JPH04297710A - Catalyst combustion apparatus - Google Patents

Catalyst combustion apparatus

Info

Publication number
JPH04297710A
JPH04297710A JP6164691A JP6164691A JPH04297710A JP H04297710 A JPH04297710 A JP H04297710A JP 6164691 A JP6164691 A JP 6164691A JP 6164691 A JP6164691 A JP 6164691A JP H04297710 A JPH04297710 A JP H04297710A
Authority
JP
Japan
Prior art keywords
catalyst layer
heat
heating
catalyst
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6164691A
Other languages
Japanese (ja)
Inventor
Hironao Numamoto
浩直 沼本
Masato Hosaka
正人 保坂
Hirohisa Kato
博久 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6164691A priority Critical patent/JPH04297710A/en
Publication of JPH04297710A publication Critical patent/JPH04297710A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a catalyst combustion apparatus capable of maintaining stable heating efficiency for a prolonged time by solving a problem, in which radiation heating hcaracteristics are deteriorated with time and burning characteristic are deteriorated, and improving the heat capacity and thermal conductivity of a catalyst layer in the radiation heating type catalyst combustion apparatus used for heating drying, etc. CONSTITUTION:A catalyst layer 7 is formed of heat-resistant inorganic fibers, high specific surface-area ceramic powder, on which a catalytic metal is carried, and an inorganic binder. Since heat capacity is reduced and thermal conductivity can also be deteriorated, the temperature difference on the upstream side and downstream side of the catalyst layer is increased, thus obtaining more heating radiation.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は加熱、暖房、乾燥等に用
いられる放射加熱型の触媒燃焼装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation heating type catalytic combustion device used for heating, space heating, drying, etc.

【0002】0002

【従来の技術】灯油等の液体燃料や都市ガス等の気体燃
料を空気と混合させた後に酸化反応用の触媒に接触させ
、その表面で無炎の触媒燃焼を行ういわゆる予混合型の
触媒燃焼装置は、気体燃料用を中心に従来より種々提案
され、一部は実用化されている。
[Prior art] So-called premixed catalytic combustion in which liquid fuel such as kerosene or gaseous fuel such as city gas is mixed with air and then brought into contact with a catalyst for oxidation reaction, and flameless catalytic combustion is performed on the surface of the catalyst. Various devices have been proposed in the past, mainly for use with gaseous fuels, and some of them have been put into practical use.

【0003】0003

【発明が解決しようとする課題】触媒燃焼において、空
気と予混合された燃料(たとえば、灯油)は触媒層にお
いて急激な酸化反応を生じ、反応熱と共に二酸化炭素や
水蒸気を発生する。ここでの触媒反応は、初期には触媒
層の上流側表面近傍で集中して行われ、反応熱は触媒層
からの放射によって、前面に対向して配設される熱線透
過体を経て前方に供給され、加熱、暖房等の用途に供せ
られる。ところが、触媒層の上流側表面近傍だけが集中
して、高温、酸化状態で連続使用されることから、この
付近の触媒劣化は進行し易い。
In catalytic combustion, fuel (for example, kerosene) premixed with air undergoes a rapid oxidation reaction in the catalyst layer, generating carbon dioxide and water vapor along with reaction heat. The catalytic reaction here is initially concentrated near the upstream surface of the catalyst layer, and the reaction heat is transferred forward by radiation from the catalyst layer through a heat ray transmitter placed opposite to the front surface. It is supplied and used for purposes such as heating and space heating. However, since the catalyst layer is concentrated in the vicinity of the upstream surface and is continuously used at high temperatures and in an oxidized state, catalyst deterioration in this vicinity tends to progress.

【0004】その結果、次第に上流側での触媒活性低下
が起こり、触媒反応の中心位置が上流から下流側へ移行
すると同時に、上流側表面温度も低下することになる。 また、触媒反応中心位置の下流への移行は触媒層におけ
る有効な流れ方向の厚みが短くなることを意味しており
、そのために触媒燃焼の燃焼特性(CO/CO2、HC
/CO2)も次第に悪化してくる。
As a result, the catalytic activity gradually decreases on the upstream side, and at the same time the central position of the catalytic reaction shifts from the upstream side to the downstream side, the upstream surface temperature also decreases. In addition, the shift of the catalytic reaction center position downstream means that the effective thickness of the catalyst layer in the flow direction becomes shorter, and therefore the combustion characteristics of catalytic combustion (CO/CO2, HC
/CO2) will also gradually worsen.

