JP2013222510A - Separator for secondary battery and secondary battery using the same - Google Patents
Separator for secondary battery and secondary battery using the same Download PDFInfo
- Publication number
- JP2013222510A JP2013222510A JP2012091499A JP2012091499A JP2013222510A JP 2013222510 A JP2013222510 A JP 2013222510A JP 2012091499 A JP2012091499 A JP 2012091499A JP 2012091499 A JP2012091499 A JP 2012091499A JP 2013222510 A JP2013222510 A JP 2013222510A
- Authority
- JP
- Japan
- Prior art keywords
- separator
- secondary battery
- negative electrode
- layer
- positive electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Cell Separators (AREA)
- Secondary Cells (AREA)
Abstract
Description
本発明は、二次電池用セパレータ、二次電池用セパレータを用いた二次電池に関する。 The present invention relates to a secondary battery separator and a secondary battery using the secondary battery separator.
リチウムイオン二次電池は、二次電池の中でもエネルギー密度が高く自己放電による劣化が少ないため各種携帯用機器の小型電源から産業用や民生用機器の電源、さらに車載用や電力貯蔵用などの大型電源に至るまで、その利用範囲が急速に拡大しつつある。 Lithium-ion secondary batteries have a high energy density and little deterioration due to self-discharge among secondary batteries, so they can be used for small power supplies for various portable devices, power supplies for industrial and consumer devices, and large-scale applications such as in-vehicle and power storage. The range of use is rapidly expanding to the power supply.
リチウムイオン二次電池の電極部分は、電池を形成する正極と負極とを電気的にセパレータで隔離し、これらを積層あるいは渦巻状に捲回した構造がとられている。セパレータは正極と負極の短絡を防止し、かつ電解質のイオン導電性を妨げ無いなどの機能が要求され、ポリオレフィン系の微多孔膜が広く利用されている。 The electrode portion of the lithium ion secondary battery has a structure in which the positive electrode and the negative electrode forming the battery are electrically separated by a separator and these are laminated or wound in a spiral shape. The separator is required to have a function of preventing a short circuit between the positive electrode and the negative electrode and not hindering the ionic conductivity of the electrolyte, and a polyolefin microporous film is widely used.
これから成長が見込まれる電気自動車や電力貯蔵などの大型用途では、信頼性や安全性の確保が不可欠であり、高温でも溶融や収縮しない耐熱性のセパレータなど、多様なアイデアでセパレータ材料の研究(非特許文献1)が進められている。また、ポリエステルウレタン骨格を有する架橋ポリマー層を多孔質基材に担持させたセパレータ(特許文献1、特許文献2、特許文献3参照)、ポリオレフィンとポリウレタンの複合体セパレータ(特許文献4参照)、とそれを用いたリチウムイオン電池などが開示されている。 Ensuring reliability and safety is indispensable for large-scale applications such as electric vehicles and power storage that are expected to grow in the future, and research on separator materials with various ideas such as heat-resistant separators that do not melt or shrink even at high temperatures (non- Patent document 1) is underway. In addition, a separator (see Patent Document 1, Patent Document 2, and Patent Document 3) having a crosslinked polymer layer having a polyester urethane skeleton supported on a porous substrate, a composite separator of polyolefin and polyurethane (see Patent Document 4), and A lithium ion battery using the same is disclosed.
一方、リチウムイオン電池の負極活物質としては、一般に難黒鉛化性炭素や黒鉛等の炭素材料が用いられるが、最近、ある種の金属がリチウムと電気化学的に合金化して、これが可逆的に生成・分解することを応用した合金負極材料や、サイクル特性を改善する手法として、スズやケイ素を合金化して膨張を抑制する試みがある。しかしながら、これら合金負極材料の多くは、一般にリチウムイオンの吸脱着による体積変化が炭素材料よりも数倍大きい。このため、充放電条件に依存するものの充放電時の体積変化の影響を受け、電池のサイクル寿命が短い傾向にあった。 On the other hand, as a negative electrode active material of a lithium ion battery, a carbon material such as non-graphitizable carbon or graphite is generally used. Recently, a certain type of metal is electrochemically alloyed with lithium, and this is reversible. There is an attempt to suppress expansion by alloying tin and silicon as an alloy negative electrode material applying generation / decomposition and a technique for improving cycle characteristics. However, many of these alloy negative electrode materials generally have a volume change several times larger than that of carbon materials due to adsorption / desorption of lithium ions. For this reason, although it depends on charging / discharging conditions, it was influenced by the volume change at the time of charging / discharging, and there existed a tendency for the cycle life of a battery to be short.
充放電により電極が大きく膨張あるいは収縮して厚みが変化するような電池の場合、電極厚みの変化量に応じて電池内で圧縮応力や引張応力が生じ、サイクルの経過に伴い電極合剤のひび割れ、集電体からの電極合剤の剥離、電極合剤とセパレータの潰れ、さらには正極あるいは負極とセパレータ間に隙間が形成して電解液の液枯れが生じて電池反応を阻害するという問題があった。特許文献1乃至4には、正極あるいは負極とセパレータ間の隙間形成を防ぐセパレータに関する記載は見受けられない。 In the case of a battery whose thickness changes due to large expansion or contraction of the electrode due to charge / discharge, compressive stress or tensile stress is generated in the battery according to the amount of change in the electrode thickness, and the electrode mixture cracks as the cycle progresses. , Peeling of the electrode mixture from the current collector, crushing of the electrode mixture and the separator, and further, a gap is formed between the positive electrode or the negative electrode and the separator, causing the electrolyte solution to drain and hindering the battery reaction. there were. In Patent Documents 1 to 4, there is no description relating to a separator that prevents formation of a gap between the positive electrode or the negative electrode and the separator.
