JPH04296467A - Sealed-type battery and manufacture thereof - Google Patents

Sealed-type battery and manufacture thereof

Info

Publication number
JPH04296467A
JPH04296467A JP3063425A JP6342591A JPH04296467A JP H04296467 A JPH04296467 A JP H04296467A JP 3063425 A JP3063425 A JP 3063425A JP 6342591 A JP6342591 A JP 6342591A JP H04296467 A JPH04296467 A JP H04296467A
Authority
JP
Japan
Prior art keywords
battery
electrode body
pressurizing
electrode
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3063425A
Other languages
Japanese (ja)
Inventor
Toshiaki Konuki
利明 小貫
Mitsuru Koseki
満 小関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP3063425A priority Critical patent/JPH04296467A/en
Publication of JPH04296467A publication Critical patent/JPH04296467A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To maintain the necessary pressure to keep close adhesion between electrodes in order to elevate charging-discharging efficiency and improve the battery' s properties even if a cathode and an anode of a coiled electrode body expand and shrink owing to the charging and discharging. CONSTITUTION:An expandable polyethylene is set in the center space part and the outer circumference of a coild electrode body 1 and the resulting body is inserted into a battery container 10. The expandable polyethylene is heated in the container 10 to make foams and form volume-increased pressing materials 5' and 8'. Pressure is applied to the coild electrode body l by the volume- increased pressing materials 5' and 8' and thus the adhesion strength of the cathode 2 and the anode 4 is improved.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、渦巻状電極体を備えて
なる密閉型電池であって、特に渦巻状電極体に適切な加
圧を加える加圧材を備えた密閉型電池に関するものであ
る。
[Field of Industrial Application] The present invention relates to a sealed battery equipped with a spiral electrode body, and more particularly to a sealed battery equipped with a pressurizing material that applies appropriate pressure to the spiral electrode body. be.

【0002】0002

【従来の技術】例えばニッケル−水素電池であれば充放
電に伴って負極である水素吸蔵合金が膨脹収縮し、また
ニッケル−カドミウム電池であれば充放電に伴って電極
活物質が膨脹収縮する。そこで従来から、このような密
閉型電池の電極群に対して、電極群の正極と負極の電極
間の加圧を適切化する加圧材を配置した密閉型電池が提
案させている。例えばニッケル−カドミウム電池を代表
とする渦巻状電極体を有する密閉型電池に関しては、電
極群の最外周部を粘着テープにより固定して、正極−負
極の電極間の距離を均一に保つ技術が提案されている(
特開昭60−170171号公報)。しかしながら、こ
のテープを用いる技術は電極群の外周寄りの電極部分間
の密着性維持には効果があるものの、電極群の中心部寄
りの電極部分間では捲回圧力の緩和が生じてしまう問題
がある。またテープ自身には大きな劣化はないが、テー
プに塗着されている粘着剤が電解液及び充放電時の膨脹
収縮により劣化すると、テープによる結束力が低下して
、電極群の外周よりの電極部分間の密着性も低下すると
いう問題がある。更に、この技術では捲回時に生じる応
力を利用して電極間を密着させているため、電極の材質
によっては、電極群の中心付近の電極部分と外周付近の
電極部分とでは、捲回時に受ける圧力に差が生じるだけ
でなく、捲回後の電極間の密着性にも差が現れる。例え
ば曲げ強度が強く弾性率の低い電極であれば、捲回時に
受ける応力は電極群の中心付近が大きくなって、電極基
体からの活物質の剥離が生じる上、捲回完了後に捲回機
の軸心を電極群から引抜くと、電極中心付近の電極部分
間の密着が悪くなる。上述した欠点を解決する技術とし
て、特開平1−227363号公報に示されるように、
(1)電極群の中心部及びその外周部の両方あるいはど
ちらか一方に水分を吸収して体積膨脹する吸水性高分子
(アクリル酸ビニルアルコール共重合体等)を加圧材と
して配置し、これを電解液で膨脹させて電極群を加圧す
ることにより電極間の密着性を向上させる技術と、(2
)形状記憶合金または形状記憶樹脂を前記と同一部分に
加圧材として配置してこれを加熱し、形状記憶合金また
は形状記憶樹脂を変態させることにより電極群を加圧す
る技術とが提案されている。
2. Description of the Related Art For example, in the case of a nickel-hydrogen battery, the hydrogen storage alloy serving as the negative electrode expands and contracts as the battery is charged and discharged, and in the case of a nickel-cadmium battery, the electrode active material expands and contracts as the battery discharges and charges. Therefore, a sealed battery has been proposed in which a pressurizing material is disposed in the electrode group of such a sealed battery to appropriately apply pressure between the positive and negative electrodes of the electrode group. For example, for sealed batteries with spiral electrode bodies, such as nickel-cadmium batteries, a technology has been proposed in which the outermost periphery of the electrode group is fixed with adhesive tape to maintain a uniform distance between the positive and negative electrodes. has been done (
(Japanese Unexamined Patent Publication No. 60-170171). However, although this technique using tape is effective in maintaining adhesion between the electrode parts closer to the outer periphery of the electrode group, there is a problem in that the winding pressure is relaxed between the electrode parts closer to the center of the electrode group. be. In addition, although the tape itself does not deteriorate significantly, if the adhesive applied to the tape deteriorates due to the electrolyte and expansion and contraction during charging and discharging, the binding force of the tape decreases, causing the electrodes from the outer periphery of the electrode group to deteriorate. There is also a problem in that the adhesion between the parts also decreases. Furthermore, since this technology makes use of the stress generated during winding to bring the electrodes into close contact, depending on the material of the electrodes, the electrodes near the center of the electrode group and the electrodes near the outer periphery may experience less stress during winding. Not only will there be a difference in pressure, but there will also be a difference in the adhesion between the electrodes after winding. For example, if an electrode has a high bending strength and a low elastic modulus, the stress applied during winding will be greater near the center of the electrode group, causing the active material to peel off from the electrode base, and the winding machine When the shaft center is pulled out from the electrode group, the close contact between the electrode portions near the center of the electrodes deteriorates. As a technique for solving the above-mentioned drawbacks, as shown in Japanese Patent Application Laid-Open No. 1-227363,
(1) A water-absorbing polymer (vinyl acrylate alcohol copolymer, etc.) that expands in volume by absorbing water is placed as a pressure material in the center of the electrode group and/or its outer periphery. technology that improves the adhesion between electrodes by expanding them with an electrolyte and pressurizing the electrode group, and (2)
) A technique has been proposed in which a shape memory alloy or shape memory resin is placed as a pressurizing material in the same area as above, and this is heated to transform the shape memory alloy or shape memory resin, thereby pressurizing the electrode group. .