【0005】したがって、触媒反応の中心位置が上流側
から下流側へ移行することにより、熱線透過体を介して
前方に供せられていた放射熱が減少し、暖房・加熱効率
が大きく低下するという課題、また燃焼特性(CO/C
O2、HC/CO2)の悪化という課題等があった。
[0005] Therefore, as the central position of the catalytic reaction shifts from the upstream side to the downstream side, the radiant heat that was provided to the front through the heat ray transmitter decreases, and the heating efficiency is significantly reduced. issues, and combustion characteristics (CO/C
There were issues such as deterioration of O2, HC/CO2).

【0006】本発明は上記従来の課題を解決するもので
あり、輻射暖房特性の経時変化、燃焼特性の悪化を抑え
、長時間安定した暖房・加熱効率を維持し得る触媒燃焼
装置を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and provides a catalytic combustion device that can suppress changes over time in radiant heating characteristics and deterioration of combustion characteristics, and maintain stable heating and heating efficiency for a long time. With the goal.

【0007】[0007]

【課題を解決するための手段】本発明は上記目的を達成
するために、燃料と空気の混合室の下流に備えられた多
数の連通孔を有する触媒層と、触媒層の上流側の表面に
対向して配設された熱線透過体と、触媒層の下流側に備
えられた排気口とを有し、触媒層が耐熱性無機繊維と触
媒金属が担持された高比表面積セラミック粉末と耐熱性
無機繊維にセラミック粉末を結合させるための無機バイ
ンダーとからなるものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a catalyst layer having a large number of communication holes provided downstream of a fuel and air mixing chamber, and a catalyst layer provided on the upstream surface of the catalyst layer. It has a heat ray transmitting body disposed facing each other and an exhaust port provided on the downstream side of the catalyst layer, and the catalyst layer is made of a high specific surface area ceramic powder supporting heat-resistant inorganic fibers and a catalyst metal. It consists of an inorganic binder for bonding ceramic powder to inorganic fibers.

【0008】[0008]

【作用】灯油を燃料とした触媒燃焼では、最適燃焼特性
が得られる空燃比(空気/燃料)は2付近であることが
わかってきた。空燃比を最適な2に設定して燃焼を行う
と、触媒反応は触媒層の上流側表面近傍で集中して行わ
れ、それより下流側は燃焼中心位置で燃焼しきれなかっ
たわずかなHC、COの浄化を担っている。したがって
、上流側表面近傍の温度が高く、下流側は燃焼中心位置
で発生した熱の影響を伝熱、輻射、対流により受けてい
るだけである。
[Operation] It has been found that in catalytic combustion using kerosene as fuel, the air-fuel ratio (air/fuel) at which optimum combustion characteristics can be obtained is around 2. When combustion is carried out with the air-fuel ratio set to the optimal 2, the catalytic reaction is concentrated near the upstream surface of the catalyst layer, and downstream from that, the small amount of HC that was not completely combusted at the combustion center position. It is responsible for purifying CO. Therefore, the temperature near the upstream surface is high, and the downstream side is only affected by the heat generated at the combustion center position through heat transfer, radiation, and convection.

【0009】一方本発明によれば、触媒層に耐熱性無機
繊維を主体とした多孔質の材料を使用しているために、
触媒層における熱の伝導性が抑えられ、触媒層の上流側
と下流側との温度差は大きくなる。その結果、使用した
熱量に対して、より多くの輻射を得ることが可能である
。また、燃焼中心位置で燃焼しきれなかったわずかなH
CおよびCOの浄化を担う下流側での熱負荷は小さくな
るので、長期間にわたって良好な燃焼特性を維持するこ
とが可能となる(HCおよびCOの浄化能力を維持でき
る)。
On the other hand, according to the present invention, since a porous material mainly composed of heat-resistant inorganic fibers is used for the catalyst layer,
Heat conductivity in the catalyst layer is suppressed, and the temperature difference between the upstream side and the downstream side of the catalyst layer becomes large. As a result, it is possible to obtain more radiation for the amount of heat used. Also, there is a small amount of H that could not be completely burned at the combustion center position.
Since the heat load on the downstream side responsible for purifying C and CO is reduced, it becomes possible to maintain good combustion characteristics over a long period of time (the ability to purify HC and CO can be maintained).

