JPH04296716A - Special optical modulator - Google Patents

Special optical modulator

Info

Publication number
JPH04296716A
JPH04296716A JP8458391A JP8458391A JPH04296716A JP H04296716 A JPH04296716 A JP H04296716A JP 8458391 A JP8458391 A JP 8458391A JP 8458391 A JP8458391 A JP 8458391A JP H04296716 A JPH04296716 A JP H04296716A
Authority
JP
Japan
Prior art keywords
transparent electrode
adhesive layer
transparent adhesive
electro
electrode film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8458391A
Other languages
Japanese (ja)
Inventor
Yukihisa Osugi
幸久 大杉
Masaji Tange
正次 丹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP8458391A priority Critical patent/JPH04296716A/en
Publication of JPH04296716A publication Critical patent/JPH04296716A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the occurrence of interference fringes due to reflection from transparent electrode films and transparent adhesive layers when coherent light for readout is passed through a special optical modulator. CONSTITUTION:Transparent electrode films 2A, 2B are formed on the surfaces of substrates 1A, 1B and insulating layers 4A, 4B are stuck to the insides of the films 2A, 2B with transparent adhesive layers 3A, 3B. An electro-optical crystal layer 6 made of a Bi12SiO20. single crystal, etc., is held between the insulating layers 4A, 4B by adhesion. The optical path of the transparent electrode films 2A, 2B is made 0.47-0.52 time the wavelength of coherent light for readout passed through the resulting special optical modulator.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、ポッケルス読み出し光
変調素子 (PROM, Pockels Reado
ut OpticalModulator) 等の空間
光変調素子に関するものである。
[Industrial Application Field] The present invention is directed to a Pockels Read Optical Modulator (PROM).
The invention relates to spatial light modulators such as optical modulators.

【0002】0002

【従来の技術】空間光変調素子のうち、Bi12SiO
20 (BSO) 単結晶を使用したPROM素子は、
BSO単結晶の光伝導性を利用して、書き込み画像情報
の光強度分布を単結晶板内の電荷分布に変換して蓄積し
、次いでこの電荷分布がつくる電界によって生ずる電気
光学効果を利用し、読み出し光の強度分布に変換するも
のである。従って、この型の空間光変調素子は、BSO
 単結晶板とこれを包む絶縁層及び透明電極によって構
成される。
[Prior Art] Among spatial light modulators, Bi12SiO
20 (BSO) A PROM element using a single crystal is
Utilizing the photoconductivity of the BSO single crystal, the light intensity distribution of written image information is converted into a charge distribution within the single crystal plate and accumulated, and then the electro-optic effect generated by the electric field created by this charge distribution is utilized. This converts it into the intensity distribution of readout light. Therefore, this type of spatial light modulator is a BSO
It consists of a single crystal plate, an insulating layer surrounding it, and a transparent electrode.

【0003】ここで特に、インコヒーレント光画像をコ
ヒーレント光画像に変換するPROM素子においては、
コヒーレント光による読み出し画像に干渉縞が発生する
のを防止するため、電気光学結晶層にテーパを設ける。 従ってこの層の一対の主面は互いに対して所定角度傾斜
することになるが、この角度は素子や装置によって異な
り、例えば15分程度以上の大きさが必要である。これ
により、読み出し光画像に発生する干渉縞のピッチを肉
眼で識別できない程度にまで小さくする。
In particular, in a PROM element that converts an incoherent optical image into a coherent optical image,
In order to prevent interference fringes from occurring in images read out by coherent light, the electro-optic crystal layer is provided with a taper. Therefore, the pair of main surfaces of this layer are inclined at a predetermined angle with respect to each other, but this angle varies depending on the element or device, and needs to be about 15 minutes or more, for example. As a result, the pitch of interference fringes generated in the readout light image is reduced to such an extent that it cannot be discerned with the naked eye.

【0004】0004

【発明が解決しようとする課題】しかし、本発明者が、
電気光学結晶層に15分程度のテーパを設けてレーザー
光で読み出し実験したところ、未だ微小な干渉縞が読み
出し光画像に現れることが解った。
[Problem to be solved by the invention] However, the inventor of the present invention
When the electro-optic crystal layer was tapered by about 15 minutes and read-out experiments using laser light were carried out, it was found that minute interference fringes still appeared in the read-out light image.