【0003】0003

【発明が解決しようとする課題】しかしながら上記(1
) 及び(2) の従来技術では、以下のような製作上
または完成電池にかかわる問題がある。 [A]加圧材として吸水性高分子を用いる場合の問題点
(a)吸水性高分子が体積膨脹するためには、膨脹する
だけの電解液を吸収する必要があり、本来必要とする以
上の電解液量を注液することになる。その結果、従来の
電池の重量に加圧材である吸水性高分子と吸収される電
解液の重量とが加算されることになり、電池の重量が増
加する問題が発生する。 (b)電解液の注液時に加圧材である吸水性高分子を膨
脹させるのであるが、電池缶の封止前に注液すると、注
液中に電池缶の開口部より吸水性高分子が溢れ出すため
、注液操作は封止後あるいは電池缶内に中蓋を設けた後
に実施する必要がある。しかしながら封止後の注液を可
能にするためには缶蓋の精密加工が必要である上、中蓋
を用いると中蓋の重量分だけ更に電池の重量が増加する
問題がある。 (c)吸水性高分子は膨脹力が外圧により抑制されるま
で可能な限り膨脹し、平衡圧力に達すると電解液を吸収
しなくなる。また、吸水性高分子はセパレータ(ポリプ
ロピレン,ナイロン等)よりも吸収速度が速い。そのた
め膨脹に必要な電解液を吸収してから、電池反応に必要
な電解液をセパレータが吸収することになる。通常、捲
回された電極群にかかる圧力は、その電極の持つ機械的
性質により異なる。そのため、同一の吸水性高分子を用
いてもその膨脹率は電極群毎に異なり、膨脹に必要な電
解液量も異なってくるので、電解液の注液量を電池毎に
変えなければならないという問題が生じる。また、電池
の充放電サイクルが進み、電極の膨脹収縮の度合いが大
きくなると、吸水性高分子の電解液保持量が変化し、そ
れに伴いセパレータの電解液保持量が変化して電池性能
が影響を受けるという問題が生じる。
[Problem to be solved by the invention] However, the above (1)
) and (2) above have the following problems in production or in the finished battery. [A] Problems when using a water-absorbing polymer as a pressurizing material (a) In order for a water-absorbing polymer to expand in volume, it must absorb enough electrolyte to expand; This means that an amount of electrolyte will be injected. As a result, the weight of the water-absorbing polymer serving as the pressurizing material and the absorbed electrolyte are added to the weight of the conventional battery, resulting in a problem that the weight of the battery increases. (b) When injecting electrolyte, the water-absorbing polymer that serves as the pressurizing material is expanded; however, if the electrolyte is injected before the battery can is sealed, the water-absorbing polymer will expand from the opening of the battery can during injection. Because the liquid overflows, the liquid injection operation must be performed after sealing or after providing an inner lid inside the battery can. However, in order to enable liquid injection after sealing, precision machining of the can lid is required, and if an inner lid is used, there is a problem in that the weight of the battery increases by the weight of the inner lid. (c) The water-absorbing polymer expands as much as possible until its expansion force is suppressed by external pressure, and when the equilibrium pressure is reached, it no longer absorbs the electrolyte. Furthermore, water-absorbing polymers have a faster absorption rate than separators (polypropylene, nylon, etc.). Therefore, after absorbing the electrolyte necessary for expansion, the separator absorbs the electrolyte necessary for battery reaction. Usually, the pressure applied to the wound electrode group varies depending on the mechanical properties of the electrode. Therefore, even if the same water-absorbing polymer is used, its expansion rate differs for each electrode group, and the amount of electrolyte required for expansion also differs, so the amount of electrolyte injected must be changed for each battery. A problem arises. Additionally, as the charge/discharge cycle of the battery progresses and the degree of expansion and contraction of the electrodes increases, the amount of electrolyte retained in the water-absorbing polymer changes, and the amount of electrolyte retained in the separator changes accordingly, which affects battery performance. The problem of receiving arises.

