JPH0429907B2 - - Google Patents

Info

Publication number
JPH0429907B2
JPH0429907B2 JP7322783A JP7322783A JPH0429907B2 JP H0429907 B2 JPH0429907 B2 JP H0429907B2 JP 7322783 A JP7322783 A JP 7322783A JP 7322783 A JP7322783 A JP 7322783A JP H0429907 B2 JPH0429907 B2 JP H0429907B2
Authority
JP
Japan
Prior art keywords
engine
rotation speed
throttle valve
drive system
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7322783A
Other languages
Japanese (ja)
Other versions
JPS59197660A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP7322783A priority Critical patent/JPS59197660A/en
Publication of JPS59197660A publication Critical patent/JPS59197660A/en
Publication of JPH0429907B2 publication Critical patent/JPH0429907B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To speedily reduce engine noise by shifting the number of engine revolution to the lower revolution side, allowing the necessary reduction performance to be developed by varying a throttle valve to the closing direction, in little speed-reduction on a car which aims at improvement of fuel consumption. CONSTITUTION:In little reduction in which the brake stepping-in amount signal supplied from a brake position sensor 18 is below a prescribed value, the engine revolution-number signal supplied from an engine revolution-number sensor 20 in brake operation which is sampling-retained by receiving the brake operation signal is corrected by a minus correction value signal. The aimed engine revolution number which is reduction-corrected to the lower revolution side is compared with the actually measured engine revolution number signal supplied from the engine revolution number sensor 20, and a speed change ratio controller 9 is controlled. Thus, the number of engine revolution is set to the aimed engine revolution number of the lower revolution side in comparison with the revolution number in brake operation, and engine noise in little speed-reduction is reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、例えば燃費向上を指向する自動車に
おける駆動系を総合的に制御するためのもので、
アクセルペダルの踏込量等アクセルの操作量に応
じてスロルトル弁の開度および変速機の変速比を
相互に調整してエンジン出力を制御するようにし
た駆動制御装置に関し、特にブレーキペダルを軽
く踏込むなどとして緩かに減速を行う減速持いわ
ゆる小減速時におけるエンジン騒音低減対策に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention is for comprehensively controlling the drive system of an automobile aiming at improving fuel efficiency, for example.
Regarding a drive control device that controls engine output by mutually adjusting the opening of a throttle valve and the gear ratio of a transmission according to the amount of accelerator operation such as the amount of depression of the accelerator pedal, in particular, when the brake pedal is lightly depressed. The present invention relates to measures to reduce engine noise during so-called small decelerations, such as during slow deceleration.

(従来の技術) 一般に、レシプロエンジン等のエンジンを備え
た自動車においてそのエンジンの熱効率つまり燃
費効率を向上させるには、ポンピングロスや摺動
抵抗等の機械損失の低減および燃焼効率の改善を
図ることが好ましい。一例として、機械損失につ
いて見るに、エンジンに供給される混合気の空燃
比を一定にセツトした場合には、第6図の等燃料
消費率曲線に示すように、エンジンの低回転側で
かつ高負荷側で使用することが燃費向上の点で好
ましい。すなわち、エンジンの低回転側では摺動
抵抗を低減できること、およびエンジンの高負荷
側ではスロツトル弁の開度が全開ないし全開近傍
になつて吸気負圧の発生を抑えてポピングロスを
低減できることに依る。
(Prior art) In general, in order to improve the thermal efficiency, or fuel efficiency, of an automobile equipped with an engine such as a reciprocating engine, it is necessary to reduce mechanical losses such as pumping loss and sliding resistance, and improve combustion efficiency. is preferred. As an example, looking at mechanical loss, if the air-fuel ratio of the air-fuel mixture supplied to the engine is set constant, as shown in the constant fuel consumption rate curve in Figure 6, the mechanical loss is It is preferable to use it on the load side in terms of improving fuel efficiency. That is, the sliding resistance can be reduced on the low rotation side of the engine, and the opening degree of the throttle valve is fully open or close to fully open on the high load side of the engine, suppressing the generation of intake negative pressure and reducing popping loss.

また、このような考えをもとに、従来、特開昭
53−134162号公報に示されるように、加速ポンプ
付きのエンジンを備えた自動車において、アクセ
ルペダルの踏込量に応じてスロツトル弁の開度お
よび変速機の変速比を相互に調整してエンジン出
力を制御するようにした駆動制御装置を設けるこ
とにより、最適な燃料消費率で走行するようにし
たものが提案されている。
In addition, based on this idea, we have
As shown in Publication No. 53-134162, in a car equipped with an engine equipped with an accelerator pump, the opening of the throttle valve and the gear ratio of the transmission are mutually adjusted according to the amount of depression of the accelerator pedal to increase the engine output. It has been proposed that a vehicle be driven at an optimal fuel consumption rate by providing a drive control device that controls the vehicle.

(発明が解決しようとする課題) ところで、例えばこのような燃費向上指向の自
動車において、アクセルペダルの踏込みを離した
りブレーキペダルを軽く踏込んで緩かに減速を行
ういわゆる小減速時は、その減速要求が少ないこ
とから、エンジン回転数を増大方向に変化させて
エンジンブレーキ力を十分に発揮させることは不
必要であり、かえつてエンジン騒音の増大を招く
ことになる。
(Problem to be Solved by the Invention) By the way, for example, in such a fuel efficiency-oriented automobile, during so-called small deceleration, in which the accelerator pedal is released or the brake pedal is lightly depressed to decelerate gently, the deceleration request is Therefore, it is unnecessary to increase the engine speed to fully exert the engine braking force, and this results in an increase in engine noise.

本発明の目的は、上記の如き燃費向上指向の自
動車における小減速時には、スロツトル弁を閉方
向に変化させて所要の減速性能を発揮させなが
ら、エンジン回転数を低回転側に変化させてエン
ジン騒音を速かにかつ有効に低減させることにあ
る。
An object of the present invention is to reduce engine noise by changing the engine speed to a low speed side while changing the throttle valve in the closing direction to exhibit the desired deceleration performance during small deceleration in a vehicle intended to improve fuel efficiency. The objective is to quickly and effectively reduce the

(課題を解決するための手段) 上記目的を達成するため、本発明の解決手段
は、第1図に示すように、エンジンと車輪との間
に介設された無段変速機と、該向段変速機の変速
比を調整する変速比調整装置と、エンジンの吸気
通路に介設されたスロツトル弁と、該スロツトル
弁の開度を調整するスロツトル弁開度調整装置
と、アクセルの操作量を検出するアクセル操作量
検出手段と、自動車の減速要求を検出する減速検
出手段と、駆動系回転数を検出する駆動系回転数
検出手段と、駆動系回転数との関係でエンジン出
力が決定されるパラメータからエンジン出力を検
出するエンジン出力検出手段とを備える。さら
に、上記アクセル操作量検出手段からの信号を受
け、アクセル操作量と駆動系回転数との所定の関
係に基づいて目標駆動系回転数を設定する目標駆
動系回転数設定手段と、該目標駆動系回転数設定
手段で設定される目標駆動系回転数と上記駆動系
回転数検出手段で検出される実際の駆動系回転数
とを比較し、実際の駆動系回転数が目標駆動系回
転数となるように上記変速比調整装置を制御する
変速比制御手段と、上記アクセル操作量検出手段
からの信号を受け、アクセル操作量とエンジン出
力との所定の関係に基づいて目標エンジン出力を
設定する目標エンジン出力設定手段と、該目標エ
ンジン出力設定手段で設定される目標エンジン出
力と上記エンジン出力検出手段で検出される実際
のエンジン出力とを比較し、実際のエンジン出力
が目標エンジン出力となるように上記スロツトル
弁開度調整装置を制御するスロツトル弁開度制御
手段と、上記減速検出手段の出力を受け、減速要
求が所定値以下のとき、スロツトル弁を閉方向に
変化させるように上記スロツトル弁開度制御手段
を制御するとともにエンジン回転数を減速要求時
の回転数よりも低くするように上記変速比制御手
段を制御する補正手段とからなる制御手段を設け
たものとする。
(Means for Solving the Problems) In order to achieve the above object, the solving means of the present invention, as shown in FIG. A gear ratio adjusting device that adjusts the gear ratio of a gear transmission, a throttle valve installed in an intake passage of an engine, a throttle valve opening degree adjusting device that adjusts the opening degree of the throttle valve, and an accelerator operation amount. The engine output is determined based on the relationship between the accelerator operation amount detection means for detecting, the deceleration detection means for detecting the deceleration request of the automobile, the drive system rotation speed detection means for detecting the drive system rotation speed, and the drive system rotation speed. and engine output detection means for detecting engine output from parameters. Further, a target drive system rotation speed setting means receives the signal from the accelerator operation amount detection means and sets a target drive system rotation speed based on a predetermined relationship between the accelerator operation amount and the drive system rotation speed; The target drive system rotation speed set by the system rotation speed setting means and the actual drive system rotation speed detected by the drive system rotation speed detection means are compared, and the actual drive system rotation speed is determined to be the target drive system rotation speed. a gear ratio control means for controlling the gear ratio adjustment device so that the target engine output is set based on a predetermined relationship between the accelerator operation amount and the engine output in response to signals from the accelerator operation amount detection means; An engine output setting means compares the target engine output set by the target engine output setting means and the actual engine output detected by the engine output detection means, and sets the actual engine output to the target engine output. A throttle valve opening control means for controlling the throttle valve opening adjustment device and an output from the deceleration detecting means are used to open the throttle valve so as to change the throttle valve in the closing direction when the deceleration request is less than a predetermined value. The present invention is further provided with a control means comprising a correction means for controlling the speed ratio control means and the speed ratio control means so as to make the engine rotation speed lower than the rotation speed at the time of requesting deceleration.