【0005】本発明の課題は、上記したような、電気光
学結晶層の一対の主面間の反射に直接起因するものでな
い干渉縞を除去することである。
An object of the present invention is to eliminate interference fringes that are not directly caused by reflection between a pair of principal surfaces of an electro-optic crystal layer, as described above.

【0006】[0006]

【課題を解決するための手段】本発明は、電気光学結晶
層、この電気光学結晶層の少なくとも一方の側に設けら
れた絶縁層、透明電極膜が形成されたガラス基板、及び
このガラス基板の前記透明電極膜が形成された側の面と
前記絶縁層とを接着する透明接着剤層を少なくとも有す
る空間光変調素子であって、前記透明電極膜の光路長が
、この空間光変調素子の読み出し用コヒーレント光の波
長の0.47倍以上、0.52倍以下である空間光変調
素子に係わるものである。
[Means for Solving the Problems] The present invention provides an electro-optic crystal layer, an insulating layer provided on at least one side of the electro-optic crystal layer, a glass substrate on which a transparent electrode film is formed, and a glass substrate of the glass substrate. A spatial light modulation element having at least a transparent adhesive layer bonding the insulating layer and the surface on which the transparent electrode film is formed, wherein the optical path length of the transparent electrode film is the readout of the spatial light modulation element. This relates to a spatial light modulator whose wavelength is 0.47 times or more and 0.52 times or less the wavelength of coherent light.

【0007】[0007]

【作用】本発明者は、主としてPROM素子について、
コヒーレント光による読み出し光画像中の干渉縞につき
検討を行った結果、これまで見逃されてきた透明電極膜
の二つの界面における反射や、透明接着剤層における反
射が干渉縞の原因となっていることを突き止め、本発明
を完成した。そして、本発明に従い、透明電極膜の光路
長を、空間光変調素子の読み出し用コヒーレント光の波
長の0.47倍以上、0.52倍以下とすることで、上
記の反射による干渉縞のコントラストを、読み出し光画
像において確認し難い程度にまで薄くすることができた
のである。 この原理については後述する。
[Function] The present inventor mainly concerns PROM elements.
As a result of examining interference fringes in readout images using coherent light, we found that reflections at the two interfaces of the transparent electrode film and reflections at the transparent adhesive layer, which had been overlooked until now, are the causes of interference fringes. They discovered this and completed the present invention. According to the present invention, by setting the optical path length of the transparent electrode film to 0.47 times or more and 0.52 times or less the wavelength of the coherent light for readout of the spatial light modulation element, the contrast of the interference fringes due to the above reflection is achieved. This made it possible to make it so thin that it was difficult to see it in the readout image. This principle will be described later.

【0008】[0008]

【実施例】まず、本発明を適用するのに好適なPROM
素子を例示する。図1は、こうしたPROM素子の断面
図である。まず、例えば四辺形の基板1Aを準備する。 基板1Aは、合成石英ガラス、ホウケイ酸ガラスのよう
なガラスによって形成することが好ましい。この基板1
Aの表面に、蒸着法等によって透明電極膜2Aを形成す
る。この際、基板1Aのコーナー部分に、透明電極膜2
Aを外部電源へと接続するためのリード部を形成するこ
とが好ましい。
[Example] First, a PROM suitable for applying the present invention
An example of an element is shown below. FIG. 1 is a cross-sectional view of such a PROM device. First, for example, a quadrilateral substrate 1A is prepared. The substrate 1A is preferably formed of glass such as synthetic quartz glass or borosilicate glass. This board 1
A transparent electrode film 2A is formed on the surface of A by a vapor deposition method or the like. At this time, a transparent electrode film 2 is placed on the corner part of the substrate 1A.
Preferably, a lead portion is formed for connecting A to an external power source.