【0004】[B]加圧材として形状記憶合金または形
状記憶樹脂を用いる場合の問題点 (d)加圧材として形状記憶合金を用いると、上記(b
),(c)の問題はなくなるが、比重の大きな金属を用
いるため吸水性高分子を用いる場合よりも電池の重量増
加が著しいという問題がある。
[B] Problems when using a shape memory alloy or shape memory resin as a pressure material (d) When a shape memory alloy is used as a pressure material, the above (b)
Although the problems of ) and (c) are eliminated, since a metal with a large specific gravity is used, there is a problem that the weight of the battery increases more significantly than when a water-absorbing polymer is used.

【0005】(e)形状記憶合金または形状記憶樹脂の
ように、体積増加を示すのではなく加熱により形状変化
を示して加圧力を発生する加圧材では、電極群を均一に
加圧しようとすると加圧材の構造が複雑になるという問
題が生じる。
(e) With pressurizing materials such as shape memory alloys or shape memory resins that do not increase in volume but change in shape upon heating to generate pressurizing force, it is difficult to apply uniform pressure to the electrode group. Then, a problem arises in that the structure of the pressurizing material becomes complicated.

【0006】(f)形状記憶合金または形状記憶樹脂を
加圧材として用いる場合には、変態点以上に加圧材が加
熱されると必要な圧力を得ることができる。しかしなが
ら、周囲温度が変態点以下のときに電池の充放電を繰返
す場合には、加圧材は加圧に必要な変形をしないため、
電池の充放電に伴なう電極の体積変化に応じて加圧材で
ある形状記憶合金や形状記憶樹脂も変形してしまい、電
極間の密着に必要な圧力が得られなくなるという問題が
ある。
(f) When a shape memory alloy or a shape memory resin is used as a pressure material, the necessary pressure can be obtained if the pressure material is heated above its transformation point. However, when charging and discharging the battery repeatedly when the ambient temperature is below the transformation point, the pressurizing material does not undergo the necessary deformation for pressurization.
There is a problem in that the shape memory alloy or shape memory resin that is the pressurizing material also deforms in response to changes in the volume of the electrodes as the battery charges and discharges, making it impossible to obtain the pressure necessary for close contact between the electrodes.

【0007】本発明の目的は、周囲温度の如何にかかわ
らず電極間の密着に必要な加圧力を維持できる密閉型電
池を提供することにある。
[0007] An object of the present invention is to provide a sealed battery that can maintain the pressure necessary for close contact between electrodes regardless of the ambient temperature.

【0008】本発明の他の目的は、電池の重量増加をで
きるだけ少なくして、しかも電解液の量を増加させるこ
となく、簡単且つ確実に加圧材を配置できる密閉型電池
及びその製造方法を提供することにある。
Another object of the present invention is to provide a sealed battery that can easily and reliably arrange a pressurizing material without increasing the weight of the battery as much as possible and without increasing the amount of electrolyte, and a method for manufacturing the same. It is about providing.

【0009】本発明の更に他の目的は、電池の組立て工
程を簡略化することができる密閉型電池の製造方法を提
供することにある。
Still another object of the present invention is to provide a method for manufacturing a sealed battery that can simplify the battery assembly process.

【0010】0010

【課題を解決するための手段】上記課題を解決するため
に、請求項1の発明では、正極と負極との間にセパレー
タが介在する電極が渦巻状に捲回されてなる渦巻状電極
体が電池容器内に収納されている密閉型電池において、
渦巻状電極体の中心空間部及び該渦巻状電極群の外周面
と電池容器との間の外周空間部の少なくとも一方に、物
理変化により不可逆的に体積が増加した加圧材を配置す
る。
[Means for Solving the Problems] In order to solve the above problems, the invention according to claim 1 provides a spiral electrode body in which an electrode is spirally wound with a separator interposed between a positive electrode and a negative electrode. In a sealed battery stored in a battery container,
A pressurizing material whose volume has irreversibly increased due to physical change is disposed in at least one of the central space of the spiral electrode body and the outer peripheral space between the outer peripheral surface of the spiral electrode group and the battery container.

【0011】本願明細書で「物理変化」とは、電解液等
の化学物質を充填したりまたは添加することにより物質
に変化を生じさせることではなく、熱や振動等の物理的
なエネルギを加えることにより物質に変化を生じさせる
ことを言う。
[0011] In the specification of this application, "physical change" does not mean causing a change in a substance by filling or adding a chemical substance such as an electrolytic solution, but rather refers to applying physical energy such as heat or vibration. It means to cause a change in a substance by doing something.

【0012】請求項2の発明では、加圧材を物理変化に
より発泡して内部に独立気泡構造を形成する発泡材から
構成する。
[0012] In the second aspect of the invention, the pressurizing material is made of a foamed material that is foamed by physical change to form a closed cell structure inside.

【0013】請求項3の発明では、渦巻状電極体の中心
空間部及び渦巻状電極体の外周部の少なくとも一方に物
理変化により体積が増加して不可逆変化を示す加圧材を
配置して電極組立体を作り、電極組立体を電池容器に収
納した後に加圧材に物理変化を与える。
In the third aspect of the invention, a pressurizing material whose volume increases due to a physical change and exhibits an irreversible change is disposed in at least one of the central space of the spiral electrode body and the outer circumference of the spiral electrode body. After the assembly is made and the electrode assembly is housed in a battery container, a physical change is applied to the pressurizing material.

