JPH0429722B2 - - Google Patents

Info

Publication number
JPH0429722B2
JPH0429722B2 JP59190055A JP19005584A JPH0429722B2 JP H0429722 B2 JPH0429722 B2 JP H0429722B2 JP 59190055 A JP59190055 A JP 59190055A JP 19005584 A JP19005584 A JP 19005584A JP H0429722 B2 JPH0429722 B2 JP H0429722B2
Authority
JP
Japan
Prior art keywords
melting
hot
ingot
alloys
arc melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59190055A
Other languages
Japanese (ja)
Other versions
JPS6167724A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP19005584A priority Critical patent/JPS6167724A/en
Publication of JPS6167724A publication Critical patent/JPS6167724A/en
Publication of JPH0429722B2 publication Critical patent/JPH0429722B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 この発明は、Ti、Zr等の高融点活性金属及び
その合金の真空アーク溶解において、均質性、表
面品質及び生産性のすぐれた鋳塊を得るための真
空アーク溶解方法に関する。 従来の技術 高融点活性金属は通常真空アーク溶解して溶製
されるが、その方法は一定の電流で定常溶解し、
溶解後期に20〜60分程度の比較的短時間内で溶解
電流を減少させる、いわゆるホツトトツプを行な
うものである。 しかしながら、このような方法では、定常溶解
時の深い溶湯プールの影響が残り、かなり深い状
態で溶解が終了する。そのため、鋳塊トツプ部の
中心部での成分偏析や収縮孔が発生する可能性が
あり、これらの欠陥の生成を防止するには、溶解
終了時の溶湯プールの深さを、いかに調整するか
が重要な要素となる。 そこで、従来より種々の工夫がなされており、
収縮孔の発生を低減させる方法としては、例えば
特公昭41−8321号に溶解電流を徐々に低下させる
方法があり、又成分偏析を軽減する方法として
は、例えば特公昭40−4445号に揮発性成分のMn
をホツトトツプ時にサイドチヤージする方法があ
る。 発明が解決しようとする問題点 上記収縮孔発生の低減方法は、溶湯プールの上
面からの凝固を防ぎつつ溶湯プール深さを徐々に
小さくして収縮孔の発生を防止し、かつ成分偏析
を軽減しようとするものである。 しかしながら、この場合にはホツトトツプ時間
を長くするために、溶解速度が小さくなり、生産
性が悪化することは明らかである。又、鋳塊トツ
プ部での表面状況は高電流溶解時の場合に比べて
劣る。この問題点を解決するため、ホツトトツプ
時間を短縮すると、成分偏析が大きくなり、又大
きな収縮孔が生成することになる。 又、上記成分偏析の軽減方法は、Mnの微粉末
を添加する際、アークにより飛散して鋳型に付着
したり、逆に表面固化が起り、未溶解部を形成し
て成分偏析を助長する可能性がある。 この発明は、かかる現状にかんがみ、ホツトト
ツプ時間を短縮して均質性、表面品質、生産性の
すぐれた鋳塊を得るための高融点活性金属及びそ
の合金の真空アーク溶解方法を提案するものであ
る。 問題点を解決するための手段 この発明は、高融点活性金属及びその合金の真
空アーク溶解において、 一次溶解を消耗電極式アーク溶解で行なう
際、最終溶解における溶解後半の溶湯プールに
対応する一次電極部のFe、Ni、Cr、Al、Sn、
O、Mo等偏析の著しい成分を調整することに
より、ホツトトツプ時間を短縮する。 一次溶解を非消耗電極式アーク溶解で行なう
際、最終溶解における溶解後半の溶湯プールに
対応する一次溶解配合原料のFe、Ni、Cr、
Al、Sn、O、Mo等偏析の著しい成分を調整す
ることにより、ホツトトツプ時間を短縮する。 ことを要旨とする。 この発明は、成分偏析を防止するために、偏析
しやすい成分を予め調整するのである。この際、
成分偏析は凝固に起因し、平衡分配係数k<1の
元素(Ti、Zrの場合Fe、Ni、Cr、Al、Sn等)
は正偏析するので、その分だけ低目に調整し、k
>1の元素(Ti、Zrの場合O、Mo等)は負偏析
をするので高目に調整する。この調整により成分
偏析のない均一な鋳塊を得ることができる。 この偏析しやすい成分の調整は、一次溶解を消
耗電極式真空アーク溶解により行なう場合は、一
次電極部の成分調整を行ない、一次溶解を非消耗
電極式アーク溶解で行なう場合は、一次溶解配合
原料の成分調整を行なう。 実施例 実施例 1 油圧プレスにより成型されたコンパクトを用い
て、プラズマビーム溶接により、直径788mm、長
さ6300mm、重量7200Kgの一次電極を作製し、これ
を消耗電極式真空アーク溶解炉を使つて二重溶解
し、直径980mm、長さ2100mm、重量7150Kgの純チ
タン鋳塊を製造した。 この際、一次溶解はすべて同一条件で行ない、
二次溶解のホツトトツプ条件を変えて、従来法の
比較的短い30分の場合と、比較的長くした150分
の2種類について調査した。なお、この発明の実
施に当り、一次電極作製時に、二次鋳塊のトツプ
部に相当する15%の部分については、目標値に対
しFeは0.010%低く、O(酸素)は0.020%高く配
合し、二次溶解のホツトトツプ時間は30分とし
た。 これら鋳塊の二次溶解電流パターンを第1図に
示す。図中線Aはホツトトツプ時間の短かい従来
法、Bはホツトトツプ時間を長くした減速溶解
法、Cはこの発明の実施例である。又、同時に各
鋳塊を二つに縦断し、偏析の著しいFe、Oにつ
いて成分分布を調査すると共に生産性、表面品質
の観察を行なつた。その結果を第1表に示す。
INDUSTRIAL APPLICATION FIELD This invention relates to a vacuum arc melting method for obtaining an ingot with excellent homogeneity, surface quality and productivity in vacuum arc melting of high melting point active metals such as Ti and Zr and their alloys. Conventional technology High melting point active metals are usually melted by vacuum arc melting, but this method involves constant melting with a constant electric current.
In the latter stage of melting, the melting current is reduced within a relatively short period of about 20 to 60 minutes, a so-called hot-top process. However, in such a method, the influence of the deep molten metal pool during steady melting remains, and the melting ends in a considerably deep state. As a result, component segregation and shrinkage pores may occur in the center of the ingot top, and in order to prevent the formation of these defects, it is important to adjust the depth of the molten metal pool at the end of melting. is an important element. Therefore, various efforts have been made in the past,
As a method for reducing the occurrence of shrinkage pores, for example, there is a method of gradually lowering the dissolution current, as described in Japanese Patent Publication No. 41-8321, and as a method for reducing component segregation, for example, as described in Japanese Patent Publication No. 40-4445, there is a method of gradually lowering the dissolution current. Component Mn