本発明は、充放電による電極合剤層の膨張収縮に応じて圧縮と復元を繰り返すことによって生じる正極あるいは負極とセパレータ間の隙間形成を防ぎ、電解液の液枯れを防止できる二次電池用セパレータと、二次電池用セパレータを用いた二次電池を提供する。 The present invention provides a separator for a secondary battery that prevents the formation of a gap between the positive electrode or the negative electrode and the separator caused by repeated compression and restoration according to the expansion and contraction of the electrode mixture layer due to charge and discharge, and prevents the electrolyte from draining. And a secondary battery using a secondary battery separator.
上記課題を解決するための本発明の特徴は、例えば以下の通りである。
基材層と、基材層の片面に設けられた発泡層と、を有するリチウムイオン二次電池用セパレータであって、発泡層のみかけの密度が10〜100kg/m3、圧縮残留ひずみが10%以下であり、発泡層に基材層と連通する連通気孔が設けられている二次電池用セパレータ。
The features of the present invention for solving the above problems are as follows, for example.
A separator for a lithium ion secondary battery having a base material layer and a foam layer provided on one side of the base material layer, the apparent density of the foam layer is 10 to 100 kg / m 3 , and the compressive residual strain is 10 %, And a secondary battery separator in which a foamed layer is provided with a continuous air hole communicating with a base material layer.
上記において、発泡層に発泡層外部の気体と発泡層内部の気体が連通できる連続気泡が設けられている二次電池用セパレータ。 In the above, the separator for secondary batteries in which the foam layer is provided with open cells that allow the gas outside the foam layer and the gas inside the foam layer to communicate with each other.
上記において、二次電池用セパレータとして基材層が二層形成され、二層の基材層の間に発泡層が形成される二次電池用セパレータ。 In the above, the separator for secondary batteries in which a base material layer is formed as a secondary battery separator, and a foamed layer is formed between the two base material layers.
上記において、JlS P8117に規定されたガーレ試験法で100ccの空気が二次電池用セパレータを通過する秒数は、50〜800秒である二次電池用セパレータ。 In the above, the secondary battery separator in which 100 cc of air passes through the secondary battery separator according to the Gurley test method defined in JlS P8117 is 50 to 800 seconds.
上記において、発泡層はポリウレタンで形成される二次電池用セパレータ。 In the above, the foam layer is a separator for a secondary battery formed of polyurethane.
正極活物質を含む正極と、負極活物質を含む負極と、正極および負極の間に形成された上記の二次電池用セパレータと、を有する電極群と、電極群を覆うラミネートフィルムと、を有する二次電池であって、正極、負極、二次電池用セパレータは積層されて構成される二次電池。 An electrode group having a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and the above-described secondary battery separator formed between the positive electrode and the negative electrode, and a laminate film covering the electrode group A secondary battery in which a positive electrode, a negative electrode, and a separator for a secondary battery are stacked.
上記において、二次電池用セパレータは、電極群の積層方向の中央部のみに配される二次電池。 In the above, the secondary battery separator is a secondary battery that is disposed only in the central portion of the electrode group in the stacking direction.
正極活物質を含む正極と、負極活物質を含む負極と、正極および負極の間に形成された上記の二次電池用セパレータと、を有する電極群、を有する二次電池であって、電極群は捲回されて構成される二次電池。 An electrode group comprising: a positive electrode including a positive electrode active material; a negative electrode including a negative electrode active material; and the above-described secondary battery separator formed between the positive electrode and the negative electrode. Is a secondary battery that is wound up.
本発明のセパレータをリチウムイオン電池に適用すると、充放電サイクルで生じる電極の膨張と収縮に追従してセパレータが圧縮と復元を繰り返し、電極とセパレータ間の隙間形成を防止できる。また、正極と負極との間に常に電解液を保持して電池のサイクル寿命を長寿命化できる効果が得られる。上記以外の本発明の効果は、以下の実施形態の説明により明らかにされる。 When the separator of the present invention is applied to a lithium ion battery, the separator repeatedly compresses and restores following the expansion and contraction of the electrode that occurs in the charge / discharge cycle, and the formation of a gap between the electrode and the separator can be prevented. In addition, there is an effect that the electrolytic solution can be always held between the positive electrode and the negative electrode to extend the cycle life of the battery. The effects of the present invention other than those described above will become apparent from the following description of embodiments.
以下、図面等を用いて、本発明の実施例について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための全ての図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description shows specific examples of the contents of the present invention, and the present invention is not limited to these descriptions. Various modifications by those skilled in the art are within the scope of the technical idea disclosed in this specification. Changes and modifications are possible. In all the drawings for explaining the present invention, the same reference numerals are given to those having the same function, and the repeated description thereof may be omitted.
また、明細書において「〜」を用いて示された数値範囲は、「〜」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。 In the specification, numerical ranges indicated using “to” indicate ranges including numerical values described before and after “to” as the minimum value and the maximum value, respectively.