【0014】[0014]

【作用】請求項1の発明では、物理変化により不可逆的
に体積を増加した加圧材を用いるため、加圧材は体積が
増加した後に周囲温度の変化等によって体積が実質的に
変化することはない。したがって形状記憶合金や形状記
憶樹脂のように周囲温度によって形態が変化することが
なく、すなわち周囲温度の影響を受けることなく、必要
な加圧力を電極間に付与することができ、電極間の密着
性を向上させることができる。
[Operation] In the invention of claim 1, since the pressurizing material whose volume has irreversibly increased due to a physical change is used, the volume of the pressurizing material is substantially changed due to changes in ambient temperature, etc. after the volume has increased. There isn't. Therefore, unlike shape memory alloys and shape memory resins, the shape does not change depending on the ambient temperature, and the necessary pressure can be applied between the electrodes without being affected by the ambient temperature. can improve sex.

【0015】請求項2の発明のように、不可逆的に体積
を増加する加圧材として、物理変化により発泡して体積
を増加し且つ内部に独立気泡構造を形成する発泡材を用
いれば、電池の重量を大幅に増加させることなく、また
吸水性高分子からなる加圧材のように電解液を増加させ
ることなく、必要な加圧力を得ることができる。独立気
泡構造は加圧材に弾力性を付与するため、充放電を繰返
しても電極間の密着に必要な圧力を維持できる上、電極
の持つ機械的性質が異なって電極群内の電極間の密着状
態が不均一であっても、密着状態を均一化することがで
きる。
[0015] According to the second aspect of the invention, if a foam material that expands due to physical change to increase the volume and forms a closed cell structure inside is used as the pressurizing material that irreversibly increases the volume, the battery can be improved. The necessary pressurizing force can be obtained without significantly increasing the weight of the pressurizing material, and without increasing the amount of electrolyte as in the case of pressurizing materials made of water-absorbing polymers. The closed cell structure imparts elasticity to the pressurizing material, so it is possible to maintain the pressure necessary to maintain close contact between the electrodes even after repeated charging and discharging. Even if the adhesion state is uneven, the adhesion state can be made uniform.

【0016】請求項3の発明のように、渦巻状電極体の
中心空間部及び該渦巻状電極体の外周部の少なくとも一
方に加圧材を配置した電極組立体を作り、電極組立体を
電池容器に収納した後に加圧材に物理変化を与えるよう
にすると、電池容器への加圧材の配置が容易である上、
液漏れを生じさることなく、また中蓋などを必要とせず
に加圧材を所定の場所に配置することができ、電池の組
み立て工程を簡略化できる。
[0016] According to the third aspect of the present invention, an electrode assembly is produced in which a pressurizing material is disposed in at least one of the central space of the spiral electrode body and the outer circumference of the spiral electrode body, and the electrode assembly is used in a battery. If the pressurizing material is subjected to a physical change after being stored in the battery container, it is easy to place the pressurizing material in the battery container, and
The pressurizing material can be placed in a predetermined location without causing liquid leakage and without requiring an inner lid or the like, and the battery assembly process can be simplified.

【0017】[0017]

【実施例】本発明の実施例を図面を参照して詳細に説明
する。図1は、本発明をニッケル−水素電池に適用した
実施例の断面図を示しており、図2は製造工程の一工程
の態様を示す一部切り欠き斜視図である。尚図1では、
渦巻状電極体1中のセパレータ3は図示していない。ま
た図2に示した渦巻状電極体1は理解を容易にするため
に誇張して描いたものであり、図1の渦巻状電極体1と
は捲回数が相違する。渦巻状電極体1は、正極2とセパ
レータ3と負極4とを重ねて捲回して構成される。正極
2は、電極基体として60メッシュのニッケルネットを
用い、活物質として水酸化ニッケル90wt%,導電剤
としてニッケル繊維2wt%,活物質の活性剤として金
属コバルト5wt%,結着剤としてポリテトラフルオロ
エチレン3wt%の固体組成を用いている。またセパレ
ータ3はポリプロピレン製微孔フィルムから構成されて
いる。更に負極4は、MmNiMnCo(1:4.5:
0.2:0.3)の水素吸蔵合金と結着剤であるポリビ
ニルアルコールとを混合して混練したペーストを、発泡
ニッケル(住友電工株式会社製:セルメット[商標])
に充填して製造したものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a sectional view of an embodiment in which the present invention is applied to a nickel-metal hydride battery, and FIG. 2 is a partially cutaway perspective view showing an aspect of one step of the manufacturing process. In addition, in Figure 1,
The separator 3 in the spiral electrode body 1 is not shown. Further, the spiral electrode body 1 shown in FIG. 2 is exaggerated for ease of understanding, and the number of windings is different from that of the spiral electrode body 1 in FIG. The spiral electrode body 1 is constructed by stacking and winding a positive electrode 2, a separator 3, and a negative electrode 4. The positive electrode 2 uses a 60 mesh nickel net as an electrode base, 90 wt% nickel hydroxide as an active material, 2 wt% nickel fiber as a conductive agent, 5 wt% metal cobalt as an activator for the active material, and polytetrafluoro as a binder. A solid composition of 3 wt% ethylene is used. Further, the separator 3 is made of a microporous polypropylene film. Further, the negative electrode 4 is made of MmNiMnCo (1:4.5:
A paste made by mixing and kneading a hydrogen storage alloy (0.2:0.3) and polyvinyl alcohol as a binder is mixed with foamed nickel (Celmet [trademark] manufactured by Sumitomo Electric Co., Ltd.).
It was manufactured by filling the

