JPH04296500A - Method and device for generating plasma - Google Patents

Method and device for generating plasma

Info

Publication number
JPH04296500A
JPH04296500A JP3061465A JP6146591A JPH04296500A JP H04296500 A JPH04296500 A JP H04296500A JP 3061465 A JP3061465 A JP 3061465A JP 6146591 A JP6146591 A JP 6146591A JP H04296500 A JPH04296500 A JP H04296500A
Authority
JP
Japan
Prior art keywords
plasma
electric field
microwave
mode
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3061465A
Other languages
Japanese (ja)
Inventor
Yutaka Kakehi
掛樋 豊
Seiichi Watanabe
成一 渡辺
Ryoji Fukuyama
良次 福山
Yoshinao Kawasaki
義直 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3061465A priority Critical patent/JPH04296500A/en
Publication of JPH04296500A publication Critical patent/JPH04296500A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To generate a plasma in discharge area with a satisfactory uniformity by changing the phase velocity in a waveguide to uniformalize the microwave electric field at the time of extending TE11 mode by a taper tube. CONSTITUTION:A magnetron 1 is mounted on a rectangular guide-wave 3 to generate an electric field of TE11 mode. A taper tube 6 is also regulated in taper angle and taper length so as to extend the TE11 mode, and a microwave tries to progress in the taper tube in TE11 mode. At that time, since a quartz tube 9 has a curvature, a difference in phase speed is caused between the center and the ends when the microwave propagates in the plasma, and the phase speed becomes slower the more it is closer to the center, whereby a more uniform electric field distribution can be obtained in the whole discharge chamber 7. Thus, a high density plasma can be generated with a satisfactory uniformity within the discharge chamber 7.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、マイクロ波プラズマ生
成方法及び装置に係り、半導体素子基板等の試料のマイ
クロ波プラズマを利用しての処理の均一化を図るのに好
適なマイクロ波プラズマ生成方法及び装置に関するもの
である。
[Field of Industrial Application] The present invention relates to a method and apparatus for generating microwave plasma, and is suitable for generating microwave plasma to uniformize the processing of samples such as semiconductor element substrates using microwave plasma. METHODS AND APPARATUS.

【0002】0002

【従来の技術】従来のマイクロ波生成技術は、例えば、
半導体プラズマプロセス技術(菅野著、産業図書発行、
p139)に記載のように、マイクロ波を伝播する導波
管内に石英製の放電管を有し、外部磁場とマイクロ波電
界の作用により放電管内でプラズマを生成させるように
なっている。そして、該プラズマを利用して半導体ウェ
ハは処理される。
[Prior Art] Conventional microwave generation techniques include, for example,
Semiconductor plasma process technology (written by Kanno, published by Sangyo Tosho,
As described in p. 139), a quartz discharge tube is provided within a waveguide that propagates microwaves, and plasma is generated within the discharge tube by the action of an external magnetic field and a microwave electric field. Then, the semiconductor wafer is processed using the plasma.

【0003】0003

【発明が解決しようとする課題】上記従来技術では、マ
グネトロンを導波管に結合し、第3図に示すようなTE
11モードの電界を伝播させる。従って放電管内の電界
分布もTE11モードが現れ、放電管軸中央がやや高い
電界分布となる。従って、放電管内のプラズマから十分
拡散して試料の被処理面に到達するラジカル種に対して
は十分な均一性が保たれるが、拡散のやや不十分なイオ
ンに対しては幾分不十分な均一性となる。また、このた
め、試料の被処理面での処理速度や形状の制御も幾分不
十分なものとなる。
[Problems to be Solved by the Invention] In the above-mentioned prior art, a magnetron is coupled to a waveguide, and a TE as shown in FIG.
The electric field of 11 modes is propagated. Therefore, the TE11 mode appears in the electric field distribution inside the discharge tube, and the electric field distribution becomes slightly higher at the center of the discharge tube axis. Therefore, sufficient uniformity is maintained for radical species that diffuse sufficiently from the plasma in the discharge tube and reach the surface to be treated of the sample, but it is somewhat insufficient for ions that are not sufficiently diffused. This results in uniformity. Furthermore, for this reason, control over the processing speed and shape of the surface of the sample to be processed becomes somewhat insufficient.