リチウムイオン電池用として要求されるセパレータの機能は、(a)有機電解液に対して化学的に安定であること、(b)電池の充放電に耐え得る耐電圧と耐酸化性を有すること、(c)有機電解液の保持と、高いリチウムイオン導電性を確保するため、高多孔構造で薄膜化が可能なこと、(d)電池組立て時に、引張力や圧縮力で破れないような機械的強度を有すること、また、安全性を確保するため、(e)充電で負極側に樹枝状のリチウムが生成しても微小短絡が防止できること、(f)仮に微小短絡が生じて温度が上昇しても連通孔を塞ぎ(シャットダウン)イオンの移動を停止できること、などである。 The functions of the separator required for lithium ion batteries are (a) being chemically stable with respect to the organic electrolyte, (b) having a withstand voltage and oxidation resistance capable of withstanding the charge / discharge of the battery, (C) To retain organic electrolyte and ensure high lithium ion conductivity, it is possible to reduce the film thickness with a highly porous structure. (D) Mechanical that does not break with tensile or compressive force during battery assembly. In order to ensure strength and to ensure safety, (e) a short-circuit can be prevented even if dendritic lithium is generated on the negative electrode side by charging, and (f) a temporary short-circuit occurs and the temperature rises. However, the communication hole is closed (shut down), and the movement of ions can be stopped.
これらの要求機能をほぼ満足するセパレータの素材は、多孔性フィルムとしてポリプロピレン、ポリエチレン等のポリオレフィン系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル系樹脂、ポリイミド系樹脂、ナイロン系樹脂、シリコン系樹脂が挙げられる。また、不織布の素材としては、ポリプロピレン、ポリエチレン、ポリエチレンテレフタレート、ガラス繊維、ポリアクリロニトリルが挙げられ、中でもポリアクリロニトリルのナノファイバーからなる不織布がリチウムイオン電池用セパレータに適している。織布の素材としては、不織布素材と同一の繊維を糸状にして編んだものなどが挙げられる。セパレータの素材として、上記の材料を一種単独、または複数種混合して使用しても良い。 Separator materials that almost satisfy these required functions include polyolefin resins such as polypropylene and polyethylene, polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polyimide resins, nylon resins, and silicon resins as porous films. Can be mentioned. Moreover, as a raw material of a nonwoven fabric, a polypropylene, polyethylene, a polyethylene terephthalate, glass fiber, and polyacrylonitrile are mentioned, Especially the nonwoven fabric which consists of a polyacrylonitrile nanofiber is suitable for the separator for lithium ion batteries. Examples of the material of the woven fabric include a material in which the same fibers as the nonwoven fabric material are knitted in a yarn shape. As the material for the separator, the above materials may be used alone or in combination.
図1に、従来のセパレータをリチウムイオン電池に使用した場合の電極群変形摸式図を示す。正極と負極とを電気的にセパレータで隔離し、これらを積層あるいは渦巻状に捲回した構造を電極群と称する。図1に示すように、正極21と負極22の間に弾力性の少ないセパレータ20を使うと、充電時に負極22が膨張して負極22の電極厚みが大きく増加して塑性変形した後、放電時に負極22が収縮して負極22の電極厚みが縮んでも塑性変形した電極群が元に戻らず、セパレータ20と負極22との間に隙間33を形成する可能性があり、この隙間33の形成により、電極群内で電解液の液枯れが生じて電池出力を損なうことがあった。 FIG. 1 shows an electrode group deformation schematic diagram when a conventional separator is used in a lithium ion battery. A structure in which the positive electrode and the negative electrode are electrically separated by a separator and these are laminated or spirally wound is referred to as an electrode group. As shown in FIG. 1, when a separator 20 having low elasticity is used between the positive electrode 21 and the negative electrode 22, the negative electrode 22 expands during charging, the electrode thickness of the negative electrode 22 increases greatly, and plastic deformation occurs. Even if the negative electrode 22 contracts and the electrode thickness of the negative electrode 22 decreases, the plastically deformed electrode group does not return to the original state, and a gap 33 may be formed between the separator 20 and the negative electrode 22. In some cases, the electrolyte solution was drained in the electrode group, and the battery output was impaired.
そこで、本発明の一実施形態では、図2乃至図4のように、基材層10と発泡層11の多層セパレータ1、多層セパレータ2、多層セパレータ3として、前記した基材層10の少なくとも一方の片面に、連通気孔12を有する弾力性のある発泡層11を設ける。弾力性確保と液保持のため発泡層11の膜厚は基材層10の膜厚より大きくなっている。多層セパレータ1とすることにより、セパレータに要求される化学的安定性、電気絶縁性および異常時の安全性が確保される。また、発泡層11を設けることにより、電極間の隙間が変化しても、この発泡層11が外部圧縮力による圧縮変形と、復元力による膨張変形で厚みが変化し、隙間形成を防ぐことが可能となる。また、発泡層11が縮んだ時には電解液の一部が排出され、膨張時には表面張力により電解液が吸い上げられ、常にセパレータ全体に電解液の保持を可能にしている。 Therefore, in one embodiment of the present invention, as shown in FIGS. 2 to 4, as the multilayer separator 1, the multilayer separator 2, and the multilayer separator 3 of the base layer 10 and the foamed layer 11, at least one of the base layers 10 described above. An elastic foam layer 11 having continuous air holes 12 is provided on one side. The film thickness of the foamed layer 11 is larger than the film thickness of the base material layer 10 for ensuring elasticity and retaining the liquid. By setting it as the multilayer separator 1, the chemical stability, electrical insulation, and safety at the time of an abnormality requested | required of a separator are ensured. Also, by providing the foam layer 11, even if the gap between the electrodes changes, the thickness of the foam layer 11 changes due to compression deformation due to external compressive force and expansion deformation due to restoring force, thereby preventing gap formation. It becomes possible. Further, when the foam layer 11 contracts, a part of the electrolytic solution is discharged, and when the foamed layer 11 expands, the electrolytic solution is sucked up by the surface tension, so that the electrolytic solution can always be held in the entire separator.