【0018】本実施例では、図2に示すように渦巻状電
極体1の外周面に厚みが0.1mmの発泡材であるシー
ト状の発泡性ポリエチレン5を巻いて、その巻き終り端
部を1点以上の部分溶着して熱溶着部6を形成すること
により固定している。この部分溶着を行う場合には、部
分加熱による発泡性ポリエチレン5の体積膨脹が渦巻状
電極体1の電極積層方向ではなく電極積層方向と直交す
る方向に広がるように、幅2mmの加熱コテを電極積層
方向と直交する方向にずらしながら部分溶着を行う。尚
本実施例では、日東電気工業株式会社製の3倍に発泡す
るシート状の発泡性ポリエチレンを用いている。現在市
販されている発泡性ポリエチレンは、発泡により加熱前
の2〜12倍に体積が増加するものであり、この時の応
力は0.5kgf /cm2 〜10kg f /cm
2 を示す。一例ではあるが、発泡性ポリエチレンの発
泡前の状態での比重は0.93と電解液(ニッケル−カ
ドミウム電池であれば比重1.2〜1.4)より軽いた
め、電池の重量を大幅に増加させることはない。また渦
巻状電極体1の中心空間部7にも直径が3mmで10倍
に発泡する丸棒状の発泡性ポリエチレン8を挿入する。 丸棒状の発泡性ポリエチレン8は、捲回機の軸芯9を抜
取るのと同時に反対側から中心空間部7に挿入される。 このように渦巻状電極体1に体積増加する前の加圧材を
構成する発泡性ポリエチレン5及び8が取り付けられて
電極組立体が構成される。
In this embodiment, as shown in FIG. 2, a foamed polyethylene sheet 5 having a thickness of 0.1 mm is wound around the outer peripheral surface of the spiral electrode body 1, and the end of the winding is It is fixed by partially welding one or more points to form a thermally welded part 6. When performing this partial welding, a heating iron with a width of 2 mm is attached to the electrode so that the volume expansion of the foamable polyethylene 5 due to partial heating spreads not in the electrode lamination direction of the spiral electrode body 1 but in a direction perpendicular to the electrode lamination direction. Partial welding is performed while shifting in the direction perpendicular to the stacking direction. In this example, a sheet-like foamable polyethylene manufactured by Nitto Electric Industry Co., Ltd. that can be expanded to three times its size is used. Currently commercially available foamable polyethylene has a volume that increases by 2 to 12 times before heating due to foaming, and the stress at this time is 0.5 kgf/cm2 to 10 kgf/cm.
2 is shown. As an example, the specific gravity of expandable polyethylene before foaming is 0.93, which is lighter than the electrolyte (specific gravity of 1.2 to 1.4 for nickel-cadmium batteries), so the weight of the battery can be significantly reduced. It will not increase. Further, a round rod-shaped foamed polyethylene 8 having a diameter of 3 mm and expanded 10 times is inserted into the central space 7 of the spiral electrode body 1. The round rod-shaped foamed polyethylene 8 is inserted into the central space 7 from the opposite side at the same time as the shaft core 9 of the winding machine is pulled out. In this way, the foamed polyethylenes 5 and 8 constituting the pressurizing material before volume increase are attached to the spiral electrode body 1 to form an electrode assembly.

【0019】このようにして製造した電極組立体を電池
容器10の内部に収納し、電池容器10を開口した状態
で120℃で10分間加熱して発泡性ポリエチレン5,
8を発泡させることにより体積が増加した加圧材5´及
び8´を形成する。体積が増加した加圧材5´は、渦巻
状電極体1の外周面と電池容器10の内周面との間の外
周空間部に拘束された状態で配置される。体積が増加し
た加圧材5´及び8´により、渦巻状電極体1は内側及
び外側の両側から加圧されるため、正極2及び負極4は
セパレータ3を介して密着された状態になる。その後電
解液(30%水酸化カリウム水溶液)を注液し、その後
集電体11を正極2の端部と電池蓋12とに溶接した後
、絞り加工とかしめ加工とにより電池蓋12を固定して
電池容器10を封止する。図1において、13は放圧弁
である。
The electrode assembly manufactured in this way is housed inside the battery container 10, and heated at 120° C. for 10 minutes with the battery container 10 open to form foamed polyethylene 5,
By foaming 8, pressurizing materials 5' and 8' with increased volumes are formed. The pressurizing member 5' whose volume has increased is disposed in a restrained state in the outer circumferential space between the outer circumferential surface of the spiral electrode body 1 and the inner circumferential surface of the battery container 10. Since the spiral electrode body 1 is pressurized from both inside and outside by the pressure members 5' and 8' whose volumes have increased, the positive electrode 2 and the negative electrode 4 are brought into close contact with each other with the separator 3 in between. After that, an electrolytic solution (30% potassium hydroxide aqueous solution) is poured, and then the current collector 11 is welded to the end of the positive electrode 2 and the battery lid 12, and the battery lid 12 is fixed by drawing and caulking. to seal the battery container 10. In FIG. 1, 13 is a pressure relief valve.