【0004】本発明の第1の目的は、放電領域でプラズ
マを均一性良く生成できるプラズマ生成方法及び装置を
提供することにある。
A first object of the present invention is to provide a plasma generation method and apparatus that can generate plasma with good uniformity in a discharge region.

【0005】また、本発明の第2の目的は、試料の被処
理面での処理速度や形状の制御を均一性良く行うことが
できるプラズマ処理方法及び装置を提供することにある
A second object of the present invention is to provide a plasma processing method and apparatus that can control the processing speed and shape of the surface of a sample to be processed with good uniformity.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、TE11モードをテーパ管で大径化し、その際に導
波管内での位相速度に変化を与えて、放電領域に生じる
マイクロ波電界分布をより均一にするようにしたもので
ある。
[Means for Solving the Problems] In order to achieve the above object, the diameter of the TE11 mode is increased using a tapered tube, and at that time, the phase velocity within the waveguide is changed, thereby generating a microwave electric field in the discharge region. This is to make the distribution more uniform.

【0007】[0007]

【作用】図3、図4にTE11波の電界分布と断面0−
0’での電位分布を示す。図3に示すようにTE11波
は放電領域の中央に高い電界を有す。従って、中央付近
のマイクロ波の位相速度を遅らせ、TE11モードから
ずらしてやることにより、電位分布を図2の実線で示す
ように補正し、放電領域全体に、より均一なマイクロ波
電界分布を得ることができる。
[Operation] Figures 3 and 4 show the electric field distribution and cross section of the TE11 wave at 0-
The potential distribution at 0' is shown. As shown in FIG. 3, the TE11 wave has a high electric field in the center of the discharge region. Therefore, by delaying the phase velocity of the microwave near the center and shifting it from the TE11 mode, the potential distribution can be corrected as shown by the solid line in Figure 2, and a more uniform microwave electric field distribution can be obtained over the entire discharge region. Can be done.

【0008】従って、このような均一な分布を有するマ
イクロ波電界を用いることで、放電領域にはプラズマが
均一性良く生成される。
[0008] Therefore, by using a microwave electric field having such a uniform distribution, plasma is generated with good uniformity in the discharge region.

【0009】また、このようなプラズマを利用して試料
の被処理面を処理することで、処理速度や形状の制御が
均一性良く行われる。
Furthermore, by using such plasma to process the surface of the sample to be processed, the processing speed and shape can be controlled with good uniformity.

【0010】0010

【実施例】本発明の一実施例を図1の有磁場型のマイク
ロ波プラズマ処理装置によって説明する。1はマグネト
ロンでありマイクロ波の発振源である。3〜6は、導波
管である。ここで、3は、矩形導波管であり、4は円矩
形導波管、5は円形導波管、6はテーパ管である。放電
室7は、例えば、純度の高いAl等で作られており、導
波管の役目もしている。8は真空室である。9は放電室
7にマイクロ波を供給するための石英板である。10、
11はソレノイドコイルであり、放電室7内に磁場を与
える。12は半導体素子基板(以下、ウェハと略)14
を載置する試料台であり、バイアス用電源、例えば、R
F電源13が接続できるようになっている。15は放電
室7内にエッチング、成膜等の処理を行うガスを供給す
るガス供給系である。16は放電室7内、真空室8内を
減圧排気するための真空ポンプ系である。
[Embodiment] An embodiment of the present invention will be explained using a magnetic field type microwave plasma processing apparatus shown in FIG. 1 is a magnetron, which is a microwave oscillation source. 3 to 6 are waveguides. Here, 3 is a rectangular waveguide, 4 is a circular rectangular waveguide, 5 is a circular waveguide, and 6 is a tapered tube. The discharge chamber 7 is made of, for example, highly pure Al, and also serves as a waveguide. 8 is a vacuum chamber. 9 is a quartz plate for supplying microwaves to the discharge chamber 7. 10,
A solenoid coil 11 applies a magnetic field to the discharge chamber 7. 12 is a semiconductor element substrate (hereinafter abbreviated as wafer) 14
It is a sample stage on which a bias power source, e.g.
The F power supply 13 can be connected. Reference numeral 15 denotes a gas supply system that supplies gas for processing such as etching and film formation into the discharge chamber 7. 16 is a vacuum pump system for evacuating the inside of the discharge chamber 7 and the vacuum chamber 8 under reduced pressure.