さらに、発泡層11には大きな外部圧縮応力が作用し、厚みが底づきしても正極21と負極22間の電解液の連通を確保するため、発泡層11には連続気泡13と、連続気泡13の径よりも大きな連通気孔12が設けられている。図2乃至図4のように、発泡層11の面内方向において、連通気孔12の間に連続気泡13が設けられている。連続気泡13とは、気泡同士がつながるように発泡させて外部気体と発泡体内の気体が連通できるようにしたものである。連通気孔12とは、連続気泡13からなる発泡体に機械的に開孔あるいは熱的に溶融開孔して外部気体と発泡体内の気体が連通できるようにしたもの、または、予め連通気孔12を形成するための型の中で連続気泡13の発泡体を作り、型を取り外して連通気孔12としたものである。図9は、図2乃至図4の発泡層11の拡大図である。 Further, a large external compressive stress acts on the foam layer 11, and even if the thickness is reduced, the foam layer 11 has open cells 13 and open cells in order to ensure communication of the electrolyte between the positive electrode 21 and the negative electrode 22. A continuous vent 12 larger than the diameter of 13 is provided. As shown in FIGS. 2 to 4, open cells 13 are provided between the continuous air holes 12 in the in-plane direction of the foam layer 11. The open cell 13 is a bubble formed so that the bubbles are connected to each other so that the external gas can communicate with the gas in the foam. The continuous air holes 12 are those in which a foam made of open cells 13 is mechanically opened or thermally melted and opened so that the external gas and the gas in the foam can communicate with each other. The foam of the open cell 13 is made in the mold for forming, and the mold is removed to form the continuous air vent 12. FIG. 9 is an enlarged view of the foamed layer 11 of FIGS.
本発明の一実施形態における発泡層11の形成に適した材料としては、ポリウレタン、ポリエチレン、ポリアミドなどが挙げられる。発泡層11の素材として、上記の材料を一種単独、または複数種混合して使用しても良い。中でもポリウレタンフォームは、ポリオールとポリイソシアネートとを主成分として、発泡剤、整泡剤、触媒などを混合し樹脂化させながら発泡させるもので、連続気泡13により通気性と弾力性を有する。使用するポリオールの種類により、ポリエーテルフォームとポリエステルフォームとに大別できる。一般的には原料ブレンドが多岐にわたるポリエーテルフォームの方が弾性率や弾力性など、電池構造に合わせて幅広い性能を付与できる。これに対してポリエステルフォームは、ポリエーテルフォームに比べ引張り強さ、引裂き強さ、伸び率、耐摩耗性などの機械的な強度が大きいなどの特性があり、厚みを薄くすることが可能である。 Examples of the material suitable for forming the foamed layer 11 in one embodiment of the present invention include polyurethane, polyethylene, polyamide, and the like. As the material of the foam layer 11, the above materials may be used alone or in combination. Among them, polyurethane foam is foamed with a polyol and polyisocyanate as main components and foamed while mixing with a foaming agent, a foam stabilizer, a catalyst and the like, and has air permeability and elasticity due to the open cells 13. Depending on the type of polyol used, it can be roughly divided into polyether foam and polyester foam. In general, polyether foams with a wide range of raw material blends can provide a wide range of performance such as elastic modulus and elasticity, depending on the battery structure. Polyester foam, on the other hand, has properties such as higher mechanical strength such as tensile strength, tear strength, elongation rate, and wear resistance than polyether foam, and can be made thinner. .
本発明の一実施形態における多層セパレータ1の基材層10の膜厚は1〜50μmが好ましく、より好ましくは5〜40μm、さらに好ましくは10〜30μmである。膜厚が1μm以下だと電極群作製時の取扱性や強度が弱く、50μm以上では膜面に設ける発泡層11を加味すると正極21と負極22が離れすぎて抵抗値が高くなり、電池性能が低下する。 1-50 micrometers is preferable, as for the film thickness of the base material layer 10 of the multilayer separator 1 in one Embodiment of this invention, More preferably, it is 5-40 micrometers, More preferably, it is 10-30 micrometers. If the film thickness is 1 μm or less, the handleability and strength at the time of electrode group production are weak, and if it is 50 μm or more, if the foamed layer 11 provided on the film surface is taken into account, the positive electrode 21 and the negative electrode 22 are too far apart and the resistance value becomes high, and the battery performance is high. descend.
一方、発泡層11における連通気孔12の平均気泡径としては100μm以下が好ましく、20μm以下がより好ましく、最も望ましいのは10μm以下のマイクロセルプラスチックである。平均気泡径が100μm以上では物理的に発泡層11の膜厚が厚くなり過ぎ、反対に望ましい平均気泡径10μm以下では、発泡剤の分散が難しくなる。平均気泡径は発泡層11の断面を走査型電子顕微鏡で観察して計測される。 On the other hand, the average cell diameter of the continuous air holes 12 in the foam layer 11 is preferably 100 μm or less, more preferably 20 μm or less, and most preferably a microcell plastic of 10 μm or less. If the average cell diameter is 100 μm or more, the thickness of the foamed layer 11 is physically too thick. Conversely, if the average cell size is 10 μm or less, it is difficult to disperse the foaming agent. The average cell diameter is measured by observing the cross section of the foamed layer 11 with a scanning electron microscope.