【0010】また、触媒燃焼装置を作動させる時には触
媒層を所定の温度以上に予熱する必要があるが、その際
にも触媒層を本発明のような多孔質材料で構成すると熱
容量が小さく、上流側での熱は下流側に伝わりにくいの
で、上流側は必要な活性温度まですばやく予熱され、予
熱時間短縮の効果も生まれる。
[0010] Furthermore, when operating a catalytic combustion device, it is necessary to preheat the catalyst layer to a predetermined temperature or higher, but even in this case, if the catalyst layer is made of a porous material such as the one of the present invention, the heat capacity is small and the upstream Since heat on the side is difficult to transfer to the downstream side, the upstream side is quickly preheated to the required activation temperature, which also has the effect of shortening the preheating time.

【0011】[0011]

【実施例】以下、本発明の一実施例を添付図面に基づい
て説明する。図1は本発明の一実施例の触媒燃焼装置の
全体構成を示す縦断面図であり、図において、1は燃料
タンク、2は燃料用ポンプ、3は送風用のファン、4は
混合室で、混合室4の出口には補助炎口5が備えられて
おり、補助炎口5の近傍には点火電極6が配設されてい
る。補助炎口5の上方には多数の連通孔8を穿設した無
機繊維主体のハニカム状セラミックス平板にPt/Pd
の活性成分を担持させた触媒層7が直立して備えられ、
その上流面(前面)に対向して熱線透過体9が配置され
ている。10は排気口である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a longitudinal sectional view showing the overall configuration of a catalytic combustion apparatus according to an embodiment of the present invention. In the figure, 1 is a fuel tank, 2 is a fuel pump, 3 is a fan for blowing air, and 4 is a mixing chamber. An auxiliary flame port 5 is provided at the outlet of the mixing chamber 4, and an ignition electrode 6 is disposed near the auxiliary flame port 5. Above the auxiliary flame opening 5, a Pt/Pd
A catalyst layer 7 supporting an active ingredient is provided upright,
A heat ray transmitting body 9 is arranged opposite to the upstream surface (front surface) thereof. 10 is an exhaust port.

【0012】次にその動作について詳述すると、燃料用
ポンプ2から供給された燃料(灯油)とファン3から供
給された空気は、混合室4内で気化されるとともに充分
予混合されて上部の補助炎口5に送られる。点火時には
まず補助炎口5において点火電極6によって点火され、
ここで火炎燃焼を開始する。高温の排ガスは上部へ流れ
、触媒層7を昇温させる。所定時間燃焼させて触媒層7
が充分な温度に昇温した時点で、一旦燃料供給を停止し
、補助炎口5の火炎を消滅させてから再度燃料の供給を
開始する。この時、混合室4を出た予混合気は上方に直
立する触媒層7に至るが、ここは充分昇温されているか
ら、主に上流側(前面)表面で触媒燃焼を生じつつ、連
通孔8を経て下流側(後面)へと流れる。また触媒層7
の上流側表面で生じた反応熱は、熱線透過体9を一部は
透過して、また一部は熱線透過体9を加熱することによ
ってここからの二次放射としてそれぞれ前面に放散され
、加熱や暖房等に供せられる。
Next, to explain its operation in detail, the fuel (kerosene) supplied from the fuel pump 2 and the air supplied from the fan 3 are vaporized in the mixing chamber 4 and are sufficiently premixed to be discharged from the upper part. It is sent to the auxiliary flame outlet 5. At the time of ignition, it is first ignited by the ignition electrode 6 at the auxiliary flame port 5,
At this point, flame combustion begins. The high temperature exhaust gas flows to the upper part and raises the temperature of the catalyst layer 7. The catalyst layer 7 is burnt for a predetermined period of time.
When the temperature has risen to a sufficient temperature, the fuel supply is temporarily stopped, the flame of the auxiliary flame port 5 is extinguished, and then the fuel supply is started again. At this time, the premixture that has left the mixing chamber 4 reaches the catalyst layer 7 that stands upright above, but since the temperature here has been sufficiently raised, catalytic combustion occurs mainly on the upstream (front) surface, and It flows through the hole 8 to the downstream side (rear side). Also, the catalyst layer 7
Part of the reaction heat generated on the upstream surface of the heat ray transmitter 9 passes through the heat ray transmitter 9, and another part heats the heat ray transmitter 9 and is dissipated to the front as secondary radiation from here, causing heating. It is used for heating, heating, etc.