(作用) このことにより、自動車の減速要求の少ない小
減速時、スロツトル弁の閉方向への変化により減
速要求に合致した緩かな減速度にするとともに、
エンジン回転数の低回転側への変化によりエンジ
ン騒音を速かに低く抑えることができる。
(Function) As a result, when there is a small deceleration request for the automobile, the throttle valve changes in the closing direction to achieve a gentle deceleration that matches the deceleration request.
By changing the engine speed to the lower side, engine noise can be quickly suppressed to a low level.

(発明の効果) したがつて、本発明によれば、上記の如き燃費
向上指向の自動車において、減速要求の少ない小
減速時、その減速要求に合致した緩かな減速度を
発揮しながら、エンジン騒音を迅速にかつ有効に
低減することができるので、小減速時の運転性、
静粛性の向上を図ることができる。
(Effects of the Invention) Therefore, according to the present invention, in a vehicle oriented to improve fuel efficiency as described above, during a small deceleration with little deceleration request, the engine noise can be reduced while exerting a gentle deceleration that meets the deceleration request. can be quickly and effectively reduced, improving drivability during small decelerations,
It is possible to improve quietness.

(実施例) 以下、本発明の技術的手段の具体例としての実
施例を図面に基づいて説明する。
(Example) Hereinafter, an example as a specific example of the technical means of the present invention will be described based on the drawings.

第1図は本発明の一実施例の全体概略構成を示
す。第1図aにおいて、1はエンジン、2,2は
エンジン1の駆動力(エンジン出力Pd)によつ
てデイフアレンシヤルギヤ3を介して駆動される
左右の車輪である。上記エンジン1とデイフアレ
ンシヤルギヤ3との間には変速比Kgが連続的に
変化する無段変速機4が介設されており、該無段
変速機4には無段変速機4の変速比Kgを調整す
る変速比調整装置5が設けられている。該変速比
調整装置5による変速比Kgの変化速度はエンジ
ン回転数Neの変化速度よりも遅くなるように設
定されており、エンジン1の減速時又は減速時等
に変速シヨツクを生じないようにしている。6は
エンジン1と無段変速機5との間に介設されたク
ラツチである。
FIG. 1 shows an overall schematic configuration of an embodiment of the present invention. In FIG. 1a, 1 is an engine, and 2 and 2 are left and right wheels driven by the driving force (engine output Pd) of the engine 1 via a differential gear 3. In FIG. A continuously variable transmission 4 whose gear ratio Kg changes continuously is interposed between the engine 1 and the differential gear 3. A gear ratio adjustment device 5 is provided to adjust the gear ratio Kg. The rate of change in the gear ratio Kg by the gear ratio adjusting device 5 is set to be slower than the rate of change in the engine rotational speed Ne, so as not to cause a gear shift shock when the engine 1 decelerates or decelerates. There is. 6 is a clutch interposed between the engine 1 and the continuously variable transmission 5.

また、7はエンジン1に吸気を供給する吸気通
路であつて、該吸気通路7の途中には吸気量を制
御するスロツトル弁8が介設されており、該スロ
ツトル弁8にはスロツトル弁8の開度θを調整す
るスロツトル弁開度調整装置9が設けられてい
る。このスロツトル弁開度θはエンジン負荷つま
りエンジントルクTeにほぼ等価のものである。
上記吸気通路7の下流端は気筒数(図では4気
筒)に応じて分岐され、該各分岐部7a,7a…
には燃料を噴射する燃料噴射弁10,10…が配
設されている。さらに、上記スロツトル弁8上流
の吸気通路7には吸気通路7をバイパスするバイ
パス通路11が設けられ、該バイパス通路11の
途中には、エンジン1にベルト伝動機構12を介
して駆動連結された過給機13が介設されてお
り、該過給機13により吸気を過給するようにし
ている。該過給機13への伝動系路の途中には過
給機13をON−OFF制御する電磁クラツチ14
が介設されている。尚、15は過給機13の作動
時に過給気が逆流しないように吸気通路7の上記
バイパス通路11に対応する部分に介設された逆
止弁である。
Reference numeral 7 denotes an intake passage that supplies intake air to the engine 1. A throttle valve 8 for controlling the amount of intake air is interposed in the middle of the intake passage 7. A throttle valve opening adjustment device 9 is provided to adjust the opening θ. This throttle valve opening θ is approximately equivalent to the engine load, that is, the engine torque Te.
The downstream end of the intake passage 7 is branched according to the number of cylinders (four cylinders in the figure), and each branch part 7a, 7a...
are provided with fuel injection valves 10, 10, . . . for injecting fuel. Furthermore, the intake passage 7 upstream of the throttle valve 8 is provided with a bypass passage 11 that bypasses the intake passage 7. A feeder 13 is provided, and the supercharger 13 supercharges intake air. An electromagnetic clutch 14 for controlling the turbocharger 13 on and off is located in the middle of the transmission line to the turbocharger 13.
is interposed. Incidentally, reference numeral 15 denotes a check valve interposed in a portion of the intake passage 7 corresponding to the bypass passage 11 to prevent supercharged air from flowing backward when the supercharger 13 is operated.

一方、16は、アクセルの操作量としてのアク
セルペダル17の踏込量αを検出するアクセル操
作量検出手段を構成するアクセルポジシヨンセン
サ、18は自動車の減速要求としてのブレーキペ
ダル19の踏込量βを検出する減速検出手段を構
成するブレーキポジシヨンセンサである。また、
20は無段変速機4の入力軸21の回転数により
エンジン回転数Neを検出する駆動系回転数検出
手段としてのエンジン回転数センサ、22は無段
変速機4の入力軸21の回転トルクによりエンジ
ントルクTeを検出するエンジン出力検出手段と
してのエンジントルクセンサ、23はスロツトル
弁8の開度θを検出するスロツトルポジシヨンセ
ンサ、24は吸気通路7の吸入空気量を検出する
エアフローメータである。これら各センサ16,
18,20,22,23およびエアフローメータ
24の各出力はアナログコンピユータまたはマイ
クロコンピユータよりなる制御手段25に入力さ
れている。該制御手段25には、上記変速比調整
装置5、スロツトル弁開度調整装置9、燃料噴射
弁10および電磁クラツチ14が接続され、これ
ら各々を制御するようにしている。
On the other hand, 16 is an accelerator position sensor constituting an accelerator operation amount detection means that detects the amount of depression α of the accelerator pedal 17 as the amount of accelerator operation, and 18 is the amount of depression β of the brake pedal 19 as a request for deceleration of the automobile. This is a brake position sensor that constitutes deceleration detection means. Also,
Reference numeral 20 denotes an engine rotation speed sensor as a drive system rotation speed detection means for detecting the engine rotation speed Ne based on the rotation speed of the input shaft 21 of the continuously variable transmission 4; 23 is a throttle position sensor that detects the opening degree θ of the throttle valve 8; and 24 is an air flow meter that detects the amount of intake air in the intake passage 7. . Each of these sensors 16,
The respective outputs of the air flow meters 18, 20, 22, 23 and the air flow meter 24 are input to a control means 25 consisting of an analog computer or a microcomputer. The control means 25 is connected to the speed ratio adjustment device 5, the throttle valve opening adjustment device 9, the fuel injection valve 10, and the electromagnetic clutch 14, and is configured to control each of these.