発泡層11の膜厚は電極合剤層厚み方向の最大膨張量Xとの相対変位で表わされ、初めの厚みとして好ましくはX/0.75以上、より好ましくはX/0.65以上、最も好ましくはX/0.25以上である。発泡層11の膜厚が大きくなると直流抵抗が増すため電池特性としての許容範囲で厚くすることが望ましい。 The film thickness of the foamed layer 11 is represented by a relative displacement with the maximum expansion amount X in the electrode mixture layer thickness direction, and the initial thickness is preferably X / 0.75 or more, more preferably X / 0.65 or more, Most preferably, it is X / 0.25 or more. As the film thickness of the foam layer 11 increases, the direct current resistance increases, so it is desirable to increase the thickness within an allowable range as battery characteristics.
発泡層11のみかけの密度は10〜100kg/m3程度が好ましく、所定の圧縮応力で所定の圧縮変位を付加した時の圧縮残留ひずみ(JIS K6401)は10%以下、好ましくは5%以下、より好ましくは2%以下である。発泡層11のみかけの密度を10〜100kg/m3程度とすることで弾力性が得られ、圧縮残留ひずみを10%以下とすることで良好な復元性が得られる。本発明では、発泡層11において、気泡を含まず密に詰まった状態(樹脂のみ)を真密度とし、気泡を含んだもの(同じ体積でも樹脂のみより軽くなる)をみかけの密度とする。発泡層11のみかけの密度は、発泡層11を厚み一定として測定可能な幅と長さで切り出し、その重量を測定し、計算で求めた体積で除して評価される。 The apparent density of the foam layer 11 is preferably about 10 to 100 kg / m 3 , and the compressive residual strain (JIS K6401) when a predetermined compressive displacement is applied with a predetermined compressive stress is 10% or less, preferably 5% or less. More preferably, it is 2% or less. When the apparent density of the foamed layer 11 is about 10 to 100 kg / m 3 , elasticity is obtained, and when the compressive residual strain is 10% or less, good resilience is obtained. In the present invention, in the foamed layer 11, a state in which the foamed layer 11 is tightly packed without containing bubbles (only the resin) is set as a true density, and a substance containing bubbles (becomes lighter than only the resin even in the same volume) is set as an apparent density. The apparent density of the foam layer 11 is evaluated by cutting the foam layer 11 with a width and length that can be measured with a constant thickness, measuring its weight, and dividing by the volume obtained by calculation.
基材層10と発泡層11からなる多層セパレータ1全体としての厚みは2000μm以下、好ましくは1000μm以下、より好ましくは500μm以下、望ましくは100μm以下である。また、JIS P8117のガーレ試験法に準じて測定される多層セパレータ1の透気度は、100ccの空気が50〜800秒、より好ましくは50〜200秒、最も好ましくは50〜150秒で多層セパレータ1を通過することが好ましい。50秒以下では、多層セパレータ1の開孔度が大きく異物等により微小短絡を起こす可能性があり、800秒以上では高出力時に出力低下を招く可能性がある。 The total thickness of the multilayer separator 1 comprising the base material layer 10 and the foamed layer 11 is 2000 μm or less, preferably 1000 μm or less, more preferably 500 μm or less, and desirably 100 μm or less. The air permeability of the multilayer separator 1 measured according to the JIS P8117 Gurley test method is 50 to 800 seconds, more preferably 50 to 200 seconds, and most preferably 50 to 150 seconds for 100 cc air. 1 is preferably passed. If it is 50 seconds or less, the opening degree of the multi-layer separator 1 is large, and there is a possibility of causing a micro short circuit due to foreign matter or the like.
図2は本発明の一実施形態に係る多層セパレータ1の断面構成図である。多層セパレータ1は基材層10の両面に連続気泡からなる弾力性のある発泡層11を設けたもので、その発泡層11には連続気泡13の他に連通気孔12が設けられている。 FIG. 2 is a cross-sectional configuration diagram of a multilayer separator 1 according to an embodiment of the present invention. The multilayer separator 1 is provided with an elastic foam layer 11 made of open cells on both sides of a base material layer 10, and the open air holes 12 are provided in the foam layer 11 in addition to the open cells 13.
本発明の一実施形態に係る多層セパレータ1の変形例を図3と図4に示す。図3の多層セパレータ2は多孔性のポリプロピレンフィルムの基材層10の片面に、連続気泡13と連通気孔12を有する軟質ポリウレタンフォームの発泡層11を積層化したリチウムイオン二次電池用のセパレータであり、多層セパレータ1と比べ厚みが薄くできるため内部抵抗が低減できる。このため電極の膨張量と収縮量の比較的小さい電池への適用に適している。 The modification of the multilayer separator 1 which concerns on one Embodiment of this invention is shown in FIG. 3 and FIG. 3 is a separator for a lithium ion secondary battery in which a foam layer 11 of a flexible polyurethane foam having open cells 13 and continuous air holes 12 is laminated on one side of a base layer 10 of a porous polypropylene film. In addition, since the thickness can be reduced compared to the multilayer separator 1, the internal resistance can be reduced. For this reason, it is suitable for application to a battery having a relatively small amount of electrode expansion and contraction.