【0009】次いで、所定厚さの絶縁板を基板1Aの表
面に透明接着剤層3Aを介して接着する。次いで、この
絶縁板を研削加工及び光学研摩し、図1に示すように絶
縁層4Aを形成する。そして、絶縁層4Aの表面に、透
明接着剤層5Aを介して電気光学結晶板を接着し固定す
る。この状態で、電気光学結晶板の表面を研削加工及び
光学研摩し、図1に示すように、所定厚さの電気光学結
晶層6を形成する。この電気光学結晶層6には、例えば
15分程度の傾斜又はテーパを設ける。
Next, an insulating plate of a predetermined thickness is bonded to the surface of the substrate 1A via a transparent adhesive layer 3A. Next, this insulating plate is ground and optically polished to form an insulating layer 4A as shown in FIG. Then, an electro-optic crystal plate is adhered and fixed to the surface of the insulating layer 4A via a transparent adhesive layer 5A. In this state, the surface of the electro-optic crystal plate is ground and optically polished to form an electro-optic crystal layer 6 of a predetermined thickness, as shown in FIG. This electro-optic crystal layer 6 is provided with an inclination or taper of, for example, about 15 minutes.

【0010】一方、上記したと全く同様の方法で、図1
に示すように、リード部を有する透明電極膜2Bを基板
1Bの表面に形成し、また透明電極膜2Bを覆うように
、絶縁板を透明接着剤層3Bを介して基板1Bの表面へ
と接着する。そしてこの絶縁板を研削加工及び光学研摩
し、所定厚さの絶縁層4Bを形成する。この絶縁層4B
を透明接着剤層5Bによって電気光学結晶層6に接着す
る。こうして図1に示すPROM素子を構成する。
On the other hand, in exactly the same manner as described above, FIG.
As shown in , a transparent electrode film 2B having a lead portion is formed on the surface of the substrate 1B, and an insulating plate is bonded to the surface of the substrate 1B via a transparent adhesive layer 3B so as to cover the transparent electrode film 2B. do. This insulating plate is then ground and optically polished to form an insulating layer 4B of a predetermined thickness. This insulating layer 4B
is adhered to the electro-optic crystal layer 6 by a transparent adhesive layer 5B. In this way, the PROM element shown in FIG. 1 is constructed.

【0011】図1のPROM素子においては、電気光学
結晶層6の両側に絶縁層4A, 4Bを設けたが、この
うち一方の絶縁層を省略することも一応可能である。ま
た、一対の透明電極膜2A, 2Bをそれぞれ基板1A
,1Bに形成し、これら一対の透明電極膜2Aと2Bと
の間に電気光学結晶層6と絶縁層4A, 4Bとを挟ん
だが、上記したように一方の絶縁層4Bを省略した場合
には、一方の透明電極膜2Bを電気光学結晶層6の表面
に蒸着によって形成することもできる。
In the PROM element shown in FIG. 1, the insulating layers 4A and 4B are provided on both sides of the electro-optic crystal layer 6, but it is also possible to omit one of the insulating layers. In addition, a pair of transparent electrode films 2A and 2B are respectively attached to the substrate 1A.
, 1B, and the electro-optic crystal layer 6 and the insulating layers 4A, 4B are sandwiched between the pair of transparent electrode films 2A and 2B, but as described above, when one of the insulating layers 4B is omitted, , one transparent electrode film 2B can also be formed on the surface of the electro-optic crystal layer 6 by vapor deposition.

【0012】ここで、図1において、透明電極2A、2
Bの光路長を、この空間光変調素子の読み出し用コヒー
レント光の波長の0.47倍以上、0.52倍以下とす
る。即ち、本発明の研究によれば、電気光学結晶層6の
端面における反射に由来しない干渉縞の原因が、透明電
極膜2A、2B及び透明接着剤層3Aの端面における反
射によることが明らかになった。そして透明電極膜の光
路長を上記のように限定することにより、透明電極膜及
び透明接着剤層における反射を総合して考慮した場合に
も、干渉縞が観測されなくなったのである。
Here, in FIG. 1, the transparent electrodes 2A, 2
The optical path length of B is set to be 0.47 times or more and 0.52 times or less the wavelength of the coherent light for reading out of this spatial light modulation element. That is, according to the research of the present invention, it has become clear that the cause of interference fringes that is not due to reflection at the end face of the electro-optic crystal layer 6 is due to reflection at the end faces of the transparent electrode films 2A, 2B and the transparent adhesive layer 3A. Ta. By limiting the optical path length of the transparent electrode film as described above, no interference fringes were observed even when reflections in the transparent electrode film and the transparent adhesive layer were taken into consideration as a whole.