上記無段変速機4およびその変速比調整装置5
の具体的な構造を第2図に示す。第2図に示すよ
うに、無段変速機4は、公知のVベルト式無段変
速機(例えば特開昭56−46153号公報参照)より
なり、エンジン1からの入力軸21に設けられた
プライマリープーリ30と、出力軸26に設けら
れたセカンダリープーリ31と、両プーリ30,
31間に巻掛けられたVベルト32とからなる。
上記プライマリープーリ31は、固定プーリ33
と、該固定プーリ33に対向して進退自在な可動
プーリ34と、該可動プーリ34の背部に形成さ
れな油圧室35とを備えるとともに、入力軸21
と固定プーリ33との間に噛合介装された遊星歯
車36と、シフトレバー(図示せず)のマニユア
ル操作に応じて作動するマニユアルバルブ46の
圧油供給制御により前進変速段Lのときには上記
遊星歯車36を入力軸21側に固定せしめて固定
プーリ33(プライマリープーリ30)を入力軸
21と同方向に回転させ、後退変速段Rのときに
は遊星歯車36をケーシング30a側に固定せし
めて固定プーリ33を入力軸21とは逆方向に回
転させる油圧クラツチ37とを備えている。ま
た、上記セカンダリープーリ31は、同じく、固
定プーリ38と、該固定プーリ38に対向して進
退自在な可動プーリ39と、該可動プーリ39の
背部に形成された油圧室40とを備えている。上
記プライマリープーリ30およびセカンダリープ
ーリ31の各油圧室35,40はオイルポンプ4
1にレギユレータバルブ42を介して連通されて
いるとともに、上記プライマリープーリ30の可
動プーリ34に連動してセカンダリープーリ31
の油圧室40への圧油の供給、排出を制御するセ
カンダリーバルブ43が設けられており、各油圧
室35,40への圧油の供給、排出を制御するこ
とにより、各プーリ30,31における固定プー
リ33,38と可動プーリ34,39との間〓が
変化し、それに伴つてVベルト32が該間〓内を
上下に移動して変速比が無段的に変化するように
構成されている。
The continuously variable transmission 4 and its gear ratio adjustment device 5
The specific structure of is shown in FIG. As shown in FIG. 2, the continuously variable transmission 4 is a known V-belt type continuously variable transmission (for example, see Japanese Patent Application Laid-Open No. 56-46153), and is provided on an input shaft 21 from the engine 1. A primary pulley 30, a secondary pulley 31 provided on the output shaft 26, both pulleys 30,
31 and a V-belt 32 wound around between the belts 31 and 31.
The primary pulley 31 is a fixed pulley 33.
, a movable pulley 34 that can move forward and backward opposite the fixed pulley 33 , and a hydraulic chamber 35 formed at the back of the movable pulley 34 .
A planetary gear 36 meshingly interposed between the fixed pulley 33 and the planetary gear 36 and a pressure oil supply control of a manual valve 46 operated in response to manual operation of a shift lever (not shown) are used to control the planetary gear 36 when in the forward gear L. The gear 36 is fixed to the input shaft 21 side, and the fixed pulley 33 (primary pulley 30) is rotated in the same direction as the input shaft 21. When the gear 36 is in reverse gear R, the planetary gear 36 is fixed to the casing 30a side, and the fixed pulley 33 is rotated in the same direction as the input shaft 21. A hydraulic clutch 37 is provided for rotating the input shaft 21 in a direction opposite to that of the input shaft 21. Further, the secondary pulley 31 similarly includes a fixed pulley 38, a movable pulley 39 that can freely move forward and backward in opposition to the fixed pulley 38, and a hydraulic chamber 40 formed at the back of the movable pulley 39. Each hydraulic chamber 35, 40 of the primary pulley 30 and secondary pulley 31 is connected to the oil pump 4.
The secondary pulley 31 is connected to the movable pulley 34 of the primary pulley 30 through the regulator valve 42.
A secondary valve 43 for controlling the supply and discharge of pressure oil to the hydraulic chambers 40 is provided, and by controlling the supply and discharge of pressure oil to the respective hydraulic chambers 35 and 40, the The structure is such that the distance between the fixed pulleys 33, 38 and the movable pulleys 34, 39 changes, and accordingly, the V-belt 32 moves up and down within the distance, so that the gear ratio changes steplessly. There is.

そして、上記プライマリープーリ30の油圧室
35とレギユレータバルブ42との間には該油圧
室35への圧油の供給を制御する第1電磁バルブ
44が介設されている。該第1電磁バルブ44
は、後述の変速比ダウン信号を受けて開作動する
ことにより、プライマリープーリ30の油圧室3
5に圧油を供給し、その可動プーリ34を固定プ
ーリ33側に前進せしめて両者の間〓を狭め、そ
れに伴つてセカンダリーバルブ43の制御により
セカンダリープーリ31の圧油室40がリリーフ
されてその固定プーリ38と可動プーリ39との
間〓が拡がり、よつて変速比Kgを小さくするよ
うに制御するものである。また、上記プライマリ
ープーリ30の油圧室35と第1電磁バルブ44
との間には該油圧室35の圧油の排出を制御する
第2電磁バルブ45が介設されている。該第2電
磁バルブ45は、後述の変速比アツプ信号を受け
て開作動することにより、プライマリープーリ3
0の油圧室35をリリーフし、その可動プーリ3
4を固定プーリ33に対して後退せしめて両者の
間〓を拡げ、それに伴つてセカンダリーバルブ4
3の制御によりセカンダリープーリ31の圧油室
40に圧油が供給されてその固定プーリ38と可
動プーリ39との間〓が狭まり、よつて変速比
Kgを大きくするように制御するものである。こ
の第1および第2電磁バルブ44,45により、
無段変速機4の変速比を調整するようにした変速
比調整装置5を構成している。尚、47はプライ
マリープーリ30とセカンダリープーリ31との
Vベルト32を介する伝動関係を無効にするため
のクラツチバルブである。
A first electromagnetic valve 44 that controls the supply of pressure oil to the hydraulic chamber 35 is interposed between the hydraulic chamber 35 of the primary pulley 30 and the regulator valve 42 . The first electromagnetic valve 44
The hydraulic chamber 3 of the primary pulley 30 is opened in response to a gear ratio down signal, which will be described later.
5, the movable pulley 34 is advanced toward the fixed pulley 33 to narrow the gap between the two, and the secondary valve 43 is controlled to relieve the pressure oil chamber 40 of the secondary pulley 31 and release the pressure oil chamber 40 of the secondary pulley 31. The distance between the fixed pulley 38 and the movable pulley 39 is widened, thereby controlling the gear ratio Kg to be small. In addition, the hydraulic chamber 35 of the primary pulley 30 and the first electromagnetic valve 44
A second electromagnetic valve 45 for controlling the discharge of pressure oil from the hydraulic chamber 35 is interposed between the two. The second electromagnetic valve 45 opens the primary pulley 3 by opening in response to a gear ratio up signal, which will be described later.
0 hydraulic chamber 35 and its movable pulley 3
4 is moved backward with respect to the fixed pulley 33 to widen the gap between the two, and as a result, the secondary valve 4
3, pressure oil is supplied to the pressure oil chamber 40 of the secondary pulley 31, and the distance between the fixed pulley 38 and the movable pulley 39 is narrowed, and thus the gear ratio is changed.
It is controlled to increase Kg. With these first and second electromagnetic valves 44, 45,
A gear ratio adjustment device 5 is configured to adjust the gear ratio of the continuously variable transmission 4. Note that 47 is a clutch valve for nullifying the transmission relationship between the primary pulley 30 and the secondary pulley 31 via the V-belt 32.

上記制御手段25は、第1図bに示すように、
上記アクセルポジシヨンセンサ16からの信号を
受け、アクセル操作量とエンジン回転数との所定
の関係に基づいて目標エンジン回転数Ne(目標駆
動系回転数)を設定する目標駆動系回転数設定手
段25aと、該目標駆動系回転数設定手段25a
で設定される目標エンジン回転数Neと上記エン
ジン回転数センサ20で検出される実際のエンジ
ン回転数Ne′とを比較し、実際のエンジン回転数
Ne′が目標エンジン回転数Neとなるように上記
変速比調整装置5を制御する変速比制御手段25
bと、上記アクセルポジシヨンセンサ16からの
信号を受け、アクセル操作量とエンジン出力との
所定の関係に基づいて目標エンジントルクTe(目
標エンジン出力)を設定する目標エンジン出力設
定手段25cと、該目標エンジン出力設定手段2
5cで設定される目標エンジントルクTeと上記
エンジントルクセンサ22で検出される実際のエ
ンジントルクTe′とを比較し、実際のエンジント
ルクTe′が目標エンジントルクTeとなるように上
記スロツトル弁開度調整装置9を制御するスロツ
トル弁開度制御手段25dと、上記ブレーキポジ
シヨンセンサ18の出力を受け、減速要求が所定
値以下のとき、スロツトル弁8を閉方向に変化さ
せるように上記スロツトル弁開度制御手段25d
を制御するとともにエンジン回転数を減速要求時
の回転数よりも低くするように上記変速比制御手
段25bを制御する補正手段25eとからなる。
The control means 25, as shown in FIG. 1b,
Target drive system rotation speed setting means 25a receives a signal from the accelerator position sensor 16 and sets a target engine rotation speed Ne (target drive system rotation speed) based on a predetermined relationship between the accelerator operation amount and the engine rotation speed. and the target drive system rotation speed setting means 25a.
The target engine speed Ne set in is compared with the actual engine speed Ne' detected by the engine speed sensor 20, and the actual engine speed is determined.
Gear ratio control means 25 that controls the gear ratio adjusting device 5 so that Ne' becomes the target engine speed Ne
b, target engine output setting means 25c that receives a signal from the accelerator position sensor 16 and sets a target engine torque Te (target engine output) based on a predetermined relationship between the accelerator operation amount and the engine output; Target engine output setting means 2
The target engine torque Te set in step 5c is compared with the actual engine torque Te' detected by the engine torque sensor 22, and the throttle valve opening is adjusted so that the actual engine torque Te' becomes the target engine torque Te. A throttle valve opening degree control means 25d that controls the adjustment device 9 receives the output of the brake position sensor 18, and when the deceleration request is less than a predetermined value, opens the throttle valve 8 so as to change the throttle valve 8 in the closing direction. degree control means 25d
and a correction means 25e that controls the gear ratio control means 25b so as to control the engine speed and to make the engine speed lower than the speed at which the deceleration is requested.