【0011】尚、図1で、円形導波管5、テーパ管6、
石英板9、試料台12の試料設置面は略同軸の中心軸を
有している。また、試料台12の試料設置面でのウェハ
14の設置は、例えば、機械的押付け力や静電吸着力等
を利用して実施される。また、試料台12は、温度制御
手段(図示省略)を備え、該手段により試料台12の試
料設置面に設置されたウェハ12の温度は所定温度に調
節される。
In FIG. 1, a circular waveguide 5, a tapered tube 6,
The sample mounting surfaces of the quartz plate 9 and the sample stage 12 have substantially coaxial central axes. Further, the wafer 14 is installed on the sample installation surface of the sample stage 12 using, for example, mechanical pressing force, electrostatic adsorption force, or the like. Further, the sample stage 12 includes a temperature control means (not shown), and the temperature of the wafer 12 placed on the sample installation surface of the sample stage 12 is adjusted to a predetermined temperature by the means.

【0012】図1で、マグネトロン1は従来と同様に矩
形導波管3に取り付けられており、従って、TE11モ
ードの電界を発生させる。また、テーパ管6もTE11
モードを拡大するようにテーパ角とテーパ長さが調整さ
れており、マイクロ波はテーパ管内をTE11モードで
進行しようとする。その際、本実施例では、石英板9が
曲率を持っているため、マイクロ波がプラズマ内を伝ぱ
んする際に中央と端では位相速度に差を生じ、中央ほど
遅れることになる。これにともなって、中央ほどTE1
1モードからずれ、図2の電位分布(実線)に示すよう
に、断面0−0’で傾きのそろった電位分布、即ち、放
電室7全体でより均一な電界分布を得ることができる。 従って、放電室7内では、放電室7全体でより均一な分
布を有する電界とコイル10、11による磁場との相乗
作用により高密度のプラズマが均一性良く生成され、放
電室7内にプラズマから十分拡散してウェハ14の被処
理面に到達するラジカル種並びに拡散がやや不十分なイ
オンそれぞれに対して十分な均一性が保たれる。
In FIG. 1, the magnetron 1 is conventionally attached to a rectangular waveguide 3, thus generating an electric field in the TE11 mode. In addition, the tapered pipe 6 is also TE11
The taper angle and taper length are adjusted to expand the mode, and the microwave attempts to travel in the TE11 mode within the tapered tube. At this time, in this embodiment, since the quartz plate 9 has a curvature, when the microwave propagates within the plasma, a difference occurs in phase velocity between the center and the edges, and the microwave is delayed closer to the center. Along with this, TE1 towards the center
1 mode, and as shown in the potential distribution (solid line) in FIG. 2, it is possible to obtain a potential distribution with a uniform slope in the cross section 0-0', that is, a more uniform electric field distribution throughout the discharge chamber 7. Therefore, in the discharge chamber 7, high-density plasma is generated with good uniformity due to the synergistic effect of the electric field having a more uniform distribution throughout the discharge chamber 7 and the magnetic field produced by the coils 10 and 11. Sufficient uniformity is maintained for radical species that have sufficiently diffused to reach the processing surface of the wafer 14 and for ions that have been somewhat insufficiently diffused.

【0013】本実施例では、次のような効果が得られる
In this embodiment, the following effects can be obtained.