【0013】更に、この点を実証するために、本発明者
が行なったモデル実験について述べる。まず、図2に示
すような構成のサンプルを作製し、このサンプルの透過
率を測定した。即ち、一辺40mm、厚さ3mmの平面
正方形状の合成石英ガラス基板8の表面に反射防止膜7
Aを形成した。また、基板8の反射膜防止膜7Aと反対
側の表面に、電子ビーム蒸着法によって、In2O3 
とSn2O3 との混合物からなる透明電極膜9を形成
した。
Furthermore, in order to prove this point, a model experiment conducted by the present inventor will be described. First, a sample having the configuration shown in FIG. 2 was prepared, and the transmittance of this sample was measured. That is, an antireflection film 7 is formed on the surface of a synthetic quartz glass substrate 8 having a square planar shape with a side of 40 mm and a thickness of 3 mm.
A was formed. In addition, In2O3 is applied to the surface of the substrate 8 opposite to the anti-reflective film 7A by electron beam evaporation.
A transparent electrode film 9 made of a mixture of and Sn2O3 was formed.

【0014】また、合成石英ガラス製の絶縁板11の表
面に反射防止膜7Bを形成した。透明電極膜9と絶縁板
11とを、透明接着剤層10で接着した。透明接着剤層
10の材質としては、屈折率n=1.56の二液性光学
エポキシ樹脂を使用した。
Furthermore, an antireflection film 7B was formed on the surface of the insulating plate 11 made of synthetic quartz glass. The transparent electrode film 9 and the insulating plate 11 were bonded together with a transparent adhesive layer 10. As the material of the transparent adhesive layer 10, a two-component optical epoxy resin with a refractive index n=1.56 was used.

【0015】このサンプルにおいては、電気光学結晶層
を用いず、これによる反射と干渉縞との影響を取り除く
こととした。またガラス基板8と絶縁板11との表面に
反射防止膜7A、7Bを設け、これらの表面における反
射の影響も除いた。これにより、透明電極膜9と透明接
着剤層10とによる反射の影響を測定できることになる
In this sample, an electro-optic crystal layer was not used to eliminate the effects of reflection and interference fringes caused by the electro-optic crystal layer. Further, antireflection films 7A and 7B were provided on the surfaces of the glass substrate 8 and the insulating plate 11 to eliminate the influence of reflection on these surfaces. Thereby, the influence of reflection by the transparent electrode film 9 and the transparent adhesive layer 10 can be measured.

【0016】ここで、便宜上、透明電極膜9の光路長n
dと、読み出し用コヒーレント光の波長λとの間に、次
の関係式を設定する。 nd=aλ そして、λ=633nm のレーザー光を図2のサンプ
ルに照射し、図3〜図7に示す各グラフを得た。ただし
、透明接着剤層10における反射の影響をも調べるため
、図3〜図7において、それぞれ透明接着剤層10の層
厚も変化させた。
Here, for convenience, the optical path length n of the transparent electrode film 9
The following relational expression is set between d and the wavelength λ of the coherent light for reading. nd=aλ Then, the sample of FIG. 2 was irradiated with a laser beam of λ=633 nm to obtain each graph shown in FIGS. 3 to 7. However, in order to also investigate the influence of reflection on the transparent adhesive layer 10, the layer thickness of the transparent adhesive layer 10 was also changed in each of FIGS. 3 to 7.