次に、上記制御手段25の作動を第3図に示す
ロジツク図に従つて説明する。第3図はアクセル
踏込量α(アクセル操作量)を要求エンジン出力
Pdとみなした場合を示す。
Next, the operation of the control means 25 will be explained with reference to the logic diagram shown in FIG. Figure 3 shows the accelerator depression amount α (accelerator operation amount) and the required engine output.
The case where it is considered as Pd is shown.

第3図に示すように、制御手段25には、予め
アクセル踏込量αに対する目標エンジン回転数
Neをマツプした第1マツプM1を備えている。そ
して、自動車の定常運転時は、アクセルポジシヨ
ンセンサ16からのアクセル踏込量α信号が入力
されると、上記第1マツプM1でこのアクセル踏
込量αに対応した目標エンジン回転数Neが求め
られ、この目標エンジン回転数Ne信号を比較器
C1で、エンジン回転数センサ20からの実測エ
ンジン回転数Ne′信号と比較し、その偏差ΔNe
(=Ne−Ne′)がΔNe>0のときには、ブレーキ
ポジシヨンセンサ18からのブレーキ踏込量β信
号が所定値以下であること(つまりブレーキ踏込
みなし)を前提として変速比アツプ信号を変速比
調整装置5の第2電磁バルブ45に出力して、無
段変速機4の変速比Kg(つまりエンジン回転数)
を増大させる一方、ΔNe<0のときには同じく
ブレーキ踏込みなしを前提として変速比ダウン信
号を変速比調整装置5の第1電磁バルブ44に出
力して、無段変速機4の変速比Kg(つまりエンジ
ン回転数)を減少させるようにフイードバツク制
御して目標エンジン回転数Neに制御する。また、
定常運転時には、上記アクセル踏込量α信号の入
力により、除算器Diにおいてこのアクセル踏込
量α信号つまりエンジン出力Pd信号がそのとき
のエンジン回転数センサ20からのエンジン回転
数Ne信号によつて除算されて目標エンジントル
クTeが求められ、この目標エンジントルクTe信
号を比較器C2で、エンジントルクセンサ22か
らの実測エンジントルクTe′信号と比較し、その
偏差ΔTe(=Te−Te′)がΔTe>0のときには上
記と同様のブレーキ踏込みなしを前提としてスロ
ツトル弁開度アツプ信号をスロツトル弁開度調整
装置9に出力して、スロツトル弁8の開度θ(つ
まりエンジントルク)を増大させる一方、ΔTe
<0のときにはスロツトル弁開度ダウン信号をス
ロツトル弁開度調整装置9に出力して、スロツト
ル弁8の開度θ(つまりエンジントルク)を減少
させるようにフイードバツク制御して目標エンジ
ントルクTe(目標スロツトル弁開度θ)に制御す
る。
As shown in FIG. 3, the control means 25 has a target engine rotation speed corresponding to the accelerator depression amount α in advance.
It has a first map M1 that maps Ne. During steady operation of the automobile, when the accelerator depression amount α signal from the accelerator position sensor 16 is input, the target engine rotation speed Ne corresponding to this accelerator depression amount α is determined in the first map M1 . , this target engine speed Ne signal is used as a comparator
At C 1 , compare it with the measured engine speed Ne' signal from the engine speed sensor 20, and calculate the deviation ΔNe.
When (=Ne−Ne′) is ΔNe>0, the gear ratio up signal is adjusted on the premise that the brake depression amount β signal from the brake position sensor 18 is below a predetermined value (that is, there is no brake depression). It outputs to the second electromagnetic valve 45 of the device 5 and changes the gear ratio Kg of the continuously variable transmission 4 (that is, the engine rotation speed).
On the other hand, when ΔNe<0, a gear ratio down signal is output to the first electromagnetic valve 44 of the gear ratio adjusting device 5 on the assumption that the brake is not depressed, and the gear ratio Kg of the continuously variable transmission 4 (that is, the engine Feedback control is performed to reduce the engine speed Ne to the target engine speed Ne. Also,
During steady operation, upon input of the accelerator depression amount α signal, the accelerator depression amount α signal, that is, the engine output Pd signal, is divided by the engine rotation speed Ne signal from the engine rotation speed sensor 20 at that time in the divider Di. The target engine torque Te is determined, and this target engine torque Te signal is compared with the measured engine torque Te' signal from the engine torque sensor 22 using a comparator C2, and the deviation ΔTe (=Te−Te') is determined by ΔTe. >0, a throttle valve opening up signal is output to the throttle valve opening adjustment device 9 on the assumption that the brake is not depressed as described above, and the opening θ of the throttle valve 8 (that is, engine torque) is increased. ΔTe
<0, a throttle valve opening down signal is output to the throttle valve opening adjustment device 9, and the target engine torque Te (target The throttle valve opening degree θ) is controlled.

ここで、上記第1マツプM1について第5図に
より説明するに、上記エンジン1のエンジン性能
曲線(エンジン回転数Ne−エンジントルクTe曲
線)は第5図aに示すように設定されている。す
なわち、定常運転時は、第5図aの特性曲線Aに
示すように、エンジン1の熱効率つまり燃費効率
を最良とするため低回転側(摺動抵抗が低下する
側)でかつ高負荷側(ポピングロスが低下する
側)の使用域となるように、エンジン出力Pdが
第1設定値(図でPd1)以下のとき(つまりアク
セル踏込量αが第1所定値以下のとき)には、エ
ンジン回転数Neをエンジンの安定運転性が確保
できる最低エンジン回転数Nelに保持してエンジ
ントルクTeが変化し、エンジン出力Pdが上記第
1設定値(Pd1)と該第1設定値よりも大きい第
2設定値(図でPdm)との間にあるとき(つま
りアクセル踏込量αが第1所定値と第2所定値と
の間にあるとき)には、WOT(Wide Open
Throttle)曲線ないしその近傍に沿つてエンジン
トルクTeを最大エンジントルクTemに保持す
る、つまりスロツトル弁開度θを全開ないし全開
近傍の設定値θmに保持してエンジン回転数Neが
変化し、エンジン出力Pdが第2設定値(Pdm)
以上のとき(アクセル踏込量αが第2所定値以上
のとき)には、最高エンジン回転数Nemでトル
ク増大装置(上述の過給機13や空燃比リツチ手
段)の作動によりエンジントルクTeがさらに増
大するような特性としている。このエンジン性能
曲線A(Ne−Te曲線)をもとに、エンジン出力
Pd(つまりアクセル踏込量α)を横軸にとつてエ
ンジン出力Pd(アクセル踏込量α)−エンジン回
転数Ne曲線に変換すると、第5図bで示す特性
曲線となる。この第5図bの特性曲線が第1マツ
ツプM1に相当する。つまり、この第1マツプM1
の値および前述の除算器Diによりエンジン出力
Pd(アクセル踏込量α)をエンジン回転数Neで
除算したエンジントルクTeの値に基づいて、自
動車の定常運転時はアクセル踏込量αに応じて、
エンジン回転数Neを制御する変速比Kgおよびエ
ンジントルクTeを制御するスロツトル弁開度θ
を相互に調整して、アクセル踏込量αに対応した
エンジン出力Pdになるように、かつ上記最良の
燃費効率を得る第5図aのNe−Te曲線Aに則つ
たエンジン性能特性になるようにしている。
Here, to explain the first map M1 with reference to FIG. 5, the engine performance curve (engine speed Ne-engine torque Te curve) of the engine 1 is set as shown in FIG. 5a. That is, during steady operation, as shown in the characteristic curve A in Fig. 5a, in order to maximize the thermal efficiency, that is, the fuel efficiency, of the engine 1, the rotation speed should be set at the low rotation side (the side where the sliding resistance decreases) and at the high load side (the side where the sliding resistance decreases). When the engine output Pd is below the first set value (Pd 1 in the figure) (that is, when the accelerator depression amount α is below the first predetermined value), the engine The engine torque Te changes while the rotational speed Ne is maintained at the lowest engine rotational speed Nel that can ensure stable engine operation, and the engine output Pd is greater than the first set value (Pd 1 ). WOT (Wide Open
The engine torque Te is held at the maximum engine torque Tem along the (Throttle) curve or its vicinity, that is, the throttle valve opening θ is held at the fully open or near fully open set value θm, and the engine speed Ne changes, resulting in engine output. Pd is the second setting value (Pdm)
In the above case (when the accelerator depression amount α is equal to or higher than the second predetermined value), the engine torque Te is further increased by the operation of the torque increase device (supercharger 13 and air-fuel ratio enrichment means described above) at the maximum engine speed Nem. It has a characteristic that increases. Based on this engine performance curve A (Ne-Te curve), engine output
When Pd (that is, accelerator depression amount α) is taken as the horizontal axis and converted into an engine output Pd (accelerator depression amount α)-engine rotation speed Ne curve, the characteristic curve shown in FIG. 5b is obtained. This characteristic curve in FIG. 5b corresponds to the first map M1 . In other words, this first map M 1
The engine output is determined by the value of and the divider Di mentioned above.
Based on the value of engine torque Te obtained by dividing Pd (accelerator depression amount α) by engine speed Ne, during steady operation of the car, depending on the accelerator depression amount α,
Gear ratio Kg that controls engine speed Ne and throttle valve opening θ that controls engine torque Te
are mutually adjusted so that the engine output Pd corresponds to the accelerator depression amount α, and the engine performance characteristics conform to the Ne-Te curve A in Figure 5a, which provides the best fuel efficiency. ing.