There is a way to side charge when hot-topping. Problems to be Solved by the Invention The above method for reducing the occurrence of shrinkage pores gradually reduces the depth of the molten metal pool while preventing solidification from the upper surface of the molten metal pool, thereby preventing the occurrence of shrinkage pores and reducing component segregation. This is what I am trying to do. However, in this case, it is clear that because the hot-top time is increased, the dissolution rate decreases and productivity deteriorates. Furthermore, the surface condition at the top of the ingot is inferior to that during high current melting. In order to solve this problem, if the hot-top time is shortened, component segregation will increase and large shrinkage pores will be generated. In addition, when adding Mn fine powder, the above method of reducing component segregation may cause it to scatter due to the arc and adhere to the mold, or conversely cause surface solidification, forming undissolved areas and promoting component segregation. There is sex. In view of the current situation, this invention proposes a vacuum arc melting method for high melting point active metals and their alloys in order to shorten hot-top time and obtain ingots with excellent homogeneity, surface quality, and productivity. . Means for Solving the Problems This invention provides a method for vacuum arc melting of active metals with high melting points and their alloys, when primary melting is performed by consumable electrode type arc melting. Parts of Fe, Ni, Cr, Al, Sn,
By adjusting components with significant segregation such as O and Mo, the hot-top time can be shortened. When primary melting is performed by non-consumable electrode type arc melting, Fe, Ni, Cr,
Hot-top time can be shortened by adjusting components with significant segregation such as Al, Sn, O, and Mo. The gist is that. In this invention, in order to prevent component segregation, components that are likely to be segregated are adjusted in advance. On this occasion,
Component segregation is caused by solidification, and elements with equilibrium distribution coefficient k < 1 (Fe, Ni, Cr, Al, Sn, etc. in the case of Ti and Zr)
has positive segregation, so it is adjusted to be lower by that amount, and k
Elements with >1 (O, Mo, etc. in the case of Ti and Zr) have negative segregation, so adjust to a high value. Through this adjustment, a uniform ingot without component segregation can be obtained. To adjust these easily segregated components, if primary melting is performed by consumable electrode type vacuum arc melting, the components of the primary electrode part must be adjusted, and if primary melting is performed by non-consumable electrode type arc melting, the components of the primary melting mixture should be adjusted. Adjust the ingredients. Examples Example 1 Using a compact molded by a hydraulic press, a primary electrode of 788 mm in diameter, 6300 mm in length, and 7200 kg in weight was produced by plasma beam welding, and this was then melted into a secondary electrode using a consumable electrode type vacuum arc melting furnace. A pure titanium ingot with a diameter of 980 mm, a length of 2100 mm, and a weight of 7150 kg was produced by heavy melting. At this time, all primary melting was performed under the same conditions,
By changing the hot top conditions of the secondary dissolution, we investigated two types: a conventional method, which was relatively short at 30 minutes, and a comparatively long one at 150 minutes. In addition, in carrying out this invention, when producing the primary electrode, Fe is 0.010% lower and O (oxygen) is 0.020% higher than the target value for the 15% portion corresponding to the top part of the secondary ingot. However, the hot-top time for secondary lysis was 30 minutes. The secondary melting current patterns of these ingots are shown in FIG. Line A in the figure shows the conventional method with a short hot-top time, line B shows the deceleration melting method with a long hot-top time, and line C shows an embodiment of the present invention. At the same time, each ingot was longitudinally cut into two, and the component distribution of Fe and O, which were significantly segregated, was investigated, and productivity and surface quality were observed. The results are shown in Table 1.