【0017】図3に示す例においては、透明接着層10
の層厚を0μm とした。aのピークは約0.50であ
り、透過率はゆるやかに変化する。そして、本発明者が
透過光を目視で観察したところ、透過率が99.5%以
上であれば、透過光中に干渉縞が観測されなかった。こ
の点は、図4〜図7に示す各例でも同様であった。そし
て、a=0.46〜0.54の範囲内であれば、透過光
は99.5%以上となった。
In the example shown in FIG. 3, the transparent adhesive layer 10
The layer thickness was set to 0 μm. The peak of a is about 0.50, and the transmittance changes slowly. When the present inventor visually observed the transmitted light, no interference fringes were observed in the transmitted light if the transmittance was 99.5% or more. This point was the same in each example shown in FIGS. 4 to 7. When a=0.46 to 0.54, the transmitted light was 99.5% or more.

【0018】図4に示す例においては、透明接着剤層1
0の膜厚を 0.7μm とした。従って、この光路長
は 0.7×1.56μm となり、λ=633 μm
 の約 1.7倍であった。この場合は、透明接着剤層
10の影響から、透過率が振動しながら変化することが
解った。そして、透過率のピークはa=0.50には存
在せず、かえってa=0.50付近に透過率の極小値が
存在することが解った。また、a=0.45〜0.56
の範囲内で、透過率が99.5%以上となった。
In the example shown in FIG. 4, the transparent adhesive layer 1
The film thickness of 0 was set to 0.7 μm. Therefore, this optical path length is 0.7×1.56 μm, and λ=633 μm
It was approximately 1.7 times as large. In this case, it was found that the transmittance oscillated and changed due to the influence of the transparent adhesive layer 10. It was also found that the peak of transmittance does not exist at a=0.50, but rather the minimum value of transmittance exists near a=0.50. Also, a=0.45 to 0.56
Within this range, the transmittance was 99.5% or more.

【0019】図5に示す例においては、透明接着剤層1
0の厚さを 1.7μm とした。従って、この光路長
は、1.7 ×1.56μm となり、λの約 4.2
倍であった。そして、図4のグラフと比較して、一層振
動の間隔が狭くなっている。また、a=0.46〜0.
53の範囲で、透過率が99.5%以上となった。
In the example shown in FIG. 5, the transparent adhesive layer 1
The thickness of 0 was set to 1.7 μm. Therefore, this optical path length is 1.7 × 1.56 μm, which is approximately 4.2 of λ.
It was double that. Moreover, compared to the graph of FIG. 4, the intervals between vibrations are further narrowed. Also, a=0.46 to 0.
In the range of 53, the transmittance was 99.5% or more.

【0020】図6に示す例においては、透明接着剤層1
0の厚さを 2.7μm とした。従って、この光路長
は、2.7 ×1.56μm となり、λの約 6.7
倍であった。そして、図5のグラフと比較しても、更に
一層振動の間隔が小さくなっている。また、a=0.4
7〜0.52の範囲で透過率が99.5%以上となった
。また、極大値は、約0.48、0.51の近辺にある
In the example shown in FIG. 6, the transparent adhesive layer 1
The thickness of 0 was set to 2.7 μm. Therefore, this optical path length is 2.7 × 1.56 μm, which is approximately 6.7 of λ.
It was double that. Even when compared with the graph of FIG. 5, the intervals between vibrations are even smaller. Also, a=0.4
The transmittance was 99.5% or more in the range of 7 to 0.52. Further, the local maximum values are around 0.48 and 0.51.

【0021】図7の例においては、透明接着剤層10の
厚さを 3.7μm とした。従って、この光路長は 
3.7×1.56μm となり、λの約 8.4倍であ
った。そして、図6のグラフと比較しても、一層振動の
間隔が小さくなっている。またa=0.45〜0.53
の範囲で透過率が99.5%以上となった。更には、透
過率が99.5%以上となる範囲で、極大値のピークが
2つから3つに増加している。更に一層透明接着剤層が
厚くなれば、上記の振動は更に一層細かくなり、これに
伴って透過率99.5%以上の範囲に入るピークの数が
一層増える。
In the example shown in FIG. 7, the thickness of the transparent adhesive layer 10 was 3.7 μm. Therefore, this optical path length is
It was 3.7×1.56 μm, which was about 8.4 times λ. Also, compared to the graph of FIG. 6, the intervals between vibrations are even smaller. Also a=0.45~0.53
The transmittance was 99.5% or more in the range of . Furthermore, the number of local maximum peaks increases from two to three in the range where the transmittance is 99.5% or more. If the transparent adhesive layer becomes even thicker, the above-mentioned vibrations become even finer, and the number of peaks within the transmittance range of 99.5% or more increases accordingly.