これに対し、アクセルペダル17を踏込んで加
速を行う加速時には、アクセルポジシヨンセンサ
16からアクセル踏込量α信号を微分回路27で
微分してアクセル踏込みの変化速度dα/dtが求
められる。そして、この変化速度dα/dtが第2
マツツプM2により所定値以上であると判断され
るいわゆる中加速時には、加え合せ点P1におい
てアクセルポジシヨンセンサ16からのアクセル
踏込量α信号に上記第2マツプM2の補正値信号
が加算補正され、以後はこの加算補正されたアク
セル踏込量α1信号に基づいて上記定常運転時と同
様に実測エンジン回転数との比較により変速比ア
ツプ信号又はダウン信号を変速比調整装置5に出
力してフイードバツク制御するとともに、実測エ
ンジントルクとの比較によりスロツトル弁開度ア
ツプ信号又はダウン信号をスロツトル弁開度調整
装置9に出力してフイードバツク制御し、よつて
エンジン出力Pdをアクセル踏込量αに対応した
エンジン出力以上の出力になるようにしたのち定
点減速を行うようにしている。
On the other hand, when accelerating by depressing the accelerator pedal 17, the accelerator depressing amount α signal from the accelerator position sensor 16 is differentiated by the differentiating circuit 27 to obtain the rate of change dα/dt of the accelerator depressing. Then, this rate of change dα/dt is the second
During so-called medium acceleration, which is determined by the map M2 to be equal to or higher than a predetermined value, the correction value signal of the second map M2 is added to the accelerator depression amount α signal from the accelerator position sensor 16 at the addition point P1 for correction. Thereafter, based on this addition-corrected accelerator depression amount α 1 signal, a gear ratio up signal or a gear ratio down signal is output to the gear ratio adjusting device 5 by comparing it with the actual engine rotation speed as in the above-mentioned steady operation. In addition to performing feedback control, a throttle valve opening up signal or down signal is output to the throttle valve opening adjustment device 9 based on comparison with the measured engine torque, thereby controlling the engine output Pd to correspond to the accelerator depression amount α. After making sure that the output is higher than the engine output, fixed point deceleration is performed.

さらに、アクセルポジシヨンセンサ16からの
目標アクセル踏込量α信号を比較器C3で、エン
ジン回転数センサ20からのエンジン回転数Ne
信号とエンジントルクセンサ22からのエンジン
トルクTe信号とを乗算器Muで乗算して求められ
たそのときの実測エンジン出力Pd′(=Ne・Te)
信号と比較しその偏差(α−Ne・Te)が第3マ
ツプM3により所定値以上と判断されるとき、つ
まりアクセルペダル17を急激に大きく踏込む急
加速時には、上記加え合せ点P1で上記アクセル
ポジシヨンセンサ20からのアクセルペダル踏込
量α信号に上記第3マツプM3の補正値信号が最
大エンジン出力値Pmaxになるように加算補正さ
れ、この最大エンジン出力値Pmax信号に基づい
て以後は上記中加速時と同様に変速比Kgおよび
スロツトル弁開度θがフイードバツク制御され、
よつてエンジン出力Pdを最大エンジン出力値
Pmaxになるように制御して加速を行うようにし
ている。
Furthermore, the target accelerator depression amount α signal from the accelerator position sensor 16 is sent to the comparator C3 , and the engine rotation speed Ne from the engine rotation speed sensor 20 is sent to the comparator C3.
Actual engine output Pd′ (=Ne・Te) obtained by multiplying the signal and the engine torque Te signal from the engine torque sensor 22 by the multiplier Mu
When compared with the signal and the deviation (α-Ne・Te) is determined to be greater than a predetermined value by the third map M3 , that is, during sudden acceleration when the accelerator pedal 17 is suddenly and greatly depressed, at the above-mentioned addition point P1. The correction value signal of the third map M3 is added to the accelerator pedal depression amount α signal from the accelerator position sensor 20 and corrected so that it becomes the maximum engine output value Pmax, and from then on based on this maximum engine output value Pmax signal The gear ratio Kg and the throttle valve opening θ are feedback-controlled in the same way as during the above-mentioned medium acceleration.
Therefore, engine output Pd is the maximum engine output value
Acceleration is controlled so that Pmax is achieved.

また、上記アクセル踏込みの変化速度dα/dt
が第4マツプM4により所定値以上と判断される
いわゆるチヨイ加速時には、その「1」信号によ
り、上記と同様にブレーキ踏込みなしを前提とし
て空燃比リツチ信号を燃料噴射弁10…に出力し
て、該燃料噴射弁10…からの燃料噴射量を増量
させることにより、エンジントルクTeを直ちに
最大エンジントルクTemよりもさらに増大させ、
その後は上記第1マツプM1の値と除算器Diの値
とを基にしたフイードバツク制御によりアクセル
踏込量αに対応したエンジン出力Pdを一定に保
持してエンジン回転数Neが目標エンジン回転数
に増大変化し、チヨイ加速を応答性良くかつスム
ーズに行うようにしている。尚、上記アクセル踏
込み変化速度dα/dtが第5マツプM5により所定
値以下のときには、その「1」信号により、空燃
比セツト値信号が燃料噴射弁10…に出力されて
該燃料噴射弁10…からの燃料噴射量がセツト値
に保持される。この空燃比をリーン側に戻す速度
は、加速時のエンジン出力の増加率に一致させる
ことがトルクシヨツクを防止できるので好まし
い。
In addition, the rate of change of the accelerator depression mentioned above dα/dt
During so-called rapid acceleration, where the 4th map M4 determines that the engine speed is higher than a predetermined value, the "1" signal outputs an air-fuel ratio rich signal to the fuel injection valves 10, assuming that the brake is not depressed, as described above. , by increasing the amount of fuel injected from the fuel injection valves 10..., the engine torque Te is immediately increased further than the maximum engine torque Tem,
Thereafter, by feedback control based on the value of the first map M1 and the value of the divider Di, the engine output Pd corresponding to the accelerator depression amount α is held constant, and the engine speed Ne reaches the target engine speed. This increases the speed of the change, making quick acceleration responsive and smooth. Incidentally, when the accelerator depression change rate dα/dt is less than or equal to the predetermined value according to the fifth map M5 , an air-fuel ratio set value signal is outputted to the fuel injection valve 10 by the "1" signal, and the air-fuel ratio set value signal is outputted to the fuel injection valve 10. The fuel injection amount from... is held at the set value. It is preferable that the speed at which the air-fuel ratio is returned to the lean side matches the rate of increase in engine output during acceleration, since torque shock can be prevented.