【表】【table】

【表】 最大偏析値=最大分析値/目標値
又、上記結果に基いて、目標値からの最大変動
量(a図)、鋳塊表面品質指数(b図)、生産能率
(c図)を第2図に示す。 上記結果より、この発明法Cは成分調整を行な
つていない従来法Aに比べ、成分偏析は著しく改
善されており、又長時間ホツトトツプを行なつた
Bと同等の均質性が得られると共に、生産性、表
面品質の優れた鋳塊が得られることがわかる。 実施例 2 非消耗電極式真空アーク溶解炉を使つて、直径
800mm、長さ3200mm、重量7200Kgのチタンインゴ
ツトを溶解し、これを二次電極として消耗電極式
真空アーク溶解により直径980mm、長さ2100mm、
重量7150Kgの純Ti鋳塊を製造した。この際、一
次溶解においては、原料としてスポンジチタン55
%、チタンスクラツプ45%を使用し、原料配合に
際して二次鋳塊のトツプ部に相当する15%の部分
について目標値よりFeは0.010%低く、Oは0.020
%高くなるように調整した。 なお、上記鋳塊は粗鍛造、分塊圧延により厚さ
200mm、幅1100mm、長さ7200mm、重量7115Kgのス
ラブとし、さらに熱延、冷延を施し、厚さ0.7mm、
幅1050mm、長さ1810m、重量5970Kgの冷延コイル
を製造した。 そして、偏析の著しいFe、Oについて、鋳塊
の表面5点と、冷延コイルの幅中心部で100mmピ
ツチで調査し、又表面品質については鋳塊及びス
ラブ手入れ歩留を調査した。以上の試験結果を第
2表に示す。 又、溶解条件については、一次溶解は全て同一
条件として、二次溶解のホツトトツプ条件を変え
て、従来法の30分をA、比較的長い150分をB、
この発明法の30分をCとして、この3条件につい
て調査を行なつた。
[Table] Maximum segregation value = Maximum analysis value / Target value Also, based on the above results, calculate the maximum variation from the target value (Figure a), the ingot surface quality index (Figure b), and the production efficiency (Figure c). Shown in Figure 2. From the above results, it can be seen that the inventive method C has significantly improved component segregation compared to the conventional method A in which no component adjustment was performed, and the same homogeneity as B, which was hot-topped for a long time, was obtained. It can be seen that an ingot with excellent productivity and surface quality can be obtained. Example 2 Using a non-consumable electrode type vacuum arc melting furnace,
A titanium ingot with a diameter of 800 mm, a length of 3200 mm, and a weight of 7200 kg is melted, and a diameter of 980 mm, a length of 2100 mm,
A pure Ti ingot weighing 7150Kg was produced. At this time, in the primary melting, sponge titanium 55 is used as a raw material.
%, using 45% titanium scrap, Fe is 0.010% lower than the target value and O is 0.020 in the 15% portion corresponding to the top of the secondary ingot when mixing raw materials.
Adjusted to be higher. The thickness of the above ingot is reduced by rough forging and blooming.
The slab is 200mm wide, 1100mm wide, 7200mm long, and weighs 7115kg, then hot-rolled and cold-rolled to a thickness of 0.7mm.
A cold-rolled coil with a width of 1050mm, a length of 1810m, and a weight of 5970Kg was manufactured. Then, Fe and O, which are significantly segregated, were investigated at five points on the surface of the ingot and at 100 mm intervals at the center of the width of the cold-rolled coil, and as for surface quality, the ingot and slab maintenance yields were investigated. The above test results are shown in Table 2. Regarding the melting conditions, all primary melting conditions were the same, and the hot top conditions for the secondary melting were changed: A for 30 minutes in the conventional method, B for the relatively long 150 minutes,
We investigated these three conditions with 30 minutes of this invention method as C.