一方、図4の多層セパレータ3は、基材層10と基材層10の間に発泡層11を配置したもので、電極の膨張、収縮に対応した厚みの変位を示すと共にセパレータ表裏の基材層10の滑りが良いため、取り扱う上で引掛り等がなく扱いやすいと言う特長がある。 On the other hand, the multilayer separator 3 in FIG. 4 is obtained by disposing a foamed layer 11 between the base material layer 10 and the base material layer 10. Since the sliding of the layer 10 is good, there is a feature that it is easy to handle without being caught in handling.
発泡層11として連通気孔12からなる軟質ポリウレタンフォーム以外に、図8のように基材層10に独立気泡14を有するフォームの発泡層11を形成し、このフォーム部を圧潰して連通気孔12とすることで、圧縮残留ひずみが多少大きくなるものの、弾力性が得られることからリチウム電池用の充放電時における電極群の膨張、収縮量の吸収用セパレータとすることが可能である。 In addition to the flexible polyurethane foam composed of the continuous air holes 12 as the foam layer 11, the foam layer 11 of foam having closed cells 14 is formed on the base material layer 10 as shown in FIG. By doing so, although the compression residual strain is somewhat increased, elasticity is obtained, so that it is possible to provide a separator for absorbing the expansion and contraction of the electrode group during charging and discharging for a lithium battery.
本発明の一実施形態における多層セパレータ1は、たとえばコバルト酸リチウム正極、黒鉛系や合金系負極、有機電解液などからなる積層ラミネート型、捲回円筒あるいは角型のリチウムイオン電池用として用いられる。本発明の一実施形態に係る多層セパレータ1は、大型リチウムイオン二次電池や、膨張、収縮の大きな活物質、例えば黒鉛を用いた負極活物質を用いた大容量のリチウムイオン電池に使用できる。なお、正極活物質および負極活物質として、リチウムイオンを吸蔵、放出して膨張・収縮を繰り返すもの以外に、マグネシウムイオンやナトリウムイオンを吸蔵、放出して膨張・収縮を繰り返すものを用いても良い。 The multi-layer separator 1 according to an embodiment of the present invention is used, for example, for a lithium-ion battery of a laminated laminate type, a wound cylinder or a square type made of a lithium cobaltate positive electrode, a graphite or alloy negative electrode, an organic electrolyte, or the like. The multilayer separator 1 according to an embodiment of the present invention can be used for a large-capacity lithium ion secondary battery or a large-capacity lithium ion battery using a negative electrode active material using an active material having a large expansion and contraction, such as graphite. As the positive electrode active material and the negative electrode active material, those that repeatedly expand and contract by absorbing and releasing magnesium ions and sodium ions may be used in addition to those that repeatedly expand and contract by absorbing and releasing lithium ions. .
本発明の一実施形態におけるリチウムイオン二次電池の用途は、特に限定されない。例えば、パーソナルコンピュータ、ワープロ、コードレス電話子機、電子ブックプレーヤ、携帯電話、自動車電話、ハンディターミナル、トランシーバ、携帯無線機等の携帯情報通信機器の電源として使用することができる。また、携帯コピー機、電子手帳、電卓、液晶テレビ、ラジオ、テープレコーダ、ヘッドホンステレオ、ポータブルCDプレーヤ、ビデオムービー、電気シェーバー、電子翻訳機、音声入力機器、メモリーカード等の各種携帯機器の電源として使用できる。その他、冷蔵庫、エアコン、テレビ、ステレオ、温水器、オーブン電子レンジ、食器洗い機、乾燥器、洗濯機、照明器具、玩具等の家庭用電気機器として使用できる。また、家庭用、業務用を問わずに、電動工具や介護用機器(電動式車いす、電動式ベッド、電動式入浴設備など)用の電池としても利用可能である。さらに、産業用途として、医療機器、建設機械、電力貯蔵システム、エレベータ、無人移動車両などの電源として、さらには電気自動車、ハイブリッド電気自動車、プラグインハイブリッド電気自動車、ゴルフカート、ターレット車などの移動体用電源として、本発明を適用することができる。さらには、太陽電池や燃料電池から発生させた電力を本発明の電池モジュールに充電し、宇宙ステーション、宇宙船、宇宙基地などの地上以外で利用可能な蓄電システムとして用いることも可能である。 The use of the lithium ion secondary battery in one embodiment of the present invention is not particularly limited. For example, it can be used as a power source for portable information communication devices such as a personal computer, a word processor, a cordless telephone cordless handset, an electronic book player, a cellular phone, a car phone, a handy terminal, a transceiver, and a portable wireless device. Also, as a power source for various portable devices such as portable copiers, electronic notebooks, calculators, LCD TVs, radios, tape recorders, headphone stereos, portable CD players, video movies, electric shavers, electronic translators, voice input devices, memory cards, etc. Can be used. In addition, it can be used as household electric appliances such as refrigerators, air conditioners, TVs, stereos, water heaters, oven microwaves, dishwashers, dryers, washing machines, lighting fixtures, toys and the like. In addition, it can be used as a battery for electric tools and nursing equipment (electric wheelchairs, electric beds, electric bathing facilities, etc.) regardless of whether they are for home use or business use. Furthermore, as industrial applications, as power sources for medical equipment, construction machinery, power storage systems, elevators, unmanned mobile vehicles, and mobiles such as electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, golf carts, turret vehicles, etc. The present invention can be applied as a power source. Furthermore, it is also possible to charge the battery module of the present invention with electric power generated from a solar cell or a fuel cell and use it as a power storage system that can be used outside the ground, such as a space station, spacecraft, or space base.