また、上記アクセルペダル16の踏込みを戻り
方向に変化させて車速をほぼ一定に調整する調速
時には、スロツトル弁開度θとエンジン回転数
Neとの制御の応答性の差によつて先ず除算器Di
の値のみによる制御が行われ、アクセル踏込量α
の減少変化に対応してスロツトル弁開度のみが直
ちに減少変化し、エンジン出力Pdを目標エンジ
ン出力に減少変化させる。その後は第1マツプ
M1の値と除算器Diの値とを基にした制御により
上記目標エンジン出力を一定に保持して変速比
Kg(エンジン回転数Ne)およびスロツトル弁開
度θが目標値に変化し、よつて調速を応答性良く
かつトルクシヨツクなくスムーズに行うようにし
ている。
In addition, at the time of regulating the vehicle speed by changing the depression of the accelerator pedal 16 in the return direction, the throttle valve opening θ and the engine rotational speed are adjusted.
First, the divider Di
Control is performed only by the value of , and the accelerator depression amount α
In response to the decreasing change in , only the throttle valve opening immediately decreases, causing the engine output Pd to decrease to the target engine output. After that, the first map
Control based on the value of M 1 and the value of the divider Di keeps the target engine output constant and changes the gear ratio.
Kg (engine speed Ne) and throttle valve opening θ change to the target values, so that speed regulation is performed smoothly with good responsiveness and without torque shock.

さらに、上記アクセル踏込量αが第6マツプ
M6により上記第2所定値以上のエンジン高回転
高負荷時には、第6マツプM6による目標エンジ
ントルクTe信号を比較器C4でエンジントルクセ
ンサ22からの実測エンジントルクTe′信号と比
較して、その偏差ΔTe(=Te−Te′)がΔTe>0
のときにはブレーキ踏込みなしを前提として過給
アツプ信号を電磁クラツチ14に出力して、過給
機13を作動させることによりエンジントルク
Teを増大させる一方、ΔTe<0のときには同じ
くブレーキ踏込みなしを前提として過給ダウン信
号を電磁クラツチ14に出力して、過給機13の
作動を停止させることによりエンジントルクTe
を低下させるようにフイードバツク制御して目標
エンジントルクTeに制御する。
Furthermore, the accelerator depression amount α is the sixth map.
When the engine speed is high and the load is higher than the second predetermined value due to M6 , the target engine torque Te signal from the sixth map M6 is compared with the measured engine torque Te' signal from the engine torque sensor 22 using the comparator C4 . , the deviation ΔTe (=Te−Te′) is ΔTe>0
When , the engine torque is increased by outputting a supercharging up signal to the electromagnetic clutch 14 and operating the supercharger 13 assuming that the brake is not depressed.
While Te is increased, when ΔTe<0, a supercharging down signal is output to the electromagnetic clutch 14 on the assumption that the brake is not depressed, and the operation of the supercharger 13 is stopped, thereby increasing the engine torque Te.
The target engine torque Te is controlled by feedback control so as to reduce the torque Te.

一方、ブレーキポジシヨンセンサ18によりブ
レーキペダル19の踏込みを検出し、その踏込量
βが第7マツプM7により所定値以上のブレーキ
操作時つまり減速時には、その「1」信号によ
り、スロツトル弁開度ダウン信号、過給ダウン信
号および空燃比セツト値信号を出力するととも
に、フリツプフロツプ28およびインバータI1
介して前述のアクセル踏込みに伴う各信号の出力
を阻止して、スロツトル弁8の開度の減少、過給
機13の作動の停止および空燃比のセツト値の保
持を強制的に行い、さらにインバータI2によつて
反転した「0」信号により燃料噴射弁10…への
燃料オン信号の出力を阻止するとともに、燃料オ
フ信号をエンジン回転数Neが所定値以上である
ことを前提として燃料噴射弁10…に出力して、
燃流噴射弁10…からの燃流噴射を停止するよう
にしており、よつてブレーキ操作時の良好な減速
性能を確保するようにしている。
On the other hand, when the brake position sensor 18 detects the depression of the brake pedal 19 and the depression amount β exceeds a predetermined value according to the seventh map M7 , that is, when decelerating, the "1" signal determines the throttle valve opening. It outputs a down signal, a supercharging down signal, and an air-fuel ratio set value signal, and also prevents the output of each signal associated with the accelerator pedal depression through the flip-flop 28 and inverter I1 , thereby reducing the opening degree of the throttle valve 8. , forcibly stops the operation of the supercharger 13 and maintains the set value of the air-fuel ratio, and further outputs a fuel-on signal to the fuel injection valves 10 by the "0" signal inverted by the inverter I2 . At the same time, outputting a fuel off signal to the fuel injection valves 10 on the premise that the engine speed Ne is equal to or higher than a predetermined value,
Fuel injection from the fuel injection valves 10 is stopped, thereby ensuring good deceleration performance during brake operation.

そして、上記ブレーキポジシヨンセンサ18か
らのブレーキ踏込量β信号が第8マツプM8によ
り第1所定値以下と判断されるいわゆる小減速時
には、ブレーキ操作信号を受けてサンプリング回
路29によつてサンプリング保持されたブレーキ
操作時のエンジン回転数センサ20からのエンジ
ン回転数Ne信号が、加え合せ点P2において上記
第8マツプM8によるマイナス補正値信号によつ
て補正され、この低回転側に減少補正された目標
エンジン回転数Ne1信号を比較器C5で、エンジン
回転数センサ20からの実測エンジン回転数
Ne′信号と比較して、その偏差ΔNe(=Ne1
Ne′)がΔNe>0のときには上記ブレーキ操作信
号によるブレーキペダル19の踏込みを前提とし
て変速比アツプ信号を変速比調整装置5に出力し
て変速比Kgつまりエンジン回転数Neを増大させ
る一方、ΔNe<0のときには同じくブレーキペ
ダル19の踏込みを前提として変速比ダウン信号
を変速比調整装置5に出力して変速比Kgつまり
エンジン回転数Neを減少させるようにフイード
バツク制御し、よつてエンジン回転数Neをブレ
ーキ操作時の回転数よりも低回転側の目標エンジ
ン回転数Ne1になるようにして、減速要求の少な
い小減速時におけるエンジン騒音を迅速にかつ孔
に減少させるようにしている。
Then, during so-called small deceleration when the brake depression amount β signal from the brake position sensor 18 is determined to be less than the first predetermined value by the eighth map M8 , the sampling circuit 29 receives the brake operation signal and holds the sample. The engine rotational speed Ne signal from the engine rotational speed sensor 20 during the brake operation is corrected by the negative correction value signal from the eighth map M8 at the addition point P2 , and the engine rotational speed Ne signal is corrected to decrease toward the lower rotational speed side. The comparator C 5 converts the target engine speed Ne 1 signal into the measured engine speed from the engine speed sensor 20.
Compared with the Ne′ signal, its deviation ΔNe (=Ne 1
Ne') is ΔNe > 0, a gear ratio up signal is output to the gear ratio adjustment device 5 on the assumption that the brake pedal 19 is depressed in response to the brake operation signal, and the gear ratio Kg, that is, the engine rotation speed Ne is increased, while ΔNe When <0, a gear ratio down signal is output to the gear ratio adjustment device 5 on the assumption that the brake pedal 19 is depressed, and feedback control is performed to decrease the gear ratio Kg, that is, the engine speed Ne, and thus the engine speed Ne is set to a target engine rotational speed Ne 1 that is lower than the rotational speed during brake operation, so that engine noise during small decelerations with few deceleration requests is quickly and effectively reduced.

また、上記ブレーキ踏込量β信号が第8マツプ
M8により上記第1所定値と該第1所定値よりも
大きい第2所定値との間にあると判断されるいわ
ゆる中減速時には、上記サンプリング回路29か
らのブレーキ操作時のエンジン回転数Ne信号は
加え合せ点P2で第8マツプM8による零補正値信
号により補正されずにそのまま出力され、以後は
上記小減速時と同様に実測エンジン回転数との比
較により変速比アツプ信号又はダウン信号を変速
比調整装置5に出力してフイードバツク制御し、
よつてエンジン回転数Neをブレーキ操作時の回
転数のまま一定に保持して、中減速時の減速要求
の合致したエンジンブレーキ性能を確保しながら
エンジン騒音を可及的に低減させるようにしてい
る。
In addition, the above-mentioned brake depression amount β signal is shown in the 8th map.
During so-called medium deceleration, which is determined to be between the first predetermined value and a second predetermined value larger than the first predetermined value by M8 , the engine rotation speed Ne signal during brake operation is output from the sampling circuit 29. is output as is without being corrected by the zero correction value signal from the eighth map M8 at the addition point P2 , and from then on, the gear ratio up signal or down signal is generated by comparison with the measured engine speed as in the case of the above-mentioned small deceleration. is output to the gear ratio adjusting device 5 for feedback control,
Therefore, the engine speed Ne is held constant at the same speed as when the brake is operated, thereby reducing engine noise as much as possible while ensuring engine braking performance that meets the deceleration request during medium deceleration. .