【表】【table】

【表】 ただし、目標値からの最大変動量及び最大偏析度
は第1表の注釈に同じ。
又、上記結果に基いて、目標値からの最大変動
量(a図)、鋳塊表面品質指数(b図)、生産能率
(c図)を第3図に示す。 上記結果より、この発明法Cは成分調整を行な
つていない従来法Aに比べ、成分偏析は著しく改
善されており、又長時間ホツトトツプを行なつた
B法と同等の均質性が得られると共に、生産性、
表面品質の優れた鋳塊が得られることがわかる。 発明の効果 この発明は、高融点活性金属及びその合金を真
空アーク溶解する際、最終溶解における溶解後半
において、電極又は溶解配合原料中の偏析の著し
い成分を調整することにより、ホツトトツプ時間
を短縮して均質性、表面品質、生産性の優れた鋳
塊を得ることができる。
[Table] However, the maximum variation from the target value and the maximum degree of segregation are the same as the notes in Table 1.
Furthermore, based on the above results, the maximum variation amount from the target value (Figure a), the ingot surface quality index (Figure b), and the production efficiency (Figure c) are shown in Figure 3. From the above results, this invention method C has significantly improved component segregation compared to conventional method A in which no component adjustment is performed, and can obtain homogeneity equivalent to method B, which uses hot top for a long time. ,Productivity,
It can be seen that an ingot with excellent surface quality can be obtained. Effects of the Invention This invention reduces the hot-top time by adjusting components that are significantly segregated in the electrode or the melted compound raw materials in the latter half of the final melting process when high melting point active metals and their alloys are vacuum arc melted. It is possible to obtain ingots with excellent homogeneity, surface quality, and productivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は消耗電極式真空アーク溶解における二
次溶解電流パターンを示す線図、第2図は実施例
1において、第3図は実施例2において、それぞ
れ鋳塊の均質性、表面品質、生産性に及ぼす溶解
パターンの影響を示す図表である。 A…従来法、B…長時間ホツトトツプ法、C…
発明法、Ip…定常溶解電流、TA…Aパターンでの
全ホツトトツプ時間、TB…Bパターンでの全ホ
ツトトツプ時間、TC…Cパターンでの全ホツト
トツプ時間。
Figure 1 is a diagram showing the secondary melting current pattern in consumable electrode type vacuum arc melting, Figure 2 is a diagram showing the ingot homogeneity, surface quality, and production in Example 1, and Figure 3 is in Example 2. 1 is a chart showing the influence of dissolution patterns on properties. A...Conventional method, B...Long time hot top method, C...
Inventive method, Ip ...steady melting current, TA ...total hot-top time in A pattern, T B ...total hot-top time in B pattern, T C ...total hot-top time in C pattern.