【0022】上記の実験を総合すれば、a=0.47〜
0.52の範囲であれば、透過率が99.5%以上とな
り、透明電極膜及び透明接着剤層に起因する干渉縞は観
測されなくなる。
[0022] If we combine the above experiments, a=0.47~
If it is in the range of 0.52, the transmittance will be 99.5% or more, and interference fringes due to the transparent electrode film and transparent adhesive layer will no longer be observed.

【0023】現実には、透明接着剤層を薄くした方が、
これによる電圧降下が少なくなり、素子の性能が上がる
ため、有利である。ただし、光学接着剤の性質による限
界があり、製造時の層厚にも若干バラツキがある。例え
ば、本発明者が、上記した屈折率n=1.56のエポキ
シ系光学接着剤で実験したところ、層厚が平均で 1.
7μm、誤差が最大±1μm であった。しかし、こう
した製造時のバラツキを考慮に入れても、a=0.47
〜0.52の範囲であれば、前記したように、干渉縞が
生じない。
In reality, it is better to make the transparent adhesive layer thinner.
This is advantageous because it reduces the voltage drop and improves the performance of the device. However, there are limitations due to the properties of the optical adhesive, and there is some variation in the layer thickness during manufacturing. For example, when the present inventor conducted an experiment using the above-mentioned epoxy optical adhesive having a refractive index n=1.56, the average layer thickness was 1.
7 μm, with a maximum error of ±1 μm. However, even if such manufacturing variations are taken into account, a=0.47
If it is in the range of ~0.52, no interference fringes will occur, as described above.

【0024】[0024]

【発明の効果】本発明によれば、透明電極膜の光路長を
、空間光変調素子の読み出し用コヒーレント光の波長の
0.47倍以上、0.52倍以下としたので、透明電極
膜及び透明接着剤層の界面における反射による干渉縞の
コントラストを、読み出し光画像において確認できない
程度にまで薄くすることができる。
According to the present invention, since the optical path length of the transparent electrode film is set to 0.47 times or more and 0.52 times or less the wavelength of the coherent light for reading out the spatial light modulator, the transparent electrode film and The contrast of interference fringes due to reflection at the interface of the transparent adhesive layer can be reduced to such an extent that it cannot be seen in the readout light image.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】PROM 素子の一例を示す断面図である。FIG. 1 is a cross-sectional view showing an example of a PROM element.

【図2】実験用サンプルを示す正面図である。FIG. 2 is a front view showing an experimental sample.

【図3】透明接着剤層の厚さが0μm のときのaと透
過率との関係を示すグラフである。
FIG. 3 is a graph showing the relationship between a and transmittance when the thickness of the transparent adhesive layer is 0 μm.

【図4】透明接着剤層の厚さが 0.7μm のときの
aと透過率との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between a and transmittance when the thickness of the transparent adhesive layer is 0.7 μm.

【図5】透明接着剤層の厚さが 1.7μm のときの
aと透過率との関係を示すグラフであフである。
FIG. 5 is a graph showing the relationship between a and transmittance when the thickness of the transparent adhesive layer is 1.7 μm.

【図6】透明接着剤層の厚さが 2.7μm のときの
aと透過率との関係を示すグラフであフである。
FIG. 6 is a graph showing the relationship between a and transmittance when the thickness of the transparent adhesive layer is 2.7 μm.

【図7】透明接着剤層の厚さが 3.7μm のときの
aと透過率との関係を示すグラフであフである。
FIG. 7 is a graph showing the relationship between a and transmittance when the thickness of the transparent adhesive layer is 3.7 μm.