さらに、上記ブレーキ踏込量β信号が第8マツ
プM8により上記第2所定致以上と判断されるい
わゆる急減速時には、サンプリング回路29から
のブレーキ操作時のエンジン回転数Ne信号は加
え合せ点P2で、第8マツプM8によるプラス補正
値信号により補正され、この高回転側に増大補正
された目標エンジン回転数Ne2に基づいて以後は
上記小減速時と同様に実測エンジン回転数との比
較によりフイードバツク制御され、よつてエンジ
ン回転数Neをブレーキ操作時の回転数よりも高
回転側の目標エンジン回転数Ne2になるようにし
て、減速要求の大きい急減速時におけるエンジン
ブレーキ性能を最大限に発揮させるようにしてい
る。
Furthermore, during so-called sudden deceleration when the brake depression amount β signal is judged to be equal to or higher than the second predetermined value by the eighth map M8 , the engine rotational speed Ne signal during brake operation from the sampling circuit 29 is added to the summation point P2. Then, based on the target engine speed Ne 2 corrected by the plus correction value signal from the eighth map M8 , and corrected to increase toward the high speed side, from then on, comparison with the measured engine speed is performed in the same manner as during the above-mentioned small deceleration. Therefore, the engine rotation speed Ne is set to the target engine rotation speed Ne 2 , which is higher than the rotation speed during brake operation, thereby maximizing engine braking performance during sudden deceleration when a large deceleration request is required. I try to make the most of it.

なお、エンジン回転数センサ20からのエンジ
ン回転数Ne′信号が所定値以下のときには、スロ
ツトル弁開度アツプ信号および燃料オン信号を出
力して、スロツトル弁8の開度θを強制的に増大
させるとともに、燃料噴射弁10…からの燃料噴
射を行つて、エンジンの極低回転時の運転性を確
保するようにしている。尚、エンジン回転数
Ne′信号が所定値以上のときはスロツトル弁開度
ダウン信号の出力および前述の燃料オフ信号の出
力を許容するようになされている。
When the engine speed Ne′ signal from the engine speed sensor 20 is below a predetermined value, a throttle valve opening up signal and a fuel on signal are output to forcibly increase the opening θ of the throttle valve 8. At the same time, fuel is injected from the fuel injection valves 10 to ensure operability of the engine at extremely low rotation speeds. In addition, engine rotation speed
When the Ne' signal exceeds a predetermined value, output of the throttle valve opening down signal and the aforementioned fuel off signal are permitted.

次に、上記減速運転から定常運転に復帰すると
きには、ブレーキペダル19の踏込みを離すと、
ブレーキポジシヨンセンサ18からのブレーキ踏
込量β信号が所定値以下となり、第7マツプM7
からの「0」信号をインバータI1で反転した
「1」信号により直ちに前述の変速比アツプ信号
およびダウン信号の変速比調整装置5への出力が
許容されて、アクセルペダル17の踏込量αに応
じて変速比Kgつまりエンジン回転数Neを目標値
になるように減少制御する。その後、エンジン回
転数Neが目標値に近づくと、第9マツプM9から
「1」信号が出力され、この「1」信号によりス
ロツトル弁開度アツプ信号およびダウン信号のス
ロツトル弁開度調整装置9への出力が許容され
て、スロツトル弁開度θを目標値になるように増
大制御する。そして、スロツトル弁開度θが目標
値に近づくと、第10マツプM10からの「1」信号
により前述のフリツプフロツプ28がリセツトさ
れ、そのことにより、減速時に出力阻止制御され
ていた空燃比リツチ信号、過給アツプ信号および
過給ダウン信号の各出力が許容されるようにして
いる。よつて、減速運転から定常運転への復帰
時、スロツトル弁開度θの増大制御時間を可及的
に短縮して燃料消費量を少なく抑え、低燃費で復
帰するようにしている。
Next, when returning from the deceleration operation to steady operation, when the brake pedal 19 is released,
The brake depression amount β signal from the brake position sensor 18 becomes less than a predetermined value, and the seventh map M7
The " 1 " signal which is obtained by inverting the "0" signal from Accordingly, the gear ratio Kg, that is, the engine rotation speed Ne, is controlled to decrease so as to reach the target value. After that, when the engine speed Ne approaches the target value, a "1" signal is output from the ninth map M9 , and this "1" signal generates a throttle valve opening up signal and a throttle valve opening down signal to the throttle valve opening adjustment device 9. The throttle valve opening θ is increased and controlled to reach the target value. Then, when the throttle valve opening θ approaches the target value, the above-mentioned flip-flop 28 is reset by the "1" signal from the 10th map M10 , thereby resetting the air-fuel ratio rich signal whose output was inhibited during deceleration. , a supercharging up signal, and a supercharging down signal. Therefore, when returning from deceleration operation to steady operation, the control time for increasing the throttle valve opening θ is shortened as much as possible to suppress fuel consumption and return with low fuel consumption.

したがつて、上記のように自動車の小減速時に
は、第5図aの特性曲線Bに示すように、ブレー
キペダル19を軽く踏込むと、エンジン回転数
Neはほぼ一定のまま直ちにエンジンTeつまりス
ロツトル弁開度θがスロツトル弁全開特性曲線C
に向つて減少変化し、スロツトル弁8が全閉にな
つた後、上記スロツトル弁全閉特性曲線Cに沿つ
てエンジン回転数Neが低回転側に減少変化する
ことになる。その結果、スロツトル弁8の全閉変
化により減速要求の少ない小減速時に合致した緩
かな減速度が得られるとともに、エンジン回転数
の減少変化によりエンジン騒音が速かに低減させ
ることができ、よつて小減速時の運転性、静粛性
の向上を図ることができる。
Therefore, when the vehicle is decelerating slightly as described above, when the brake pedal 19 is lightly depressed, the engine speed increases, as shown in characteristic curve B in FIG. 5a.
While Ne remains almost constant, the engine Te, that is, the throttle valve opening θ, immediately changes to the throttle valve fully open characteristic curve C.
After the throttle valve 8 becomes fully closed, the engine speed Ne decreases toward the low speed side along the throttle valve fully closed characteristic curve C. As a result, by fully closing the throttle valve 8, a gentle deceleration that matches the small deceleration with little deceleration request can be obtained, and the engine noise can be quickly reduced by decreasing the engine speed. It is possible to improve drivability and quietness during small decelerations.

尚、上記実施例ではアクセル踏込量αを、要求
するエンジン出力Pdとみなした場合について述
べたが、要求する車速Vcとみなしてもよい。こ
の場合には、第1図で破線で示すように、無段変
速機4の出力軸26の回転数により車速Vcを検
出する車速センサ50を設けて、この出力を制御
手段25に入力するとともに、制御手段25にお
いて、第4図に示すように、アクセルポジシヨン
センサ16からのアクセル踏込量α信号と上記車
速センサ50からの車速信号Vc信号とを比較器
C6で比較してその偏差を求め、この偏差を、積
分動作と比例動作とを並列に行う所謂P−I動作
により制御してエンジン出力Pdを算出するよう
にすればよい。また、この場合、エンジン出力
Pd算出には積分要素を含むため、常にアクセル
踏込量αと車速Vcとの差が零になるようにフイ
ードバツクがかかり、定常運転時では両者の差が
零になり、エンジン出力Pdは走行負荷と一致す
る。
Incidentally, in the above embodiment, a case has been described in which the accelerator depression amount α is regarded as the required engine output Pd, but it may also be regarded as the required vehicle speed Vc. In this case, as shown by the broken line in FIG. As shown in FIG. 4, the control means 25 compares the accelerator depression amount α signal from the accelerator position sensor 16 with the vehicle speed signal Vc signal from the vehicle speed sensor 50.
C6 to find the deviation, and this deviation may be controlled by a so-called P-I operation in which an integral operation and a proportional operation are performed in parallel to calculate the engine output Pd. Also, in this case, engine output
Since the Pd calculation includes an integral element, feedback is applied so that the difference between the accelerator depression amount α and the vehicle speed Vc is always zero, and during steady operation, the difference between the two becomes zero, and the engine output Pd is equal to the running load. Match.

また、上記実施例では、自動車の定常運転時、
アクセル踏込量αに応じて要求エンジン出力を最
小燃費で得るように変速比Kgおよびスロツトル
弁開度θを変化させるようにしたが、特にこれに
限定されるものではなく、要はアクセル踏込量に
対応したエンジン出力になるように変速比Kgお
よびスロツトル弁開度θを変化させるようにした
ものであればよい。
Furthermore, in the above embodiment, during steady operation of the automobile,
Although the gear ratio Kg and the throttle valve opening θ are changed in accordance with the accelerator depression amount α to obtain the required engine output with the minimum fuel consumption, the invention is not limited to this, and the point is that the accelerator depression amount Any configuration may be used as long as the gear ratio Kg and the throttle valve opening θ are changed so that the corresponding engine output is obtained.