【0014】(1)TE11モードを補正することによ
って、放電室全体でより均一な電界分布を得ることがで
きる。従って、放電室内では、放電室内全体でより均一
な分布を有する電界と磁場との相乗作用により高密度の
プラズマが均一性良く生成され、放電室内のプラズマか
ら十分拡散してウェハの被処理面に到達するラジカル種
並びに拡散がやや不充分なイオンそれぞれに対して十分
な均一性が保たれる。
(1) By correcting the TE11 mode, a more uniform electric field distribution can be obtained throughout the discharge chamber. Therefore, in the discharge chamber, high-density plasma is generated with good uniformity due to the synergistic effect of the electric field and magnetic field, which have a more uniform distribution throughout the discharge chamber, and is sufficiently diffused from the plasma in the discharge chamber to the surface to be processed of the wafer. Sufficient uniformity is maintained for each of the arriving radical species as well as ions that are somewhat poorly diffused.

【0015】(2)ウェハ被処理面にプラズマ中のイオ
ン、ラジカル共に均一に到達してエッチング処理やデポ
ジション処理が行われる。特にエッチング処理ではイオ
ンの均一性が良くなるので、ウェハの被処理面内でのエ
ッチング速度の均一性並びにエッチング形状の均一性、
精密性が向上する。
(2) Both ions and radicals in the plasma uniformly reach the surface of the wafer to be processed, and etching processing and deposition processing are performed. Especially in the etching process, the uniformity of ions improves, so the uniformity of the etching rate and the uniformity of the etched shape within the processed surface of the wafer,
Precision is improved.

【0016】上記実施例ではプラズマ内でマイクロ波の
位相速度を半径方向に変化させたが、石英板9の厚みを
半径方向に変化させ、石英板9内でのマイクロ波の位相
速度を変化させても同様の効果が得られる。
In the above embodiment, the phase velocity of the microwave was changed in the radial direction within the plasma, but the thickness of the quartz plate 9 was changed in the radial direction, and the phase velocity of the microwave within the quartz plate 9 was changed. The same effect can be obtained.

【0017】[0017]

【発明の効果】本発明によれば、放電領域でのマイクロ
波電界分布をより均一にすることができ、プラズマを均
一性良く生成できる効果がある。
According to the present invention, the microwave electric field distribution in the discharge region can be made more uniform, and plasma can be generated with good uniformity.

【0018】また、従って、本発明によれば、プラズマ
中のイオンの分布もより均一になり、処理速度や形状の
制御をより均一に行うことができる効果がある。
Furthermore, according to the present invention, the distribution of ions in the plasma becomes more uniform, and the processing speed and shape can be controlled more uniformly.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】図1は、本発明の一実施例を示す有磁場型マイ
クロ波プラズマ処理装置の構成図である。
FIG. 1 is a configuration diagram of a magnetic field type microwave plasma processing apparatus showing one embodiment of the present invention.

【図2】図2は、図1の放電室内のマイクロ波の電位分
布を示す図である。
FIG. 2 is a diagram showing a microwave potential distribution within the discharge chamber of FIG. 1;

【図3】図3は、TE11モードの電気力線と電界分布
を示す平面模式図である。
FIG. 3 is a schematic plan view showing electric lines of force and electric field distribution in TE11 mode.

【図4】図4は、TE11モードの導波管内電位分布で
ある。
FIG. 4 shows the potential distribution in the waveguide in TE11 mode.