【符号の説明】[Explanation of symbols]

1A,1B,8  基板 2A, 2B, 9  透明電極膜 3A, 3B, 10  透明接着剤層4A, 4B 
 絶縁層 6  電気光学結晶層
1A, 1B, 8 Substrate 2A, 2B, 9 Transparent electrode film 3A, 3B, 10 Transparent adhesive layer 4A, 4B
Insulating layer 6 Electro-optic crystal layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  電気光学結晶層、この電気光学結晶層
の少なくとも一方の側に設けられた絶縁層、透明電極膜
が形成されたガラス基板、及びこのガラス基板の前記透
明電極膜が形成された側の面と前記絶縁層とを接着する
透明接着剤層を少なくとも有する空間光変調素子であっ
て、前記透明電極膜の光路長が、この空間光変調素子の
読み出し用コヒーレント光の波長の0.47倍以上、0
.52倍以下である空間光変調素子。
1. An electro-optic crystal layer, an insulating layer provided on at least one side of the electro-optic crystal layer, a glass substrate on which a transparent electrode film is formed, and a glass substrate on which the transparent electrode film of the glass substrate is formed. A spatial light modulation element having at least a transparent adhesive layer for bonding a side surface and the insulating layer, wherein the optical path length of the transparent electrode film is 0.0.5 times the wavelength of coherent light for readout of the spatial light modulation element. 47 times more, 0
.. A spatial light modulation element that is 52 times or less.
JP8458391A 1991-03-26 1991-03-26 Special optical modulator Pending JPH04296716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8458391A JPH04296716A (en) 1991-03-26 1991-03-26 Special optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8458391A JPH04296716A (en) 1991-03-26 1991-03-26 Special optical modulator

Publications (1)

Publication Number Publication Date
JPH04296716A true JPH04296716A (en) 1992-10-21

Family

ID=13834700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8458391A Pending JPH04296716A (en) 1991-03-26 1991-03-26 Special optical modulator

Country Status (1)

Country Link
JP (1) JPH04296716A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5387248A (en) * 1977-01-11 1978-08-01 Sumitomo Electric Ind Ltd Photo picture tansducer
JPS5773777A (en) * 1980-10-27 1982-05-08 Sumitomo Electric Ind Ltd Hologram element
JPH02245721A (en) * 1989-03-18 1990-10-01 Ngk Insulators Ltd Image converting element and x-ray detection of image using thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5387248A (en) * 1977-01-11 1978-08-01 Sumitomo Electric Ind Ltd Photo picture tansducer
JPS5773777A (en) * 1980-10-27 1982-05-08 Sumitomo Electric Ind Ltd Hologram element
JPH02245721A (en) * 1989-03-18 1990-10-01 Ngk Insulators Ltd Image converting element and x-ray detection of image using thereof

Similar Documents

Publication Publication Date Title
US4019807A (en) Reflective liquid crystal light valve with hybrid field effect mode
CN107505736B (en) Electric light polarization rotator based on periodic polarized lithium niobate ridge waveguide structure
JPS5885420A (en) Interference type multimode fiber optics switch and modulator
US4619501A (en) Charge isolation in a spatial light modulator
JPH09146128A (en) Electrooptic element
JPS6212894B2 (en)
US4643533A (en) Differentiating spatial light modulator
US3726585A (en) Electrically modulated radiation filters
US4678286A (en) Spatial light modulator
JPH04296716A (en) Special optical modulator
US5046803A (en) Actively phased matched frequency doubling optical waveguide
US4763996A (en) Spatial light modulator
US5085503A (en) Spatial light modulating element using uniaxial single crystal of oxide as insulating layer
CN111736371A (en) High-speed phase type one-dimensional spatial light modulator and method
JP5150992B2 (en) Liquid crystal device and optical attenuator
JP2731220B2 (en) Image conversion element and X-ray image detection method using the same
JP2839990B2 (en) Liquid crystal spatial light modulator
JP2599831B2 (en) Spatial light modulator and method of manufacturing the same
JP3433119B2 (en) Electro-optic material, optical element and phase spatial light modulator using the same
JP4369802B2 (en) Optical devices using photonic crystals
JPH05134219A (en) Spatial optical modulation element
JPS61169818A (en) Optical modulating device
JP2003177370A (en) Image converting element and its manufacturing method
JPH03107829A (en) Liquid crystal phase conjugated wave device
JPH06222383A (en) Liquid crystal spatial optical modulation element

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980324