さらに、上記実施例では、自動車の減速要求を
検出する減速検出手段としてブレーキポジシヨン
センサ18を用いたが、その他アクセル零操作を
検出するアクセルポジシヨンセンサを用いてもよ
く、またこれに起因して生じる吸気負圧変化等を
検出するなど各種手段が採用可能である。また、
上記実施例では、制御手段25をアナログコンピ
ユータにより構成したものについて述べたが、デ
ジタルコンピユータにより構成したものにも適用
可能である。
Further, in the above embodiment, the brake position sensor 18 is used as a deceleration detection means for detecting a request for deceleration of the automobile, but an accelerator position sensor for detecting zero accelerator operation may also be used. Various means can be adopted, such as detecting changes in intake negative pressure that occur due to air pressure. Also,
In the above embodiment, the control means 25 was constructed using an analog computer, but it is also applicable to a system constructed using a digital computer.

さらにまた、上記実施例では、空燃比を一定値
にセツトしたものについて述べたが、エンジン負
荷に応じて空燃比を変化させるようにしたものに
も採用可能である。
Furthermore, in the above embodiments, the air-fuel ratio is set to a constant value, but it is also possible to use a system in which the air-fuel ratio is changed depending on the engine load.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を例示し、第1図は全体
概略構成図、第2図は無段変速機およびその変速
比調整装置の概略断面図、第3図は制御手段の作
動を説明するロジツク図、第4図は制御手段の変
形例としてその変形部分のみを示す部分作動説明
図、第5図aおよびbはそれぞれエンジン性能特
性および第1マツプを説明する説明図、第6図は
等燃料消費率曲線図である。 1……エンジン、2……車軸、4……無段変速
機、5……変速比調整装置、7……吸気通路、8
……スロツトル弁、9……スロツトル弁開度調整
装置、16……アクセルポジシヨンセンサ(アク
セル操作量検出手段)、18……ブレーキポジシ
ヨン(減速検出手段)、20……エンジン回転数
センサ(駆動系回転数検出手段)、22……エン
ジントルクセンサ(エンジン出力検出手段)、2
5……制御手段、25a……目標駆動系回転数設
定手段、25b……変速比制御手段、25c……
目標エンジン出力設定手段、25d……スロツト
ル弁開度制御手段、25e……補正手段。
The drawings illustrate embodiments of the present invention; FIG. 1 is a schematic overall configuration diagram, FIG. 2 is a schematic sectional view of a continuously variable transmission and its gear ratio adjusting device, and FIG. 3 explains the operation of the control means. Logic diagram, FIG. 4 is a partial operation explanatory diagram showing only the modified part as a modification of the control means, FIGS. 5 a and b are explanatory diagrams respectively explaining the engine performance characteristics and the first map, and FIG. It is a fuel consumption rate curve diagram. DESCRIPTION OF SYMBOLS 1... Engine, 2... Axle, 4... Continuously variable transmission, 5... Gear ratio adjustment device, 7... Intake passage, 8
... Throttle valve, 9 ... Throttle valve opening adjustment device, 16 ... Accelerator position sensor (accelerator operation amount detection means), 18 ... Brake position (deceleration detection means), 20 ... Engine rotation speed sensor ( Drive system rotation speed detection means), 22...Engine torque sensor (engine output detection means), 2
5... Control means, 25a... Target drive system rotation speed setting means, 25b... Gear ratio control means, 25c...
Target engine output setting means, 25d... Throttle valve opening control means, 25e... Correction means.

Claims (1)

【特許請求の範囲】 1 エンジンと車輪との間に介設された無段変速
機と、 該無段変速機の変速比を調整する変速比調整装
置と、 エンジンの吸気通路に介設されたスロツトル弁
と、 該スロツトル弁の開度を調整するスロツトル弁
開度調整装置と、 アクセルの操作量を検出するアクセル操作量検
出手段と、 自動車の減速要求を検出する減速検出手段と、 駆動系回転数を検出する駆動系回転数検出手段
と、 駆動系回転数との関係でエンジン出力が決定さ
れるパラメータからエンジン出力を検出するエン
ジン出力検出手段とを備えるとともに、 上記アクセル操作量検出手段からの信号を受
け、アクセル操作量と駆動系回転数との所定の関
係に基づいて目標駆動系回転数を設定する目標駆
動系回転数設定手段と、 該目標駆動系回転数設定手段で設定される目標
駆動系回転数と上記駆動系回転数検出手段で検出
される実際の駆動系回転数とを比較し、実際の駆
動系回転数が目標駆動系回転数となるように上記
変速比調整装置を制御する変速比制御手段と、 上記アクセル操作量検出手段からの信号を受
け、アクセル操作量とエンジン出力との所定の関
係に基づいて目標エンジン出力を設定する目標エ
ンジン出力設定手段と、 該目標エンジン出力設定手段で設定される目標
エンジン出力と上記エンジン出力検出手段で検出
される実際のエンジン出力とを比較し、実際のエ
ンジン出力が目標エンジン出力となるように上記
スロツトル弁開度調整装置を制御するスロツトル
弁開度制御手段と、 上記減速検出手段の出力を受け、減速要求が所
定値以下のとき、スロツトル弁を閉方向に変化さ
せるように上記スロツトル弁開度制御手段を制御
するとともにエンジン回転数を減速要求時の回転
数よりも低くするように上記変速比制御手段を制
御する補正手段とからなる制御手段を設けたこと
を特徴とする自動車の駆動制御装置。
[Scope of Claims] 1. A continuously variable transmission interposed between an engine and wheels, a gear ratio adjustment device for adjusting the gear ratio of the continuously variable transmission, and a gear ratio adjusting device disposed in an intake passage of the engine. A throttle valve, a throttle valve opening adjustment device that adjusts the opening of the throttle valve, an accelerator operation amount detection means that detects an accelerator operation amount, a deceleration detection means that detects a request for deceleration of an automobile, and a drive system rotation. drive system rotation speed detection means for detecting the number of rotations; and engine output detection means for detecting the engine output from a parameter in which the engine output is determined in relation to the drive system rotation speed; a target drive system rotation speed setting means for receiving a signal and setting a target drive system rotation speed based on a predetermined relationship between an accelerator operation amount and a drive system rotation speed; and a target set by the target drive system rotation speed setting means. Comparing the drive system rotation speed and the actual drive system rotation speed detected by the drive system rotation speed detection means, and controlling the gear ratio adjustment device so that the actual drive system rotation speed becomes the target drive system rotation speed. and target engine output setting means that receives a signal from the accelerator operation amount detection means and sets a target engine output based on a predetermined relationship between the accelerator operation amount and the engine output. The target engine output set by the setting means is compared with the actual engine output detected by the engine output detection means, and the throttle valve opening adjustment device is controlled so that the actual engine output becomes the target engine output. Throttle valve opening control means; receiving the output of the deceleration detection means, controls the throttle valve opening control means so as to change the throttle valve in the closing direction when the deceleration request is below a predetermined value, and also controls the engine rotational speed. 1. A drive control device for an automobile, comprising a control means comprising a correction means for controlling the gear ratio control means so that the rotational speed is lower than the rotational speed at the time of deceleration request.
JP7322783A 1983-04-26 1983-04-26 Drive controller for car Granted JPS59197660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7322783A JPS59197660A (en) 1983-04-26 1983-04-26 Drive controller for car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7322783A JPS59197660A (en) 1983-04-26 1983-04-26 Drive controller for car

Publications (2)

Publication Number Publication Date
JPS59197660A JPS59197660A (en) 1984-11-09
JPH0429907B2 true JPH0429907B2 (en) 1992-05-20

Family

ID=13512080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7322783A Granted JPS59197660A (en) 1983-04-26 1983-04-26 Drive controller for car

Country Status (1)

Country Link
JP (1) JPS59197660A (en)

Also Published As

Publication number Publication date
JPS59197660A (en) 1984-11-09

Similar Documents

Publication Publication Date Title
JPH0429905B2 (en)
US6027425A (en) Vehicle motive force control system
US4627311A (en) Automotive driving control system utilizing a stepless transmission
JPH0429892B2 (en)
JPH0429907B2 (en)
JPH0429906B2 (en)
JPH0429900B2 (en)
JPH0429908B2 (en)
JPH0429903B2 (en)
JPH0429902B2 (en)
JPH0429901B2 (en)
JPH0429904B2 (en)
JPH0429893B2 (en)
EP0120460B1 (en) Automotive driving control system
JPH0429899B2 (en)
JPH0429897B2 (en)
JPH0428943B2 (en)
JPH0429894B2 (en)
JPH0427420B2 (en)
JPH0429895B2 (en)
JPH0429896B2 (en)
JPH0429898B2 (en)
JPH0427423B2 (en)
JPH0428944B2 (en)
JPH0427422B2 (en)