielding control unit
CN108627686B (en) * 2018-06-27 2024-01-16 北京励芯泰思特测试技术有限公司 Circuit and method for measuring operational amplifier bias current and shielding control unit
CN111865225A (en) * 2020-07-28 2020-10-30 哈尔滨工业大学 Weak pulse signal amplifying circuit and micro-dust detector
CN111865225B (en) * 2020-07-28 2023-10-20 哈尔滨工业大学 Weak pulse signal amplifying circuit and tiny dust detector

Also Published As

Publication number Publication date
JPH0687529B2 (en) 1994-11-02

Similar Documents

Publication Publication Date Title
JPH04299607A (en) Charge amplifier
US2782311A (en) Bridge controlled oscillator
JPH0683113B2 (en) Line equalization circuit
JPS5931048Y2 (en) low noise amplifier
US3088076A (en) Electronic apparatus
US3908173A (en) Differential amplifying system with forced differential feedback
JPH03171908A (en) Light receiving circuit
US3622873A (en) Thin magnetic film magnetometer for providing independent responses from two orthogonal axes
US3676790A (en) Differential feedback amplifier
JPH04304008A (en) Charge amplifier
US4437069A (en) Low noise tuned amplifier
JP3161716B2 (en) Capacitance detection circuit
JPH02503252A (en) high voltage amplifier
JPS5938729Y2 (en) CR oscillator
US5142164A (en) Subharomic noise reduction circuit
JPS5822336Y2 (en) active filter circuit
JPS6340902Y2 (en)
JPS602662Y2 (en) Narrowband amplifier circuit
JPS6350000Y2 (en)
JPH03743Y2 (en)
JPH07113816A (en) Acceleration sensor
US4028640A (en) Piezo-electric tuning fork oscillation circuit
JPH0154884B2 (en)
JPH0533062Y2 (en)
JPH0221775Y2 (en)