【0020】図3に上記実施例のニッケル−水素電池A
と従来の電池Bのサイクル特性を示す。従来の電池は、
加圧材に吸水性高分子(アクリル酸ビニルアルコール)
を用いたこと以外は上記実施例の電池と同じである。従
来の電池Bと本発明の電池Aとでは、サイクル数が進む
につれて電池容量に差が生じ、本発明によるニッケル−
水素電池Aは600サイクルまで容量の低下は見られな
かった。また本発明の電池Aでは、従来の電池Bより電
極間の密着が良好であるため、電池容量も高くなった。 さらに、従来の電池Bの重量はAAサイズで24.7g
であったが、それに対して本発明の電池Aは23.4g
であり、1.3gの軽量化が図れた。
FIG. 3 shows the nickel-hydrogen battery A of the above embodiment.
and shows the cycle characteristics of conventional battery B. Conventional batteries are
Water-absorbing polymer (vinyl alcohol acrylate) for pressure material
The battery is the same as the battery in the above example except that . As the number of cycles increases, a difference occurs in battery capacity between conventional battery B and battery A of the present invention.
Hydrogen battery A showed no decrease in capacity up to 600 cycles. In addition, in the battery A of the present invention, the adhesion between the electrodes was better than in the conventional battery B, so the battery capacity was also increased. Furthermore, the weight of conventional battery B is 24.7g for AA size.
However, in contrast, battery A of the present invention weighed 23.4g.
Therefore, the weight was reduced by 1.3g.

【0021】本実施例によれば、加圧材が体積増加して
も重量の大きな増加はなく、従来の電池に比べての重量
の増加を低くできる。また、加圧材が不可逆的に体積が
増加する発泡性ポリエチレンからなるため、体積増加後
の加圧材は内部に独立気泡構造を有する弾性体となり、
充放電を繰返しても電極間の密着に必要な圧力を維持で
きる。また、加圧材の体積増加は加熱によるものである
から、吸水性高分子を用いる場合のように加圧材の体積
変化に伴うセパレータの電解液保持量の変化はない。さ
らには、加圧材自身が加熱という簡単な方策で体積増加
(発泡)するため、電池の組立て工程及びその内部構造
を簡略化することができる。また、電極の持つ機械的性
質が異なって電極群内の電極間の密着状態が不均一であ
っても、加圧材が弾性力を有する発泡体であるため密着
状態を均一化することができる。尚本発明は、上記ニッ
ケル−水素電池や、ニッケル−カドミウム電池に限らず
、充放電にて電極が膨脹収縮する種々の電池において、
電極間の密着性維持に効果を発揮する。尚、他の電池に
本発明を適用する場合でも、加熱により体積が増加する
加圧材を用いる場合には、加熱してもその特性を失わな
いセパレータを選ぶ必要がある。また本発明で用いる加
圧材を構成する材料としては、上記発泡性ポリエチレン
に限られず、加熱,超音波振動等の物理変化にて不可逆
的な体積増加を示し且つ電解液に対する耐性があるもの
であればいかなる材料でもよい。
According to this embodiment, even if the volume of the pressurizing material increases, there is no large increase in weight, and the increase in weight can be reduced compared to conventional batteries. In addition, since the pressurizing material is made of foamed polyethylene that irreversibly increases in volume, the pressurizing material after increasing in volume becomes an elastic body with a closed cell structure inside.
Even after repeated charging and discharging, the pressure required to maintain close contact between the electrodes can be maintained. Further, since the volume increase of the pressurizing material is due to heating, there is no change in the amount of electrolyte held in the separator due to a change in the volume of the pressurizing material, unlike in the case of using a water-absorbing polymer. Furthermore, since the pressure material itself increases in volume (foams) by simply heating, the battery assembly process and its internal structure can be simplified. In addition, even if the mechanical properties of the electrodes are different and the adhesion between the electrodes in the electrode group is uneven, the adhesion can be made uniform because the pressurizing material is a foam with elasticity. . The present invention is not limited to the above-mentioned nickel-hydrogen batteries and nickel-cadmium batteries, but also applies to various batteries whose electrodes expand and contract during charging and discharging.
Effective in maintaining adhesion between electrodes. Even when applying the present invention to other batteries, if a pressurizing material whose volume increases when heated is used, it is necessary to select a separator that does not lose its properties even when heated. In addition, the material constituting the pressurizing material used in the present invention is not limited to the above-mentioned foamed polyethylene, but also any material that shows irreversible volume increase due to physical changes such as heating or ultrasonic vibration, and is resistant to electrolyte. Any material can be used.

