JPH04298286A - Method for removing dissolved oxygen in service water - Google Patents

Method for removing dissolved oxygen in service water

Info

Publication number
JPH04298286A
JPH04298286A JP6313991A JP6313991A JPH04298286A JP H04298286 A JPH04298286 A JP H04298286A JP 6313991 A JP6313991 A JP 6313991A JP 6313991 A JP6313991 A JP 6313991A JP H04298286 A JPH04298286 A JP H04298286A
Authority
JP
Japan
Prior art keywords
water
dissolved oxygen
hydrogen donor
present
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6313991A
Other languages
Japanese (ja)
Inventor
Yoshiaki Harada
原田 吉明
Kenichi Yamazaki
健一 山崎
Noboru Yamada
登 山田
Shiro Taya
史郎 田家
Yoshihiro Eto
良弘 恵藤
Tadashi Takadoi
忠 高土居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Osaka Gas Co Ltd
Original Assignee
Kurita Water Industries Ltd
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd, Osaka Gas Co Ltd filed Critical Kurita Water Industries Ltd
Priority to JP6313991A priority Critical patent/JPH04298286A/en
Publication of JPH04298286A publication Critical patent/JPH04298286A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To effectively remove DO in service water. CONSTITUTION:A hydrogen donor is added to the service water contg. the DO and a deoxygenation reaction is effected in the presence of a carrier catalyst at 100 to 250 deg.C and under a pressure at which a liquid phase is maintained. The effective components of the carrier catalyst are Fe, Co, Ni, Ru, Rh, Pd, Ir, Pt, Cu, Au, and W as well as the water-soluble or hardly water-soluble compds. of these metals.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は用水中の溶存酸素の除去
方法に係り、特に、湿式酸化に優れた効果を有する固形
触媒を用いて、ボイラ給水等の溶存酸素を含む用水中の
溶存酸素(DO)を効率的に除去する方法に関する。
[Industrial Application Field] The present invention relates to a method for removing dissolved oxygen in service water, and in particular to a method for removing dissolved oxygen from service water containing dissolved oxygen, such as boiler feed water, using a solid catalyst that has an excellent wet oxidation effect. The present invention relates to a method for efficiently removing (DO).

【0002】0002

【従来の技術】ボイラ給水には通常軟水が用いられてい
るが、軟水中にはDOが含有されていることから、給水
によりボイラ本体、ボイラ本体前段の熱交換器やエコノ
マイザーの腐食を引き起こす。このため、給水は、ボイ
ラに供給する前に予め脱酸素処理する必要がある。
[Prior art] Soft water is usually used for boiler water supply, but since soft water contains DO, the water supply causes corrosion of the boiler body, the heat exchanger in the front stage of the boiler body, and the economizer. . For this reason, the feed water needs to be deoxidized in advance before being supplied to the boiler.

【0003】従来、用水の脱酸素処理方法としては、主
として薬品による方法として、■  還元剤(ヒドラジ
ン、亜硫酸ナトリウム、水素ガス等)を添加してDOと
反応させる方法、■  L−アスコルビン酸を添加して
DOと反応させる方法、■  パラジウム吸着樹脂を介
在させ、ヒドラジンや水素と常温で反応させる方法、が
ある。その他、■  (加熱、真空)脱気装置(塔)を
用いてDOを500ppb位に落とし、その後薬品処理
する方法、■  膜装置を用いて脱気する方法、更に、
この方法に上記■〜■の方法を併用する方法、もある。
[0003] Conventionally, methods for deoxidizing water for use mainly include chemical methods: (1) adding a reducing agent (hydrazine, sodium sulfite, hydrogen gas, etc.) to react with DO; (2) adding L-ascorbic acid. (2) A method in which a palladium-adsorbing resin is used to react with hydrazine or hydrogen at room temperature. In addition, ■ a method of reducing DO to around 500 ppb using a (heating, vacuum) degassing device (tower) and then treating with chemicals; ■ a method of degassing using a membrane device;
There is also a method in which this method is combined with methods ① to ① above.