Claims (1)

【特許請求の範囲】 1 高融点活性金属及びその合金の真空アーク溶
解において、消耗電極式アーク溶解で二重溶解す
る場合、最終溶解における溶解後半の溶湯プール
に対応する消耗電極のFe、Ni、Cr、Al、Sn、
O、Mo等の偏析の著しい成分を調整することに
より、ホツトトツプ時間を短縮して均質性、表面
品質、生産性のすぐれた鋳塊を得ることを特徴と
する高融点活性金属及びその合金の真空アーク溶
解方法。 2 高融点活性金属及びその合金の真空アーク溶
解において、一次溶解を非消耗電極式アーク溶解
で行なう場合、最終溶解における溶解後半の溶湯
プールに対応する一次溶解配合原料のFe、Ni、
Cr、Al、Sn、O、Mo等の偏析の著しい成分を調
整することにより、ホツトトツプ時間を短縮して
均質性、表面品質、生産性のすぐれた鋳塊を得る
ことを特徴とする高融点活性金属及びその合金の
真空アーク溶解方法。
[Claims] 1. In vacuum arc melting of high melting point active metals and their alloys, when double melting is performed by consumable electrode type arc melting, Fe, Ni, Cr, Al, Sn,
A vacuum for high melting point active metals and their alloys, which is characterized by shortening hot-top time and obtaining ingots with excellent homogeneity, surface quality, and productivity by adjusting components with significant segregation such as O and Mo. Arc melting method. 2. In vacuum arc melting of high melting point active metals and their alloys, when primary melting is performed by non-consumable electrode type arc melting, Fe, Ni,
A high-melting-point active product characterized by shortening hot-top time and obtaining ingots with excellent homogeneity, surface quality, and productivity by adjusting components with significant segregation such as Cr, Al, Sn, O, and Mo. Vacuum arc melting method for metals and their alloys.
JP19005584A 1984-09-10 1984-09-10 Method for vacuum arc melting of activate metals with high melting point and its alloy Granted JPS6167724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19005584A JPS6167724A (en) 1984-09-10 1984-09-10 Method for vacuum arc melting of activate metals with high melting point and its alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19005584A JPS6167724A (en) 1984-09-10 1984-09-10 Method for vacuum arc melting of activate metals with high melting point and its alloy

Publications (2)

Publication Number Publication Date
JPS6167724A JPS6167724A (en) 1986-04-07
JPH0429722B2 true JPH0429722B2 (en) 1992-05-19

Family

ID=16251589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19005584A Granted JPS6167724A (en) 1984-09-10 1984-09-10 Method for vacuum arc melting of activate metals with high melting point and its alloy

Country Status (1)

Country Link
JP (1) JPS6167724A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5036213B2 (en) * 2006-04-25 2012-09-26 株式会社神戸製鋼所 Consumable electrode
CN113462904B (en) * 2021-07-22 2022-12-09 西安汉唐分析检测有限公司 Pressing method of Ti-Mo alloy vacuum consumable electrode bar with high Mo content

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TITANIUM 1980 SCIENCE AND TECHNOLOGY=1980 *
TITANIUM AND TITANIUM ALLOYS=1976 *

Also Published As

Publication number Publication date
JPS6167724A (en) 1986-04-07

Similar Documents

Publication Publication Date Title
US8668760B2 (en) Method for the production of a β-γ-TiAl base alloy
CN113881855B (en) Preparation method of zirconium alloy ingot containing nuclear grade zirconium alloy return material
JP2963268B2 (en) Melting method of titanium alloy ingot by VAR method
AU2019253975B2 (en) A process for producing a superalloy and superalloy obtained by said process
JPH0429722B2 (en)
KR20170045273A (en) Cast titanium slab for use in hot rolling and unlikely to exhibit surface defects, and method for producing same
JP2007308769A (en) Method for manufacturing aluminum alloy thick plate, and aluminum alloy thick plate
JPS6115786B2 (en)
RU2353683C2 (en) Method of preforming from ingots of high-tin bronze
JPS5633164A (en) Manufacture of steel ingot by remelting
JPH07136740A (en) Casting method of ti alloy
RU2786101C1 (en) Method for production of bimetal ingot
JP7417056B2 (en) titanium alloy ingot
JPH08120366A (en) Method for continuously casting titanium cast slab
JPH0297625A (en) Production of ingot by consumable electrode-type arc melting and electrode therefor
JP7339536B2 (en) Titanium alloy ingot
RU2191836C2 (en) Method of ingots production
JPH0971827A (en) Production of industrial pure titanium ingot
JP2003221630A (en) Method for manufacturing titanium ingot
US3550671A (en) Steel making practice
JPH10211546A (en) Hot-top casting method
US3997332A (en) Steelmaking by the electroslag process using prereduced iron or pellets
JPH01133661A (en) Manufacture of hard-to-hot working seamless metal pipe
RU2152447C1 (en) Process of electroslag remelting of compact materials
JPH0429723B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees