JPH04297141A - Spacial light transmitting device - Google Patents

Spacial light transmitting device

Info

Publication number
JPH04297141A
JPH04297141A JP3061968A JP6196891A JPH04297141A JP H04297141 A JPH04297141 A JP H04297141A JP 3061968 A JP3061968 A JP 3061968A JP 6196891 A JP6196891 A JP 6196891A JP H04297141 A JPH04297141 A JP H04297141A
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting element
projection lens
receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3061968A
Other languages
Japanese (ja)
Inventor
Hidekazu Tode
都出 英一
Mitsushige Kondo
近藤 光重
Susumu Yuri
油利 享
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3061968A priority Critical patent/JPH04297141A/en
Publication of JPH04297141A publication Critical patent/JPH04297141A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

PURPOSE:To easily detect the location of a radiation flux and to easily radiate the radiation flux to a reception part. CONSTITUTION:An adjustment mechanism 11 adjusting the space between a light emitting element 1 of a transmission part and a projection lens 3 is provided. Thus, the radiation light flux diameter in the reception part can be adjusted and the radiation light flux can be increased up to secure the necessary light receiving amount. Thus, the radiation positioning accuracy can be remarkably alleviated. By providing the sight optical system on the transmission part, the radiation position can be confirmed and adjusted with high accuracy.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、音響信号または映像信
号を光信号に変換し、ワイヤレスで空間伝送させ、離れ
た位置で信号を受光することのできる空間光伝送装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spatial optical transmission device capable of converting an audio signal or a video signal into an optical signal, transmitting the signal wirelessly through space, and receiving the signal at a remote location.

【0002】0002

【従来の技術】TV受像器、ビデオプロジェクター、ス
ピーカ等の音響・映像出力装置は、信号源から離れた位
置に配置しようとすると、信号線であるケーブルを引き
回す必要があり、非常に不便であった。このため信号源
からの音響・映像等の電気信号を光信号に変換し、ワイ
ヤレスで空間を伝搬させ、離れた位置におかれた受光装
置により電気信号に再生し、スピーカ等に接続できる空
間光伝送装置が今後有望と考えられている。
BACKGROUND OF THE INVENTION When audio/visual output devices such as TV receivers, video projectors, and speakers are placed at a location away from a signal source, it is necessary to route cables as signal lines, which is very inconvenient. Ta. For this purpose, spatial light that converts electrical signals such as audio and video from a signal source into optical signals, propagates them wirelessly in space, reproduces them into electrical signals using a light receiving device placed at a remote location, and connects them to speakers, etc. Transmission devices are considered to be promising in the future.

【0003】図6は空間光伝送装置の光学系を示した例
であり、1は発光ダイオード(LED),半導体レーザ
(LD)等の発光素子、2は信号源、3は投写レンズ、
4は送信部からの出射光束、5は受光レンズ、6は光検
知器、7は出力装置である。
FIG. 6 shows an example of an optical system of a spatial light transmission device, in which 1 is a light emitting element such as a light emitting diode (LED) or a semiconductor laser (LD), 2 is a signal source, 3 is a projection lens,
Reference numeral 4 designates a beam of light emitted from the transmitter, 5 a light receiving lens, 6 a photodetector, and 7 an output device.

【0004】VTRやCD等の信号源2からの出力は図
示しない増幅器、AD変換器、光変調器等をとうり、発
光素子1により光信号として出射される。出射光は投写
レンズ3により、ほぼ平行光とされる。これら送信部か
らの出射光4は、遠く配された受信部にむけて空間を伝
送され、受信部の受光レンズに取り込んだ光束を光検知
器6が受光し、電気信号に変換したのち図示しないDA
変換器、増幅器等をとおり、プロジェクター、スピーカ
等の出力装置7に入力される。
[0004] Output from a signal source 2 such as a VTR or CD is passed through an amplifier, an AD converter, an optical modulator, etc. (not shown), and is emitted as an optical signal by a light emitting element 1. The emitted light is turned into substantially parallel light by the projection lens 3. The emitted light 4 from these transmitting parts is transmitted through space toward a receiving part disposed far away, and the light flux taken into the receiving lens of the receiving part is received by a photodetector 6 and converted into an electric signal, which is not shown in the figure. D.A.
The signal passes through a converter, amplifier, etc., and is input to an output device 7 such as a projector or speaker.

【0005】[0005]

【発明が解決しようとする課題】上記の様な空間光伝送
装置では、受光レンズ5の位置に出射光束4が照射され
る様に、送信部の向きを調整する必要がある。しかし一
般に発光素子1の波長は800nm程度の近赤外光であ
り、出射光束4は目で見えず、出射方向調整が困難であ
る。
In the spatial light transmission device as described above, it is necessary to adjust the direction of the transmitter so that the emitted light beam 4 is irradiated to the position of the light receiving lens 5. However, in general, the wavelength of the light emitting element 1 is near-infrared light of about 800 nm, and the emitted light beam 4 is invisible to the naked eye, making it difficult to adjust the emitting direction.

【0006】出射方向調整を容易にするため、あらかじ
め受光部位置で出射光束4の光束径を大きく設定し、照
射位置精度を緩くする方法が考えられるが、明らかに受
光レンズ5に取り込まれる光束光量が減少して信号のS
Nを劣化させる可能性がある。また伝送距離によって出
射光束径が異なる、つまり受光光量が異なってしまう問
題も生じる。
In order to facilitate the adjustment of the output direction, a method can be considered in which the diameter of the output beam 4 is set large in advance at the light-receiving part position and the accuracy of the irradiation position is loosened, but it is clear that the amount of the beam taken into the light-receiving lens 5 is decreases and the signal S
There is a possibility of degrading N. There also arises the problem that the diameter of the emitted light beam varies depending on the transmission distance, that is, the amount of received light varies.

【0007】本発明は、かかる問題点を解決するために
なされたものであり、照射光束の受信部への照射位置精
度を緩和し、また照射位置の検出を容易にすることを目
的とし、簡単な出射方向の調整で高効率の光伝送を実現
する空間光伝送装置を提供することを目的とする。
The present invention has been made to solve these problems, and aims to reduce the accuracy of the irradiation position of the irradiation light beam onto the receiving section, and to facilitate the detection of the irradiation position. An object of the present invention is to provide a spatial optical transmission device that realizes highly efficient optical transmission by adjusting the emission direction.

【0008】[0008]

【課題を解決するための手段】本発明に係る空間光伝送
装置において、送信部は発光素子と投写レンズの間隔を
調整できる機構手段を有し、受信部位置における照射光
束径を調整し、必要な受光光量を確保できる範囲で、照
射位置精度緩和のため照射光束径を大きくできるように
したものである。
[Means for Solving the Problems] In the spatial light transmission device according to the present invention, the transmitting section has a mechanical means that can adjust the distance between the light emitting element and the projection lens, and adjusts the diameter of the irradiated light beam at the receiving section position. The diameter of the irradiated light beam can be increased to reduce the accuracy of the irradiation position within a range that can ensure a sufficient amount of received light.

【0009】また、送信部は複数の発光素子を有し、そ
れぞれの出射光束は受信部位置において異なる箇所を照
射するように配し、照射位置精度を緩和できるようにし
たものである。
Further, the transmitting section has a plurality of light emitting elements, and each emitted light beam is arranged so as to irradiate a different location at the receiving section position, so that the accuracy of the irradiation position can be relaxed.

【0010】また、送信部は出射光束位置をある程度目
視できるように、可視光の照準用光学系をあわせもたせ
たものである。
The transmitter is also equipped with a visible light aiming optical system so that the position of the emitted light beam can be visually observed to some extent.

【0011】さらにまた、送信部は出射光束位置をある
程度目視できるように、可視光の照準用発光素子と信号
伝送用発光素子を有し、ダイクロイック光学素子により
合成し、同軸で出射できるようにしたものである。
Furthermore, the transmitter has a visible light aiming light emitting element and a signal transmission light emitting element so that the position of the emitted light beam can be visually checked to some extent, and the light emitting elements are combined by a dichroic optical element so that they can be emitted coaxially. It is something.

【0012】0012

【作用】上記の用に構成された送信部は、伝送距離の変
化に対応し、調整機構を用い発光素子と投写レンズの間
隔を変えることで、受信部の必要受光光量を確保できる
範囲まで、できるだけ照射光束径を大きくできるので、
照射位置調整精度を大幅に緩和できる。
[Operation] The transmitter configured as described above responds to changes in transmission distance by changing the distance between the light emitting element and the projection lens using an adjustment mechanism, to the extent that the required amount of light received by the receiver can be secured. Since the irradiation beam diameter can be made as large as possible,
The accuracy of irradiation position adjustment can be significantly reduced.

【0013】また、送信部に複数の発光素子を設けるこ
とで、受信部位置で複数の照射光束が異なる位置にでき
るので、照射位置調整精度を大幅に緩和できる。
Furthermore, by providing a plurality of light emitting elements in the transmitting section, a plurality of irradiation light beams can be emitted at different positions at the receiving section, so that the accuracy of adjusting the irradiation position can be greatly reduced.

【0014】また、可視波長の光束を出射する照準光源
を利用し、目視で容易に照射光束の位置を知ることがで
きる。
Furthermore, by using a sighting light source that emits a visible wavelength light beam, the position of the irradiated light beam can be easily determined visually.

【0015】さらにまた、可視波長の光束をダイクロイ
ック光学素子により信号伝送光束と同軸に照射できるの
で、照射位置を正確に知ることができる。
Furthermore, since the visible wavelength light beam can be irradiated coaxially with the signal transmission light beam by the dichroic optical element, the irradiation position can be accurately determined.

【0016】[0016]

【実施例】実施例1.図1は本発明の一実施例を示す光
伝送光学系の構成図であり、1〜7は上記従来装置と同
一のものである。11は発光素子1と投写レンズ3の間
隔を調整する調整手段であり、発光素子側、投写レンズ
側別々の保持部品が互いにねじ構造、またはカム構造に
より接続されており、回転・スライドにより、間隔が変
化できる様な構造となっている。
[Example] Example 1. FIG. 1 is a block diagram of a light transmission optical system showing an embodiment of the present invention, and 1 to 7 are the same as the conventional device described above. Reference numeral 11 denotes an adjusting means for adjusting the distance between the light emitting element 1 and the projection lens 3. Separate holding parts on the light emitting element side and the projection lens side are connected to each other by a screw structure or a cam structure, and the distance can be adjusted by rotating or sliding. It has a structure that allows it to change.

【0017】前記のように構成された送信部は、出射光
束4の受信部における光束径を自由に調整でき、光束径
を受光レンズ5の口径よりも充分大きくすることで、照
射光束の位置精度を緩和できる。つまり、照射光束範囲
に受光レンズ5があれば、信号を検知できるので少々照
射位置の中心が受光レンズからずれていてもかまわない
。このとき伝送距離の変化により明らかに照射光束径が
変化するので、伝送距離に対応させ、前記調整機構11
を用いて、照射光束径を調整すればよい。照射光束径は
受信部の必要光量を満たす範囲で広げることができる。
The transmitting section configured as described above can freely adjust the beam diameter of the emitted beam 4 at the receiving section, and by making the beam diameter sufficiently larger than the aperture of the light receiving lens 5, the positional accuracy of the irradiated beam can be improved. can be alleviated. In other words, as long as the light receiving lens 5 is within the irradiation beam range, the signal can be detected, so it does not matter if the center of the irradiation position is slightly shifted from the light receiving lens. At this time, since the irradiation beam diameter obviously changes due to a change in the transmission distance, the adjustment mechanism 11 is adjusted to correspond to the transmission distance.
The diameter of the irradiation beam can be adjusted using . The diameter of the irradiated light beam can be increased within a range that satisfies the amount of light required by the receiver.

【0018】実施例2.上記実施例1では、受信部の必
要光量を満たす範囲でしか出射光束4の照射光束径を広
げられなかったが、発光素子1を複数個使用すればよい
。図2は同一の光信号を発光する発光素子1を2個使用
した例であり、各発光素子1より出射した光束は同一の
投写レンズ2によって投写され、出射光束4は受信部位
置で異なる箇所を照射する。この結果、受信部を配置で
きる領域が2倍に広げられる。
Example 2. In the first embodiment described above, the diameter of the emitted light beam 4 could be expanded only within a range that satisfies the required light amount of the receiver, but a plurality of light emitting elements 1 may be used. FIG. 2 shows an example in which two light emitting elements 1 that emit the same optical signal are used, and the light beams emitted from each light emitting element 1 are projected by the same projection lens 2, and the emitted light beams 4 are placed at different locations depending on the position of the receiver. irradiate. As a result, the area where the receiving section can be placed is doubled.

【0019】さらに多くの発光素子1を用いれば、殆ど
無調整で受信部を配しても受光できる。また各出射光束
は受信部の位置にて完全に異なる位置に照射されなけれ
ばならないことは全く無く、重複部では受光光量が増加
するので、照射領域の広さに余裕があれば、むしろ重複
させた方がよい。
If a larger number of light emitting elements 1 are used, light can be received with almost no adjustment even if the receiver is arranged. In addition, it is not necessary for each emitted light beam to be irradiated to a completely different position in the receiver, and the amount of received light increases in the overlapping area. It is better to

【0020】実施例3.上記実施例1、2では発光素子
1の波長が近赤外光なので目でみることができず、在る
程度広く照射光束径をとる必要があった。しかし可視光
の照準光学系を別に設けることで、その問題は解決でき
る。図3において8はハロゲンランプ、LED,LD等
の可視光の発光素子、9はその投写レンズである。
Example 3. In Examples 1 and 2, the wavelength of the light emitting element 1 is near-infrared light, which cannot be seen with the naked eye, and it was necessary to set the irradiation beam diameter as wide as possible. However, this problem can be solved by separately providing a visible light aiming optical system. In FIG. 3, 8 is a visible light emitting element such as a halogen lamp, LED, or LD, and 9 is a projection lens thereof.

【0021】送信部は信号伝送用の光学系1、3と照準
用光学系8、9からなり、照準光学系の光軸10は信号
伝送用の光学系の出射光束4の光軸と近接し平行に配す
ればよい。また光軸10は受信部において広がった照射
光束4の内側をとうるように配しておけば、目視にて出
射光束4の位置を知ることができる。
The transmitting section consists of optical systems 1 and 3 for signal transmission and optical systems 8 and 9 for aiming, and the optical axis 10 of the aiming optical system is close to the optical axis of the output beam 4 of the optical system for signal transmission. They should be placed in parallel. Further, if the optical axis 10 is arranged so as to be located inside the irradiated light beam 4 spread out in the receiving section, the position of the emitted light beam 4 can be visually determined.

【0022】この結果、送信部の出射方向を容易に調整
でき、受信部5、6に正しく照射できるので、出射光束
4の受信部における光束径をさほど大きくとらなくても
良く、上記実施例よりも多く光量を受光できる。
As a result, the emission direction of the transmitting section can be easily adjusted and the receiving sections 5 and 6 can be irradiated correctly, so the diameter of the emitted light beam 4 at the receiving section does not have to be very large, which is better than the above embodiment. It can receive a large amount of light.

【0023】実施例4.上記実施例3では照準光学系を
信号伝送光学系と別に設けたが、投写レンズも別に必要
となる上、照準用と信号用光学系の光軸を完全に一致で
きず、完全に正しく照射位置を知ることができない。
Example 4. In Embodiment 3, the aiming optical system was provided separately from the signal transmission optical system, but a projection lens was also required separately, and the optical axes of the aiming and signal optical systems could not be perfectly aligned, making it impossible to completely correct the irradiation position. cannot know.

【0024】図4は照準光学系と信号伝送光学系の光軸
を完全に同軸にできる発明の実施例であり、12はハイ
パスフィルタ特性を有するダイクロイック光学素子であ
る。本発明の光学系の動作を、図5に示した分光透過率
特性および発光スペクトル特性を用いて説明する。信号
伝送用の発光素子1の発光スペクトルaは800nm以
上の波長の近赤外光であり、ダイクロイック素子12の
透過率特性cに従って透過する。一方照準用発光素子8
のスペクトルbはダイクロイック素子12により反射さ
れる。この結果図4において2つの光束は合成され、同
一の投写レンズ3によって同軸で出射される。
FIG. 4 shows an embodiment of the invention in which the optical axes of the aiming optical system and the signal transmission optical system can be made completely coaxial, and 12 is a dichroic optical element having high-pass filter characteristics. The operation of the optical system of the present invention will be explained using the spectral transmittance characteristics and emission spectral characteristics shown in FIG. The emission spectrum a of the light emitting element 1 for signal transmission is near-infrared light with a wavelength of 800 nm or more, and is transmitted according to the transmittance characteristic c of the dichroic element 12. On the other hand, aiming light emitting element 8
spectrum b is reflected by the dichroic element 12. As a result, in FIG. 4, the two light beams are combined and coaxially emitted by the same projection lens 3.

【0025】本発明では信号伝送用光束4が図示しない
受信部を正しく照射しているかを目視で確認することが
でき、照射方向の調整を容易に行うことができる。
In the present invention, it is possible to visually confirm whether the signal transmission light beam 4 is correctly irradiating a receiving section (not shown), and the irradiation direction can be easily adjusted.

【0026】[0026]

【発明の効果】本発明は、以上述べたように構成したの
で、以下に記載する効果を奏する。
[Effects of the Invention] Since the present invention is configured as described above, it produces the effects described below.

【0027】受信部に於ける照射光束径は、調整機構を
用いることで、伝送距離に従って必要光量を確保できる
程度に、受光レンズよりも大きく調整できるので、照射
位置精度を大幅に緩和できる。
By using an adjustment mechanism, the diameter of the irradiated light beam in the receiving section can be adjusted to be larger than that of the light receiving lens to the extent that the necessary amount of light can be secured according to the transmission distance, so that the accuracy of the irradiation position can be greatly reduced.

【0028】複数の発光素子を送信部にもうけることで
、受信部に於いて複数の照射光束を照射できるので、照
射位置精度を大幅に緩和できる。
By providing a plurality of light emitting elements in the transmitting section, a plurality of irradiation light beams can be irradiated at the receiving section, so that the accuracy of the irradiation position can be greatly reduced.

【0029】また、送信部に照準器を装備することで、
受信部での照射光束位置を目視で確認でき、出射方向調
整を容易にする。照射光束径も大きくとる必要がなくな
り、受光光量を増加できる。
[0029] Furthermore, by equipping the transmitter with a sight,
The position of the irradiated light beam at the receiver can be visually confirmed, making it easy to adjust the emission direction. There is no need to increase the diameter of the irradiated light beam, and the amount of received light can be increased.

【0030】また、送信部に照準器を装備し、かつダイ
クロイック光学素子により信号光束と同軸に照射できる
ので、受信部での照射光束位置を目視で正確に確認でき
、出射方向調整を容易にする。照射光束径も大きくとる
必要がなくなり、受光光量を増加できる。
Furthermore, since the transmitter is equipped with an optical sight and the dichroic optical element allows the beam to be irradiated coaxially with the signal beam, the position of the irradiated beam at the receiver can be visually confirmed accurately, making it easy to adjust the output direction. . There is no need to increase the diameter of the irradiated light beam, and the amount of received light can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例1を示す構成図である。FIG. 1 is a configuration diagram showing a first embodiment of the present invention.

【図2】本発明の実施例2を示す構成図である。FIG. 2 is a configuration diagram showing a second embodiment of the present invention.

【図3】本発明の実施例3を示す構成図である。FIG. 3 is a configuration diagram showing a third embodiment of the present invention.

【図4】本発明の実施例4を示す構成図である。FIG. 4 is a configuration diagram showing a fourth embodiment of the present invention.

【図5】本発明の実施例4のダイクロイック素子の説明
図である。
FIG. 5 is an explanatory diagram of a dichroic element according to Example 4 of the present invention.

【図6】従来の空間光伝送装置を示す構成図である。FIG. 6 is a configuration diagram showing a conventional spatial optical transmission device.

【符号の説明】[Explanation of symbols]

1  発光素子 2  信号源 3  投写レンズ 4  出射光束 5  受光レンズ 6  光検知器 7  出力装置 8  照準用発光素子 9  照準用投写レンズ 11  調整機構 12  ダイクロイック光学素子 1 Light emitting element 2 Signal source 3. Projection lens 4 Output luminous flux 5 Light receiving lens 6. Photodetector 7 Output device 8 Aiming light emitting element 9 Aiming projection lens 11 Adjustment mechanism 12 Dichroic optical element

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】発光素子と投写レンズからなる送信部と、
受光素子と受光レンズからなる受信部とからなり、前記
送信部は前記発光素子と投写レンズの間隔を動かす機構
手段を有し、受信部位置における前記送信部からの出射
光束径が、前記受光レンズ径より大きくなるよう調整で
きることを特徴とする空間光伝送装置。
Claim 1: A transmitter comprising a light emitting element and a projection lens;
It consists of a receiving section consisting of a light-receiving element and a light-receiving lens, and the transmitting section has a mechanism for moving the distance between the light-emitting element and the projection lens. A spatial optical transmission device characterized in that it can be adjusted to be larger than the diameter.
【請求項2】発光素子と投写レンズからなる送信部と、
受光素子と受光レンズからなる受信部とからなり、前記
送信部は複数の発光素子と1つの投写レンズからなり、
各発光素子からの出射光束は、受信部位置において互い
に異なる箇所を照射することを特徴とする空間光伝送装
置。
2. A transmitter comprising a light emitting element and a projection lens;
It consists of a receiving section consisting of a light receiving element and a light receiving lens, and the transmitting section consists of a plurality of light emitting elements and one projection lens,
1. A spatial light transmission device characterized in that the light beams emitted from each light emitting element illuminate mutually different locations at a receiver position.
【請求項3】発光素子と投写レンズからなる送信部と、
受光素子と受光レンズからなる受信部とからなり、前記
送信部は信号伝送用の発光素子と投写レンズの他に、可
視波長の発光素子と投写レンズからなる照準用光学系を
有し、該照準用光学系の光軸は、受信部位置において前
記信号伝送用投写レンズからの出射光束径の内側に配す
ることを特徴とする空間光伝送装置。
3. A transmitter comprising a light emitting element and a projection lens;
The transmitting section includes a light emitting element for signal transmission and a projection lens, and an aiming optical system consisting of a visible wavelength light emitting element and a projection lens. 2. A spatial light transmission device, wherein the optical axis of the optical system is arranged inside the diameter of the light beam emitted from the signal transmission projection lens at the receiving section position.
【請求項4】発光素子と投写レンズからなる送信部と、
受光素子と受光レンズからなる受信部とからなり、前記
送信部は信号伝送用の近赤外波長の発光素子と照準用可
視波長の発光素子と、該2つの発光素子からの光束を同
軸に合成するダイクロイック光学素子と、合成された光
束を投写する投写レンズからなることを特徴とする空間
光伝送装置。
4. A transmitter comprising a light emitting element and a projection lens;
It consists of a receiving section consisting of a light receiving element and a light receiving lens, and the transmitting section includes a near-infrared wavelength light emitting element for signal transmission, a visible wavelength light emitting element for aiming, and coaxially combining the light beams from the two light emitting elements. 1. A spatial light transmission device comprising a dichroic optical element that projects a beam of light and a projection lens that projects a combined light beam.
JP3061968A 1991-03-26 1991-03-26 Spacial light transmitting device Pending JPH04297141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3061968A JPH04297141A (en) 1991-03-26 1991-03-26 Spacial light transmitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3061968A JPH04297141A (en) 1991-03-26 1991-03-26 Spacial light transmitting device

Publications (1)

Publication Number Publication Date
JPH04297141A true JPH04297141A (en) 1992-10-21

Family

ID=13186488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3061968A Pending JPH04297141A (en) 1991-03-26 1991-03-26 Spacial light transmitting device

Country Status (1)

Country Link
JP (1) JPH04297141A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003092192A1 (en) * 2002-04-26 2003-11-06 Allied Telesis K.K. Optical wireless communication device and method for adjusting the position of optical wireless communication device
JP2006340138A (en) * 2005-06-03 2006-12-14 Shimizu Corp Method of identifying light communication range

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003092192A1 (en) * 2002-04-26 2003-11-06 Allied Telesis K.K. Optical wireless communication device and method for adjusting the position of optical wireless communication device
JP2006340138A (en) * 2005-06-03 2006-12-14 Shimizu Corp Method of identifying light communication range
JP4660818B2 (en) * 2005-06-03 2011-03-30 清水建設株式会社 Lighting system

Similar Documents

Publication Publication Date Title
US10983344B2 (en) System for optical wireless communication to extended reality immersion device
US7534986B2 (en) Optical wireless transmission system
US6978092B2 (en) Apparatus for optical communication using a large-area primary reflector
JPH04297141A (en) Spacial light transmitting device
US20030202796A1 (en) Optical wireless communication device and postion adjustment method therefor
KR102137431B1 (en) Lighting apparatus
JP2829941B2 (en) Optical space transmission equipment
CN207020409U (en) A kind of hot spot Imaging for Monitoring equipment
JPH06164512A (en) Pointing apparatus for optical space communication device
TWI637604B (en) Optical fiber laser transmission system with laser light splitting device
US6337741B1 (en) Sensor system for measuring the light absorption in a target
JP2003209520A (en) Transmitter, receiver and signal axis alignment method
GB2337173A (en) Stage light steering
JPH05183515A (en) Optical space transmitter
KR20100099293A (en) Laser pointing system
JPH05183514A (en) Optical space transmitter
JPS629996B2 (en)
JPH0119481Y2 (en)
US9952387B2 (en) Optical fiber transmission system with a laser beam splitting and combining device
JPH09321705A (en) Optical digital communication method and its equipment
JP3165942U (en) Observation object guide device
JP2004165957A (en) Optical transmitter
JPH0720734U (en) Optical space transmission device
JP3732578B2 (en) Optical space transmission equipment
JPH0340616A (en) Optical space transmission equipment