【0004】0004

【発明が解決しようとする課題】上記従来の方法のうち
、■の方法では、ヒドラジンの有害性、亜硫酸ナトリウ
ム、水素ガスの取り扱い性の悪さなどの欠点がある。 ■の方法では、L−アスコルビン酸の濃度管理が難しい
という欠点がある。■の方法では、ヒドラジンや水素を
用いることから、上記■と同様の欠点がある。■の方法
では、脱気塔の効率が悪いという欠点があり、また、■
の方法では、膜装置の処理レベルが低いという欠点があ
る。
[Problems to be Solved by the Invention] Among the above conventional methods, method (2) has drawbacks such as the toxicity of hydrazine and the poor handling of sodium sulfite and hydrogen gas. Method (2) has the disadvantage that it is difficult to control the concentration of L-ascorbic acid. Since method (2) uses hydrazine or hydrogen, it has the same drawbacks as (2) above. Method (2) has the disadvantage that the efficiency of the degassing tower is low;
The disadvantage of this method is that the processing level of the membrane device is low.

【0005】本発明は上記従来の問題点を解決し、用水
中のDOを効率的に除去する方法を提供することを目的
とする。
An object of the present invention is to solve the above-mentioned conventional problems and provide a method for efficiently removing DO from water.

【0006】[0006]

【課題を解決するための手段】本発明の用水中の溶存酸
素の除去方法は、溶存酸素を含む用水に水素供与体を添
加し、100〜250℃の温度、かつ前記用水が液相を
保持する圧力に保ちつつ、鉄、コバルト、ニッケル、ル
テニウム、ロジウム、パラジウム、イリジウム、白金、
銅、金及びタングステン並びにこれら金属の水に不溶性
又は難溶性の化合物よりなる群から選ばれる1種又は2
種以上を有効成分として含む担持触媒の存在下に、溶存
酸素と水素供与体とを反応させることを特徴とする。
[Means for Solving the Problems] The method for removing dissolved oxygen in service water of the present invention involves adding a hydrogen donor to service water containing dissolved oxygen, and maintaining the temperature of 100 to 250°C and the service water maintaining a liquid phase. iron, cobalt, nickel, ruthenium, rhodium, palladium, iridium, platinum,
One or two selected from the group consisting of copper, gold, tungsten, and compounds of these metals that are insoluble or poorly soluble in water.
It is characterized in that dissolved oxygen and a hydrogen donor are reacted in the presence of a supported catalyst containing at least one species of hydrogen donor as an active ingredient.

【0007】以下に本発明を詳細に説明する。本発明に
おいて、用水に添加する水素供与体としては、水素を供
出し得るものであれば良く、特に制限はないが、例えば
、メタノール、エタノール、ソルビトール、グルコース
、グリセリン、アミノエタノール等を用いることができ
る。通常の場合、薬品コストの面からはメタノールを用
いるのが有利である。
The present invention will be explained in detail below. In the present invention, the hydrogen donor added to the water is not particularly limited as long as it can donate hydrogen, but for example, methanol, ethanol, sorbitol, glucose, glycerin, aminoethanol, etc. can be used. can. In general, it is advantageous to use methanol from the viewpoint of chemical costs.

【0008】このような水素供与体の添加量は、処理す
る用水のDO濃度等によって異なり、通常の場合、DO
1mg/lに対して0.3〜20mg/l程度添加する
のが好ましい。
[0008] The amount of such a hydrogen donor added varies depending on the DO concentration of the water to be treated.
It is preferable to add about 0.3 to 20 mg/l per 1 mg/l.

【0009】また、本発明で使用される担持触媒は、触
媒有効成分として、鉄、コバルト、ニッケル、ルテニウ
ム、ロジウム、パラジウム、イリジウム、白金、銅、金
及びタングステン、並びにこれらの金属の水不溶性又は
水難溶性の化合物、具体的には、三二酸化鉄、四三酸化
鉄、一酸化コバルト、一酸化ニッケル、二酸化ルテニウ
ム、三二酸化ロジウム、一酸化パラジウム、二酸化イリ
ジウム、酸化第二銅、二酸化タングステン等の酸化物、
更には二塩化ルテニウム、二塩化白金等の塩化物、硫化
ルテニウム、硫化ロジウム等の硫化物等よりなる群から
選ばれた1種又は2種以上を含有するものである。
The supported catalyst used in the present invention also contains iron, cobalt, nickel, ruthenium, rhodium, palladium, iridium, platinum, copper, gold and tungsten as active catalyst components, as well as water-insoluble or Slightly water-soluble compounds, specifically iron sesquioxide, triiron tetroxide, cobalt monoxide, nickel monoxide, ruthenium dioxide, rhodium sesquioxide, palladium monoxide, iridium dioxide, cupric oxide, tungsten dioxide, etc. oxide,
Furthermore, it contains one or more selected from the group consisting of chlorides such as ruthenium dichloride and platinum dichloride, and sulfides such as ruthenium sulfide and rhodium sulfide.

【0010】本発明に係る担持触媒は、これらの金属及
び/又はその化合物を、常法に従ってアルミナ、シリカ
、シリカーアルミナ、活性炭,酸化チタン、酸化ジルコ
ニア等の担体に担持したものである。担持触媒中の金属
及び/又はその化合物の担持量は、通常、担体重量の0
.05〜25重量%、好ましくは0.5〜3重量%であ
ることが望ましい。このような担持触媒は、球状、ペレ
ツト状、円柱状、破砕片状、ハニカム状、粉末状等の種
々の形態で使用可能ある。
The supported catalyst according to the present invention is one in which these metals and/or their compounds are supported on a carrier such as alumina, silica, silica alumina, activated carbon, titanium oxide, zirconia oxide, etc. in accordance with a conventional method. The amount of metal and/or its compound supported in the supported catalyst is usually 0% of the carrier weight.
.. 05 to 25% by weight, preferably 0.5 to 3% by weight. Such supported catalysts can be used in various forms such as spheres, pellets, cylinders, crushed pieces, honeycombs, and powders.

【0011】本発明の方法は、例えば、DOを含む用水
にメタノール等の水素供与体の所定量を添加し、これを
上記担持触媒を充填した固定床式反応層に通液すること
により実施することができる。この場合、反応層容積、
触媒充填量、通液速度は、用水と担持触媒との接触時間
が18〜72秒、特に30〜45秒となるように設定す
るのが好ましい。なお、固定床式反応層に使用する担持
触媒の粒径は、通常、3〜50mm、特に5〜25mm
程度であることが好ましい。
[0011] The method of the present invention is carried out, for example, by adding a predetermined amount of a hydrogen donor such as methanol to water containing DO, and passing this through a fixed bed reaction bed filled with the above-mentioned supported catalyst. be able to. In this case, the reaction layer volume,
It is preferable to set the catalyst loading amount and the liquid passing rate so that the contact time between the water and the supported catalyst is 18 to 72 seconds, particularly 30 to 45 seconds. The particle size of the supported catalyst used in the fixed bed reaction bed is usually 3 to 50 mm, particularly 5 to 25 mm.
It is preferable that the degree of

【0012】本発明の反応条件は、反応温度100〜3
00℃、好ましくは150〜250℃で、当該反応温度
にて処理する用水が液相を保持し得る圧力である。反応
温度は高い程、DOの除去率が高まり、かつ反応塔内で
の用水の滞留時間も短縮されるが、反面、設備費が大と
なるので、要求される処理の程度、運転費、建設費等を
総合的に考慮して定めれば良い。また、反応時の圧力は
、最低限所定温度において用水が液相を保つ圧力であれ
ば良い。
The reaction conditions of the present invention are a reaction temperature of 100 to 3
The temperature is 00°C, preferably 150 to 250°C, and the pressure is such that the water treated at the reaction temperature can maintain a liquid phase. The higher the reaction temperature, the higher the removal rate of DO and the shorter the residence time of water in the reaction tower, but on the other hand, the equipment cost increases, so the required treatment level, operating cost, construction It is best to decide by comprehensively considering costs, etc. Further, the pressure during the reaction may be any pressure that maintains the water in a liquid phase at the minimum predetermined temperature.

【0013】なお、本発明の方法において、反応系に水
酸化ナトリウム、炭酸ナトリウム、水酸化カリウム、炭
酸カリウム、等のアルカリ剤又はモノエタノールアミン
、イソプロパノールアミン、シクロヘキシルアミン等の
アルカノールアミン等の揮発性アミン類を共存させるこ
とは極めて有効である。即ち、本発明では、脱酸素反応
により、CO2 が生成するため、これをアルカリ剤又
はアミン類で反応除去することにより腐食防止が図れる
。この場合、アルカリ剤又はアルカノールアミン類は水
素供与体に対して1.0〜500mg/l程度添加する
のが好ましい。
[0013] In the method of the present invention, an alkaline agent such as sodium hydroxide, sodium carbonate, potassium hydroxide, potassium carbonate, etc. or a volatile alkanolamine such as monoethanolamine, isopropanolamine, cyclohexylamine, etc. is added to the reaction system. It is extremely effective to coexist with amines. That is, in the present invention, since CO2 is generated by the deoxidizing reaction, corrosion can be prevented by removing CO2 by reaction with an alkaline agent or amines. In this case, it is preferable to add about 1.0 to 500 mg/l of the alkaline agent or alkanolamine to the hydrogen donor.

【0014】このような本発明の処理対象となる用水と
しては、主にボイラ給水が挙げられるが、本発明は、そ
の他、給湯、暖房用温水などにも有効に適用される。
[0014] The water to be treated by the present invention is mainly boiler feed water, but the present invention can also be effectively applied to other water supplies such as hot water supply and hot water for heating.

【0015】[0015]

【作用】本発明で用いる担持触媒は有機物の酸化分解に
極めて有効である。このような担持触媒の存在下に、用
水中のDO濃度に見合う水素供与体を用水中に共存させ
て、反応に十分な温度に保持することにより、脱酸素反
応が効率的に進行し、DOが除去される。因みに、従来
の膜脱気法では、約0.2mg−O2 /l−エレメン
ト容積・sec程度の除去効率であるのに対し、本発明
の方法によれば、4mg−O2 /l−触媒容積・se
c程度以上の高い除去効率を達成し得る。
[Operation] The supported catalyst used in the present invention is extremely effective in oxidative decomposition of organic substances. In the presence of such a supported catalyst, a hydrogen donor corresponding to the DO concentration in the water is allowed to coexist in the water, and the temperature is maintained at a temperature sufficient for the reaction, so that the deoxygenation reaction proceeds efficiently and the DO is removed. Incidentally, while the conventional membrane degassing method has a removal efficiency of approximately 0.2 mg-O2/l-element volume/sec, the method of the present invention has a removal efficiency of approximately 4 mg-O2/l-catalyst volume/sec. se
It is possible to achieve a high removal efficiency of approximately c or more.

【0016】また、用いる水素供与体はヒドラジン等に
比べて安全性が高く、しかも、軟水中の全有機炭素(T
OC)も反応に関与するため、添加する水素供与体量は
少なくて足りる。更に、本発明は液相反応であるため、
蒸気相の酸素濃度が著しく低い。
[0016] Furthermore, the hydrogen donor used is safer than hydrazine, etc., and moreover, it
Since OC) also participates in the reaction, it is sufficient to add a small amount of hydrogen donor. Furthermore, since the present invention is a liquid phase reaction,
The oxygen concentration in the vapor phase is extremely low.

【0017】[0017]

【実施例】以下に実施例を挙げて、本発明をより具体的
に説明する。
[Examples] The present invention will be explained in more detail with reference to Examples below.

【0018】実施例1 表1に示す平均DO濃度の軟水を原水とし、水素供与体
として表1に示す薬品を添加し、担持触媒として有効成
分ルテニウムの球形触媒を25ml充填した反応層に、
2.5  l/Hrの通水速度で供給し、処理を行なっ
た。なお、反応温度は150〜250℃とし、圧力は原
水が液相を保てる圧力とした。得られた処理水の平均D
O濃度を表1に示す。また、比較のため、触媒及び水素
供与体を用いなかった場合(No.1)、水素供与体を
用いなかった場合(No.2)についても同様に処理し
、結果を表1に示した。表1より、本発明の方法によれ
ば、DOを効率的に除去することができることが明らか
である。なお、本実施例の方法において、通液速度を下
げるか、触媒量を増やすことにより、処理水DOをより
一層下げることができた。
Example 1 Soft water with the average DO concentration shown in Table 1 was used as raw water, the chemicals shown in Table 1 were added as hydrogen donors, and 25 ml of a spherical catalyst of ruthenium as an active ingredient was filled as a supported catalyst in a reaction bed.
The treatment was carried out by supplying water at a flow rate of 2.5 l/Hr. Note that the reaction temperature was 150 to 250°C, and the pressure was such that the raw water could maintain a liquid phase. Average D of the obtained treated water
The O concentrations are shown in Table 1. For comparison, the same treatment was performed in the case where no catalyst and hydrogen donor were used (No. 1) and the case where no hydrogen donor was used (No. 2), and the results are shown in Table 1. From Table 1, it is clear that according to the method of the present invention, DO can be efficiently removed. In addition, in the method of this example, the treated water DO could be further lowered by lowering the liquid passing rate or increasing the amount of catalyst.

【0019】[0019]

【表1】[Table 1]

【0020】[0020]

【発明の効果】以上詳述した通り、本発明の用水中の溶
存酸素の除去方法によれば、用水中のDOを、良好な作
業安全性のもとに、容易かつ効率的に、低コストで除去
することが可能となる。
Effects of the Invention As detailed above, according to the method for removing dissolved oxygen in service water of the present invention, DO in service water can be removed easily, efficiently, and at low cost with good work safety. It is possible to remove it with

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  溶存酸素を含む用水に水素供与体を添
加し、100〜300℃の温度、かつ前記用水が液相を
保持する圧力に保ちつつ、鉄、コバルト、ニッケル、ル
テニウム、ロジウム、パラジウム、イリジウム、白金、
銅、金及びタングステン並びにこれら金属の水に不溶性
又は難溶性の化合物よりなる群から選ばれる1種又は2
種以上を有効成分として含む担持触媒の存在下に、溶存
酸素と水素供与体とを反応させることを特徴とする用水
中の溶存酸素の除去方法。
Claim 1: A hydrogen donor is added to water containing dissolved oxygen, and while the temperature is maintained at 100 to 300°C and the pressure is such that the water remains in a liquid phase, iron, cobalt, nickel, ruthenium, rhodium, and palladium are added to the water. , iridium, platinum,
One or two selected from the group consisting of copper, gold, tungsten, and compounds of these metals that are insoluble or poorly soluble in water.
1. A method for removing dissolved oxygen in water, which comprises reacting dissolved oxygen with a hydrogen donor in the presence of a supported catalyst containing at least one species of hydrogen donor as an active ingredient.
JP6313991A 1991-03-27 1991-03-27 Method for removing dissolved oxygen in service water Pending JPH04298286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6313991A JPH04298286A (en) 1991-03-27 1991-03-27 Method for removing dissolved oxygen in service water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6313991A JPH04298286A (en) 1991-03-27 1991-03-27 Method for removing dissolved oxygen in service water

Publications (1)

Publication Number Publication Date
JPH04298286A true JPH04298286A (en) 1992-10-22

Family

ID=13220635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6313991A Pending JPH04298286A (en) 1991-03-27 1991-03-27 Method for removing dissolved oxygen in service water

Country Status (1)

Country Link
JP (1) JPH04298286A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109987740A (en) * 2019-01-29 2019-07-09 厦门稀土材料研究所 The method for precipitating calcium and magnesium in industrial wastewater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109987740A (en) * 2019-01-29 2019-07-09 厦门稀土材料研究所 The method for precipitating calcium and magnesium in industrial wastewater

Similar Documents

Publication Publication Date Title
JP5303263B2 (en) Solid catalyst for treating nitrate nitrogen-containing water and method for treating nitrate nitrogen-containing water using the catalyst
EP1315693B1 (en) Recovery of metals from olefin hydroformylation reactions
JPH04298286A (en) Method for removing dissolved oxygen in service water
JP3920531B2 (en) Method for treating waste water containing ammonia and hydrogen peroxide
JPH0691991B2 (en) Treatment method of wastewater containing high concentration ammonium nitrate
JP2001000866A (en) Water treating catalyst composition and water treatment using the catalyst
JP4066527B2 (en) Treatment of wastewater containing hydrogen peroxide and ammonia
JP4502877B2 (en) Nitric acid reduction catalyst composition and nitric acid solution treatment method using the same
JPH0639380A (en) Method for deoxidation
JPS607953B2 (en) Treatment method for wastewater containing hydrazine
JP3509186B2 (en) Denitrification treatment method
JPH10272478A (en) Treatment of waste water containing ethanol amine
JP2969467B2 (en) Treatment method for wastewater containing ammonium nitrate
JPH05269475A (en) Treatment of waste water containing hydrogen peroxide and ammonia
JP4630010B2 (en) Treatment method of nitric acid solution
JP3693354B2 (en) Treatment method of wastewater containing nitrate
JP3263968B2 (en) Treatment of wastewater containing nitrate
JPH0910602A (en) Method for regenerating catalyst for wet oxidation treatment
JP3239502B2 (en) Method for treating water containing volatile organic halogen compounds
JP3457143B2 (en) Method of treating water containing imidazolidinone compound
JP2008023522A (en) Method and apparatus for treating aqueous solution of sodium nitrate
JP2000140864A (en) Treatment of ammonia-containing water
JPH10180042A (en) Treatment of hydrazine-containing steam and catalyst for same
JP3855326B2 (en) Wastewater treatment method
JPH0366018B2 (en)