【0013】[0013]

【実施例】アルミナシリカ繊維(アルミナ  70wt
%、シリカ  30wt%、繊維長約10mm、繊維径
  約3μm)、BaO・Al2O3・CeO2粉末(
比表面積120m2/g)およびアルミナゾルを水溶性
高分子と水とを使用して抄造法により、コルゲート加工
を行った後、1200℃で2h焼成し、150□×10
mm、300セル/inch2、リフ゛厚0.25mm
のアルミナシリカ繊維50wt%、BaO・Al2O3
・CeO249wt%、無機バインダー(アルミナ)1
wt%からなるハニカム状セラミックス(気孔率60%
)を形成し、その後ジニトロジアンミン白金、ジニトロ
ジアンミンパラジウム水溶液に含浸、熱処理することに
よりPt、Pdをそれぞれ担持した触媒層7を製作した
[Example] Alumina silica fiber (alumina 70wt)
%, silica 30wt%, fiber length approximately 10mm, fiber diameter approximately 3μm), BaO・Al2O3・CeO2 powder (
Alumina sol with a specific surface area of 120 m2/g) was corrugated by a papermaking method using a water-soluble polymer and water, and then baked at 1200°C for 2 hours to form a 150□×10
mm, 300 cells/inch2, ref thickness 0.25mm
alumina silica fiber 50wt%, BaO・Al2O3
・CeO249wt%, inorganic binder (alumina) 1
Honeycomb-shaped ceramics consisting of wt% (porosity 60%
), and then impregnated with an aqueous solution of dinitrodiammine platinum and dinitrodiammine palladium and heat-treated to produce a catalyst layer 7 supporting Pt and Pd, respectively.

【0014】(比較例)シリカ・アルミナ・チタニアを
主成分とするハニカム状セラミックス(150□×10
mm、300セル/inch2、リフ゛厚0.25mm
、気孔率35%)にBaO・Al2O3・CeO2粉末
(比表面積120m2/g)、アルミナ含有率10wt
%のウォッシュコートバインダー、硝酸アルミニウム9
水塩と水、およびジニトロジアンミン白金、ジニトロジ
アンミンパラジウム水溶液を加えてなるウォッシュコー
トスラリーを使用して40g被覆した触媒層を試作した
(Comparative example) Honeycomb-shaped ceramics (150□×10
mm, 300 cells/inch2, ref thickness 0.25mm
, porosity 35%), BaO・Al2O3・CeO2 powder (specific surface area 120m2/g), alumina content 10wt
% washcoat binder, aluminum nitrate 9
A catalyst layer coated with 40 g of a wash coat slurry prepared by adding an aqueous salt, water, and an aqueous solution of dinitrodiammine platinum and dinitrodiammine palladium was prepared.