【0022】また上記実施例においては、渦巻状電極体
の中心空間部と外周部の両方に加圧材を配置しているが
、本発明は渦巻状電極体の中心空間部及び外周部の何れ
か一方のみに加圧材を配置する場合にも適用できる。 尚中心空間部だけに加圧材を配置する場合には、電池容
器の内径と渦巻状電極体の外径寸法をできるかぎり近付
けておくのが好ましい。また渦巻状電極体の外周部だけ
に加圧材を配置する場合には、できるかぎり中心空間部
の径寸法が小さくなるように渦巻状電極体を形成するか
、中心空間部に適宜の絶縁部材を充填しておけばよい。
[0022]Also, in the above embodiment, the pressurizing material is placed in both the center space and the outer circumference of the spiral electrode body. It can also be applied when the pressurizing material is placed only on one side. When the pressurizing material is disposed only in the central space, it is preferable to make the inner diameter of the battery container and the outer diameter of the spiral electrode body as close as possible. In addition, when a pressurizing material is placed only on the outer periphery of the spiral electrode body, the spiral electrode body is formed so that the diameter of the central space is as small as possible, or an appropriate insulating material is placed in the central space. All you have to do is fill it up.

【0023】[0023]

【発明の効果】請求項1の発明によれば、物理変化によ
り不可逆的に体積を増加した加圧材を用いるため、体積
が増加した加圧材は周囲温度の変化等によって体積が実
質的に変化することはなく、周囲温度の影響を受けずに
必要な加圧力を電極間に付与することができて、電極間
の密着性を向上させることができる利点がある。
According to the invention as claimed in claim 1, since the pressurizing material whose volume has irreversibly increased due to physical change is used, the pressurizing material whose volume has increased is substantially reduced in volume due to changes in ambient temperature, etc. It does not change, and has the advantage that the necessary pressing force can be applied between the electrodes without being affected by the ambient temperature, and the adhesion between the electrodes can be improved.

【0024】請求項2の発明によれば、加圧材が物理変
化により発泡して体積を増加し且つ内部に独立気泡構造
を形成する発泡材からなるため、電池の重量を大幅に増
加させることなく、また吸水性高分子からなる加圧材の
ように電解液を増加させることなく、必要な加圧力を得
ることができる利点がある。また独立気泡構造は加圧材
に弾力性を付与するため、充放電を繰返しても電極間の
密着に必要な圧力を維持できる上、電極の持つ機械的性
質が異なって電極間の密着状態が不均一であっても、密
着状態を均一化することができる利点がある。
According to the second aspect of the invention, the pressurizing material is made of a foaming material that expands due to physical changes to increase its volume and form a closed cell structure inside, so that the weight of the battery can be significantly increased. Moreover, it has the advantage that the necessary pressurizing force can be obtained without increasing the amount of electrolyte as is the case with pressurizing materials made of water-absorbing polymers. In addition, the closed cell structure imparts elasticity to the pressurizing material, so it is possible to maintain the pressure necessary for adhesion between the electrodes even after repeated charging and discharging. Even if it is non-uniform, there is an advantage that the adhesion state can be made uniform.

【0025】請求項3の発明によれば、渦巻状電極体の
中心空間部及び渦巻状電極体の外周部の少なくとも一方
に加圧材を配置した電極組立体を作り、電極組立体を電
池容器に収納した後に加圧材に物理変化を与えるように
するため、電池容器への加圧材の配置が容易である上、
液漏れを生じさせることなく、また中蓋などを必要とせ
ずに加圧材を所定の場所に配置することができ、電池の
組み立て工程を簡略化できる利点がある。
According to the third aspect of the present invention, an electrode assembly is produced in which a pressurizing material is disposed in at least one of the central space of the spiral electrode body and the outer circumference of the spiral electrode body, and the electrode assembly is placed in a battery container. In order to cause a physical change to the pressurizing material after it is stored in the battery container, it is easy to place the pressurizing material in the battery container, and
This has the advantage that the pressurizing material can be placed in a predetermined location without causing liquid leakage and without requiring an inner lid or the like, and the battery assembly process can be simplified.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の実施例のニッケル−水素電池の概略構
造を示す断面図である。
FIG. 1 is a sectional view showing a schematic structure of a nickel-hydrogen battery according to an embodiment of the present invention.

【図2】本発明の実施例で用いる渦巻状電極体の構成を
示す一部切欠き斜視図である。
FIG. 2 is a partially cutaway perspective view showing the configuration of a spiral electrode body used in an example of the present invention.

【図3】本発明の実施例のニッケル−水素電池と従来の
電池とのサイクル特性を示す図である。
FIG. 3 is a diagram showing the cycle characteristics of a nickel-hydrogen battery according to an embodiment of the present invention and a conventional battery.

【符号の説明】[Explanation of symbols]

1    渦巻状電極体 2    正極 3    セパレータ 4    負極 5    発泡性ポリエチレン 5´  体積が増加した加圧材 6    熱溶着部 7    中心空間部 8    発泡性ポリエチレン 8´  体積が増加した加圧材 9    軸心 10  電池容器 11  集電体 12  電池蓋 13  放圧弁 1 Spiral electrode body 2 Positive electrode 3 Separator 4 Negative electrode 5. Expandable polyethylene 5´  Pressure material with increased volume 6 Heat welded part 7 Central space 8. Expandable polyethylene 8´ Pressure material with increased volume 9 Axial center 10 Battery container 11 Current collector 12 Battery cover 13 Pressure relief valve