【符号の説明】[Explanation of symbols]

1…マグネトロン、3…矩形導波管、4…円矩形導波管
、5…円形導波管、6…テーパ管、7…放電室、8…真
空室、9…石英板、10,11…コイル、12…試料台
、14…ウェハ、15…ガス供給系、16…真空ポンプ
系。
DESCRIPTION OF SYMBOLS 1... Magnetron, 3... Rectangular waveguide, 4... Circular rectangular waveguide, 5... Circular waveguide, 6... Tapered tube, 7... Discharge chamber, 8... Vacuum chamber, 9... Quartz plate, 10, 11... Coil, 12...sample stand, 14...wafer, 15...gas supply system, 16...vacuum pump system.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】TE11モードをテーパ管で大径化すると
きに、導波管内で位相速度を変化させてマイクロ波電界
を均一化することを特徴とするプラズマ生成方法。
1. A plasma generation method characterized in that when increasing the diameter of the TE11 mode using a tapered tube, the phase velocity is changed within the waveguide to make the microwave electric field uniform.
【請求項2】TE11モードをテーパ管で大径化すると
きに、導波管内で位相速度を変化させてマイクロ波電界
を均一化する手段を設けたことを特徴とするプラズマ生
成装置。
2. A plasma generation device comprising means for uniformizing the microwave electric field by changing the phase velocity within the waveguide when increasing the diameter of the TE11 mode using a tapered tube.
【請求項3】前記均一化手段が放電管のマイクロ波導入
室を構成する曲率を持った石英板で構成したことを特徴
とする請求項2に記載のプラズマ生成装置。
3. The plasma generation apparatus according to claim 2, wherein the uniformizing means is constituted by a quartz plate having a curvature constituting a microwave introduction chamber of the discharge tube.
【請求項4】前記均一化手段を前記テーパ管内に設けた
ことを特徴とする請求項2に記載のプラズマ生成装置。
4. The plasma generating apparatus according to claim 2, wherein the uniformizing means is provided within the tapered tube.
JP3061465A 1991-03-26 1991-03-26 Method and device for generating plasma Pending JPH04296500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3061465A JPH04296500A (en) 1991-03-26 1991-03-26 Method and device for generating plasma

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3061465A JPH04296500A (en) 1991-03-26 1991-03-26 Method and device for generating plasma

Publications (1)

Publication Number Publication Date
JPH04296500A true JPH04296500A (en) 1992-10-20

Family

ID=13171820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3061465A Pending JPH04296500A (en) 1991-03-26 1991-03-26 Method and device for generating plasma

Country Status (1)

Country Link
JP (1) JPH04296500A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100394994B1 (en) * 2000-01-13 2003-08-19 홍용철 Plasma torch using of microwave

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02144913A (en) * 1988-11-28 1990-06-04 Hitachi Ltd Microwave plasma processing device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02144913A (en) * 1988-11-28 1990-06-04 Hitachi Ltd Microwave plasma processing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100394994B1 (en) * 2000-01-13 2003-08-19 홍용철 Plasma torch using of microwave

Similar Documents

Publication Publication Date Title
US6422172B1 (en) Plasma processing apparatus and plasma processing method
US5587205A (en) Plasma processing method and an apparatus for carrying out the same
JP3726477B2 (en) Plasma processing apparatus and plasma processing method
JPH06342771A (en) Dry etching apparatus
JPS61213377A (en) Method and apparatus for plasma deposition
JPH04296500A (en) Method and device for generating plasma
JPS63103088A (en) Plasma treating device
JP2000164578A (en) Plasma processing device and method
JPS63279599A (en) Microwave plasma generating method
JPH06104210A (en) Microwave plasma treatment device
JPH02185967A (en) Method and device for bias sputtering
JP2633849B2 (en) Plasma processing equipment
JPS6267822A (en) Plasma processor
JPH04355915A (en) Plasma growth method and device thereof
JPS61181534A (en) Plasma treating device
JPH06275564A (en) Microwave plasma etching device
JP2725203B2 (en) Microwave plasma processing equipment
JPS63293824A (en) Plasma processor
JPH08302465A (en) Film forming device utilizing sputtering by plasma
JPH0294628A (en) Plasma generation apparatus
JPH1092600A (en) Plasma treatment apparatus
JPH01235326A (en) Plasma treatment apparatus
JPH06208971A (en) Use of plasma reaction device
JPS6373624A (en) Processing apparatus using microwave plasma in magnetic field
JP2001085399A (en) Plasma treatment apparatus