【0015】このようにして得られた触媒層7、比較例
の触媒層を使用してそれぞれ図1に示すような触媒燃焼
装置を組立て、2000kcal/h、空燃比(空気/
灯油)2.0で連続燃焼寿命試験を行った。図2に初期
における実施例および比較例の触媒層厚さ方向の温度分
布を示す。また、図3は連続燃焼寿命試験中における触
媒層上流側表面温度を定期的に測定した結果を示すもの
である。また、(表1)に7000h後における燃焼特
性を測定した結果を示す。
Using the catalyst layer 7 obtained in this way and the catalyst layer of the comparative example, a catalytic combustion device as shown in FIG. 1 was assembled.
A continuous combustion life test was conducted using Kerosene) 2.0. FIG. 2 shows the temperature distribution in the thickness direction of the catalyst layer in the examples and comparative examples at the initial stage. Further, FIG. 3 shows the results of periodic measurements of the surface temperature on the upstream side of the catalyst layer during the continuous combustion life test. Furthermore, (Table 1) shows the results of measuring the combustion characteristics after 7000 hours.

【0016】[0016]

【表1】[Table 1]

【0017】図2より、実施例、比較例はともに同じ条
件で燃焼させているにもかかわらず、実施例の方が上流
側温度が高く、下流側温度が低くなっており、したがっ
て、実施例の方が比較例よりも多くの輻射効果が得られ
ていることがわかる。また同じく図2の温度分布のカー
ブからわかるように、初期から比較例の方が温度ピーク
および温度カーブが下流側にシフトしており、その結果
、図3に示すように連続燃焼寿命試験において触媒層上
流側表面温度の経時的低下は早く、5000h後で約5
0℃程度低下しているのに対し、実施例では7000h
後でも約40℃の低下にとどまっている。さらに実施例
は比較例に比べて燃焼の中心位置が下流側に移行してい
ないので、7000h後における燃焼特性(CO/CO
2、HC/CO2)を比較しても(表1)に見られるよ
うに実施例は優れていることがわかる。
From FIG. 2, even though both the example and the comparative example were burned under the same conditions, the upstream temperature in the example was higher and the downstream temperature was lower. It can be seen that more radiation effects are obtained in the comparative example than in the comparative example. Also, as can be seen from the temperature distribution curve in Figure 2, the temperature peak and temperature curve of the comparative example were shifted to the downstream side from the beginning, and as a result, as shown in Figure 3, the catalyst The surface temperature on the upstream side of the layer decreases quickly over time, about 5% after 5000h.
While the temperature was lowered by about 0℃, in the example it was lowered by 7000 hours.
Even after that, the drop remained at about 40°C. Furthermore, in the example, the combustion center position did not shift to the downstream side compared to the comparative example, so the combustion characteristics after 7000 hours (CO/CO
2, HC/CO2), it can be seen that the examples are superior as seen in Table 1.

【0018】実施例では、気孔率60%の触媒層7につ
いて試験を行ったが、本発明は気孔率50%のものにつ
いても顕著な効果が得られた。しかしながら、機械的な
強度を考慮すると、気孔率は90%以下にすることが好
ましい。
In the example, the catalyst layer 7 with a porosity of 60% was tested, but the present invention also produced remarkable effects on a catalyst layer with a porosity of 50%. However, in consideration of mechanical strength, the porosity is preferably 90% or less.

【0019】このように上記実施例によれば触媒層7を
PtおよびPdを担持したアルミナシリカ繊維、BaO
、Al2O3、CeO3、アルミナゾル等よりなるハニ
カム状セラミックスを用いて構成しているため、熱輻射
効果が高く、また連続燃焼寿命試験で温度低下が小さい
という効果が得られる。
According to the above embodiment, the catalyst layer 7 is made of alumina silica fibers supporting Pt and Pd, BaO
, Al2O3, CeO3, alumina sol, etc., the heat radiation effect is high and the temperature drop is small in the continuous combustion life test.

【0020】[0020]

【発明の効果】本発明は上記実施例より明らかなように
、輻射暖房特性の経時変化および燃焼特性の悪化を抑え
、長時間安定した暖房および加熱効率を維持することが
できるという効果が得られる。
[Effects of the Invention] As is clear from the above embodiments, the present invention has the effect of suppressing changes over time in radiant heating characteristics and deterioration of combustion characteristics, and maintaining stable heating and heating efficiency for a long period of time. .

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例における触媒燃焼装置の全体
構成を示す要部断面側面図
[Fig. 1] A cross-sectional side view of essential parts showing the overall configuration of a catalytic combustion device in an embodiment of the present invention.

【図2】実施例および比較例における触媒層厚さ方向の
温度分布を示す特性図
[Figure 2] Characteristic diagram showing temperature distribution in the thickness direction of the catalyst layer in Examples and Comparative Examples

【図3】実施例および比較例における連続燃焼寿命試験
中の触媒層上流側表面温度の変化を示す特性図
[Figure 3] Characteristic diagram showing changes in the upstream surface temperature of the catalyst layer during continuous combustion life tests in Examples and Comparative Examples

【符号の説明】[Explanation of symbols]

4  混合室 7  触媒層 8  連通孔 9  熱線透過体 10  排気口 4 Mixing chamber 7 Catalyst layer 8 Communication hole 9 Heat ray transmitter 10 Exhaust port

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】燃料と空気の混合室の下流に備えられた多
数の連通孔を有する触媒層と、前記触媒層の上流側の表
面に対向して配設された熱線透過体と、前記触媒層の下
流側に備えられた排気口とを有し、前記触媒層が耐熱性
無機繊維と触媒金属が担持された高比表面積セラミック
粉末と耐熱性無機繊維にセラミック粉末を結合させるた
めの無機バインダーとからなることを特徴とする触媒燃
焼装置。
1. A catalyst layer provided downstream of a fuel and air mixing chamber and having a large number of communication holes; a heat ray transmitter disposed opposite to an upstream surface of the catalyst layer; and a catalyst layer. an inorganic binder for bonding the ceramic powder to the heat-resistant inorganic fibers and a high specific surface area ceramic powder on which the catalyst layer supports heat-resistant inorganic fibers and a catalyst metal; A catalytic combustion device comprising:
【請求項2】触媒層が抄造法でコルゲート加工により製
造されたものであり、気孔率が50%以上であることを
特徴とする請求項1記載の触媒燃焼装置。
2. The catalytic combustion device according to claim 1, wherein the catalyst layer is manufactured by corrugating using a papermaking method and has a porosity of 50% or more.
JP6164691A 1991-03-26 1991-03-26 Catalyst combustion apparatus Pending JPH04297710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6164691A JPH04297710A (en) 1991-03-26 1991-03-26 Catalyst combustion apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6164691A JPH04297710A (en) 1991-03-26 1991-03-26 Catalyst combustion apparatus

Publications (1)

Publication Number Publication Date
JPH04297710A true JPH04297710A (en) 1992-10-21

Family

ID=13177196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6164691A Pending JPH04297710A (en) 1991-03-26 1991-03-26 Catalyst combustion apparatus

Country Status (1)

Country Link
JP (1) JPH04297710A (en)

Similar Documents

Publication Publication Date Title
KR20000005916A (en) Catalytic combustion system and combustion control method
JP3221972B2 (en) Catalyst and catalytic combustion device using it
JPS6312225B2 (en)
JP2797840B2 (en) Catalytic combustion device
JPH04297710A (en) Catalyst combustion apparatus
JP2720614B2 (en) Catalytic combustion device
JP2805996B2 (en) Catalytic combustion device
JP4226143B2 (en) Catalytic combustion apparatus and combustion control method thereof
KR100387945B1 (en) Low NOx combustion method and combustor using catalytic combustion and catalyst bed with swirl
JP2903640B2 (en) Catalytic combustion device
JPH04174201A (en) Catalytic burner
JPH06129613A (en) Catalyst combustion device
JP3339957B2 (en) Catalytic combustion device capable of detecting deterioration
JPH0593509A (en) Catalyst burning equipment
JP3092321B2 (en) Catalytic combustion device
JP3732034B2 (en) Hybrid catalytic combustion apparatus and combustion method
JPH1151310A (en) Catalytic combustion equipment
JP2861524B2 (en) Catalytic combustion device
JPH06221513A (en) Catalyst combustion device
JP2000297903A (en) Catalyst combustion type heat source apparatus
JP2776024B2 (en) Catalytic combustion device
JP3568314B2 (en) Heating equipment
JPH0765734B2 (en) Hydrocarbon fuel catalytic combustor
JPH0367905A (en) Catalytic combustion apparatus
JPS6365951A (en) Preparation of combustion catalyst body