図5は本発明のセパレータをリチウムイオン二次電池に適用するのに好適な一実施例として積層型リチウム電池への適用を示した図である。 FIG. 5 is a diagram showing application to a stacked lithium battery as an example suitable for applying the separator of the present invention to a lithium ion secondary battery.
積層型リチウムイオン二次電池100は、正極21と負極22とを基材層10で仕切り積層化し、その積層のほぼ中段に多層セパレータ1を配置したもので、これらの電極群をアルミラミネートフィルム23で覆い、内部に有機系電解液を注入し、減圧した雰囲気でアルミラミネートフィルム23の周囲を熱圧着で封じてある。本実施例では、積層電極群のほぼ中段だけ(中央部のみ)に多層セパレータ1を設けているが、図7のように積層したセパレータ全てを多層セパレータ1としても良い。多層セパレータ1によって積層電極群の厚みが大きくなり、伝熱特性が若干悪化する可能性がある。また、多層セパレータ1を積層電極群の上下端部に設置すると外部への放熱特性が落ちる(セル内の温度上昇は寿命を短くする)可能性がある。そこで、多層セパレータ1を積層電極群のほぼ中段だけに設置することによって、充放電で発生した熱を上下の層に放熱できる。一方、膨張収縮量が非常に大きく、多層セパレータ1の一層だけでは吸収できない場合は積層したセパレータ全てを多層セパレータ1とすることが望ましい。 In the laminated lithium ion secondary battery 100, the positive electrode 21 and the negative electrode 22 are partitioned and laminated by the base material layer 10, and the multilayer separator 1 is disposed in almost the middle stage of the lamination. And the inside of the aluminum laminate film 23 is sealed by thermocompression bonding in a reduced pressure atmosphere. In this embodiment, the multilayer separator 1 is provided only in the middle stage (only in the center) of the multilayer electrode group. However, all the separators stacked as shown in FIG. The multilayer separator 1 increases the thickness of the laminated electrode group, which may slightly deteriorate the heat transfer characteristics. Further, when the multilayer separator 1 is installed at the upper and lower end portions of the multilayer electrode group, the heat radiation characteristic to the outside may be deteriorated (temperature rise in the cell shortens the life). Therefore, by installing the multilayer separator 1 only in the middle stage of the laminated electrode group, the heat generated by the charge / discharge can be dissipated to the upper and lower layers. On the other hand, when the expansion / contraction amount is very large and cannot be absorbed by only one layer of the multilayer separator 1, it is desirable that all the laminated separators be the multilayer separator 1.
具体的には、正極21が厚み約15μmのアルミニウム箔集電体の両面に正極活物質としてリチウム遷移金属複合酸化物を含む正極合剤をほぼ均等に塗工したもので、これを幅約40mm、長さ約70mmの短冊状に切断して用いた。 Specifically, the positive electrode 21 is obtained by applying a positive electrode mixture containing a lithium transition metal composite oxide as a positive electrode active material on both surfaces of an aluminum foil current collector having a thickness of about 15 μm, and having a width of about 40 mm. The sample was cut into a strip having a length of about 70 mm.
一方、負極22は、厚み約10μmの銅箔集電体の両面に、負極活物質としてリチウムイオンを可逆的に吸蔵、放出可能な黒鉛等からなる炭素粉末材料を含む負極合剤をほぼ均等に塗工したもので、これを正極21と同様に短冊状に切断して用いた。 On the other hand, the negative electrode 22 has a substantially uniform negative electrode mixture containing a carbon powder material made of graphite or the like capable of reversibly occluding and releasing lithium ions as a negative electrode active material on both sides of a copper foil current collector having a thickness of about 10 μm. This was coated and cut into strips like the positive electrode 21 and used.
基材層10は、多孔性ポリプロピレン製のフィルムで、厚さ約15μmとした。また、発泡層11は、連続気泡13からなる軟質ポリウレタンフォームとし、基材層10の両面に貼り付けた。なお、発泡層11には、直径約0.5mmの連通気孔12を約100個/225mm2を設けた。基材層10と発泡層11からなる多層セパレータ1は、厚み約1.6mmで、透気度として約100秒/100ccとしたが、これに限定されるものでは無い。発泡層11における連通気孔12の平均気泡径は20μm、発泡層11のみかけの密度は20kg/m3、所定の圧縮応力で所定の圧縮変位を付加した時の圧縮残留ひずみ(JIS K6401)は6%であった。 The base material layer 10 was a film made of porous polypropylene and had a thickness of about 15 μm. The foam layer 11 was a flexible polyurethane foam composed of open cells 13 and was attached to both surfaces of the base material layer 10. The foam layer 11 was provided with about 100/225 mm 2 continuous vent holes 12 having a diameter of about 0.5 mm. The multilayer separator 1 including the base material layer 10 and the foamed layer 11 has a thickness of about 1.6 mm and an air permeability of about 100 seconds / 100 cc, but is not limited thereto. The average bubble diameter of the continuous air holes 12 in the foamed layer 11 is 20 μm, the apparent density of the foamed layer 11 is 20 kg / m 3 , and the compressive residual strain (JIS K6401) when a predetermined compressive displacement is applied with a predetermined compressive stress is 6. %Met.