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  正極と負極との間にセパレータが介在
する電極が渦巻状に捲回されてなる渦巻状電極体が電池
容器内に収納されている密閉型電池において、前記渦巻
状電極体の中心空間部及び該渦巻状電極体の外周面と前
記電池容器との間の外周空間部の少なくとも一方に、物
理変化により不可逆的に体積が増加した加圧材を配置し
たことを特徴とする密閉型電池。
1. A sealed battery in which a spiral electrode body, which is a spirally wound electrode with a separator interposed between a positive electrode and a negative electrode, is housed in a battery container. A sealing device characterized in that a pressurizing material whose volume irreversibly increases due to physical change is disposed in at least one of the central space and the outer peripheral space between the outer peripheral surface of the spiral electrode body and the battery container. type battery.
【請求項2】  前記加圧材は物理変化により発泡して
内部に独立気泡構造を形成する発泡材からなることを特
徴とする請求項1に記載の密閉型電池。
2. The sealed battery according to claim 1, wherein the pressurizing material is made of a foam material that foams due to physical change to form a closed cell structure inside.
【請求項3】  渦巻状電極体の中心空間部及び該渦巻
状電極体の外周部の少なくとも一方に物理変化により不
可逆的に体積が増加する加圧材を配置して電極組立体を
作り、前記電極組立体を電池容器に収納した後に前記加
圧材に物理変化を与えることを特徴とする密閉型電池の
製造方法。
3. An electrode assembly is produced by arranging a pressurizing material whose volume irreversibly increases due to physical change in at least one of the central space of the spiral electrode body and the outer circumference of the spiral electrode body; A method for manufacturing a sealed battery, comprising applying a physical change to the pressurizing material after the electrode assembly is housed in a battery container.
JP3063425A 1991-03-27 1991-03-27 Sealed-type battery and manufacture thereof Pending JPH04296467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3063425A JPH04296467A (en) 1991-03-27 1991-03-27 Sealed-type battery and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3063425A JPH04296467A (en) 1991-03-27 1991-03-27 Sealed-type battery and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04296467A true JPH04296467A (en) 1992-10-20

Family

ID=13228923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3063425A Pending JPH04296467A (en) 1991-03-27 1991-03-27 Sealed-type battery and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04296467A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231297A (en) * 2001-01-29 2002-08-16 Japan Storage Battery Co Ltd Battery pack
WO2007097172A1 (en) * 2006-02-21 2007-08-30 Matsushita Electric Industrial Co., Ltd. Method of manufacturing square flat secondary battery
JP2011222469A (en) * 2010-04-05 2011-11-04 Samsung Sdi Co Ltd Secondary battery
JP2012531020A (en) * 2009-06-26 2012-12-06 ビーワイディー カンパニー リミテッド Lithium ion battery
JP2015008091A (en) * 2013-06-25 2015-01-15 株式会社Gsユアサ Battery
US9647246B2 (en) 2012-07-31 2017-05-09 Gs Yuasa International Ltd. Battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231297A (en) * 2001-01-29 2002-08-16 Japan Storage Battery Co Ltd Battery pack
WO2007097172A1 (en) * 2006-02-21 2007-08-30 Matsushita Electric Industrial Co., Ltd. Method of manufacturing square flat secondary battery
US8129048B2 (en) 2006-02-21 2012-03-06 Panasonic Corporation Method for producing rectangular flat secondary battery
JP2012531020A (en) * 2009-06-26 2012-12-06 ビーワイディー カンパニー リミテッド Lithium ion battery
JP2011222469A (en) * 2010-04-05 2011-11-04 Samsung Sdi Co Ltd Secondary battery
US9023509B2 (en) 2010-04-05 2015-05-05 Samsung Sdi Co., Ltd. Secondary battery
US9647246B2 (en) 2012-07-31 2017-05-09 Gs Yuasa International Ltd. Battery
JP2015008091A (en) * 2013-06-25 2015-01-15 株式会社Gsユアサ Battery

Similar Documents

Publication Publication Date Title
EP0692829B1 (en) A resealable safety valve and a sealed alkaline rechargeable battery provided the same safety valve
US5800939A (en) Battery and method for the manufacture of such a battery
US8129048B2 (en) Method for producing rectangular flat secondary battery
JP5731382B2 (en) Force application in electrochemical cells
JPH01309265A (en) Alkaline secondary battery and its manufacture
WO2001082393A2 (en) Custom geometry battery cells and methods and tools for their manufacture
EP1202364B1 (en) Spirally-rolled electrodes with separator and the batteries therewith
KR20180137509A (en) Pressed lithium metal polymer battery
US10693195B2 (en) Rechargeable battery
JPH07161377A (en) Square sealed alkaline storage battery and its unit cell
JP3709134B2 (en) Square battery
JPH04296467A (en) Sealed-type battery and manufacture thereof
JP2017183193A (en) Nickel-metal hydride storage battery
KR20170030791A (en) Electrode assembly and secondary battery comprising the same
KR20130097840A (en) Manufacturing of battery cell by curbed shaped
US3257238A (en) Hermetically sealed cell
JP3390309B2 (en) Sealed alkaline storage battery
JP2000182573A (en) Secondary battery
JPH01227363A (en) Secondary battery and its electrode
JP2013222510A (en) Separator for secondary battery and secondary battery using the same
JP2011258493A (en) Method of manufacturing sealed battery
JP4214455B2 (en) battery
JP2000294201A (en) Enclosed square thin battery
CN220569780U (en) Lithium ion battery core and lithium ion battery
CN204991777U (en) Long cycle life's energy storage device