電極群は、短冊状の負極22の上に厚さ30μmのセパレータ20で上下面を覆った正極21を載せ、この順番で3段目まで積み上げ、3段目の正極21の上面に多層セパレータ1を載せ、その後、負極22、セパレータ20、正極21の順番にさらに3段積み上げ、最後にセパレータ20の上に負極22を配置した構成である。電極群を作製後、一端を開放したアルミラミネートフィルム23の袋に挿入し、電解液を注入して電極群に含浸し、減圧した雰囲気で開放端を熱圧着した。電解液には、エチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート等の混合溶媒中に六フッ化燐酸リチウムを1mol/Lの濃度で溶解したものを所定量注入した。なお、図では省略したが、アルミラミネートフィルム23内で積層された正極21の集電体同士、および負極22の集電体同士をそれぞれに接合してアルミラミネートフィルム23の外に端子を取り出し、外部の充放電装置と接続できるようにしてある。 In the electrode group, a positive electrode 21 whose upper and lower surfaces are covered with a separator 20 having a thickness of 30 μm is placed on a strip-shaped negative electrode 22, stacked in this order up to the third stage, and a multilayer separator 1 on the upper surface of the third stage positive electrode 21. After that, the negative electrode 22, the separator 20, and the positive electrode 21 are further stacked in this order, and finally the negative electrode 22 is disposed on the separator 20. After producing the electrode group, it was inserted into a bag of an aluminum laminate film 23 with one end open, an electrolyte was injected to impregnate the electrode group, and the open end was thermocompression bonded in a reduced pressure atmosphere. A predetermined amount of lithium hexafluorophosphate dissolved at a concentration of 1 mol / L in a mixed solvent such as ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate was injected into the electrolytic solution. Although omitted in the figure, the current collectors of the positive electrode 21 and the current collectors of the negative electrode 22 laminated in the aluminum laminate film 23 are joined to each other, and the terminals are taken out of the aluminum laminate film 23. It can be connected to an external charging / discharging device.
図5で示した積層型リチウムイオン二次電池100における充放電時の膨張、収縮挙動を、図6に示すように本発明のセパレータを装荷した中段位置で説明する。図中、左に示す電池の作製時点を基準とした。積層したセパレータ全てを多層セパレータ1とした場合は、図7のような収縮挙動となる。 The expansion / contraction behavior during charging / discharging in the stacked lithium ion secondary battery 100 shown in FIG. 5 will be described in the middle position where the separator of the present invention is loaded as shown in FIG. In the figure, the battery production time point shown on the left was used as a reference. When all the laminated separators are used as the multilayer separator 1, the shrinkage behavior is as shown in FIG.
充電では電解液中および正極活物質中のリチウムがイオン化して負極活物質に移動する。この時、図中の中央に示したように正極21の活物質はリチウムイオンが放出されても結晶格子の変化が殆ど無いため殆ど変化しないが、リチウムイオンを吸蔵する負極活物質は結晶格子の一部が伸びるため負極22は膨張する。負極22の膨張は、中段に配置した多層セパレータ1の発泡層11が縮んで吸収する。多層セパレータ1に含浸された電解液は縮んだ分、アルミラミネートフィルム23で囲まれた空間内に排出される。仮に発泡層11の厚みが基材層10に底づきしても連続気泡13の径よりも大きな連通気孔12を設けているため、正極21と負極22間の電解液の連通は確保される。一方、図中の右に示した放電では負極活物質からリチウムイオンが放出され負極22の収縮が起こるが、正極21の厚みは、リチウムイオンを吸蔵しても殆ど変化しない。負極22の収縮は、中段に配置した多層セパレータ1の発泡層11の厚さが復元して吸収する。発泡層11の復元と一緒に排出された電解液が表面張力によって吸い上げられ、電解液が確保される。 In charging, lithium in the electrolytic solution and the positive electrode active material is ionized and moves to the negative electrode active material. At this time, as shown in the center of the figure, the active material of the positive electrode 21 hardly changes because there is almost no change in the crystal lattice even when lithium ions are released, but the negative electrode active material that occludes lithium ions has a crystal lattice. Since a part is extended, the negative electrode 22 expands. The expansion of the negative electrode 22 is absorbed by the foam layer 11 of the multilayer separator 1 disposed in the middle stage contracting. The electrolytic solution impregnated in the multi-layer separator 1 is discharged into the space surrounded by the aluminum laminate film 23 as the shrinkage occurs. Even if the thickness of the foam layer 11 bottoms on the base material layer 10, since the communication air holes 12 larger than the diameter of the open cell 13 are provided, the communication of the electrolyte solution between the positive electrode 21 and the negative electrode 22 is ensured. On the other hand, in the discharge shown on the right side of the drawing, lithium ions are released from the negative electrode active material and the negative electrode 22 contracts, but the thickness of the positive electrode 21 hardly changes even when lithium ions are occluded. The shrinkage of the negative electrode 22 is absorbed by restoring the thickness of the foamed layer 11 of the multilayer separator 1 arranged in the middle stage. The electrolyte discharged together with the restoration of the foam layer 11 is sucked up by the surface tension, and the electrolyte is secured.
〔比較例1〕
比較例として正極21と負極22に同じ材料を用い、セパレータ20としてポリプロピレンとポリエチレンの微多孔膜からなる積層型リチウムイオン二次電池100を作製し、両者の充放電特性を比較した。
[Comparative Example 1]
As a comparative example, the same material was used for the positive electrode 21 and the negative electrode 22, and a laminated lithium ion secondary battery 100 composed of a microporous film of polypropylene and polyethylene was prepared as the separator 20, and the charge / discharge characteristics of both were compared.
充放電サイクルの初期特性として、比較電池の満充電時と完全放電時における電池の総厚みを比較した結果、約1.2%の膨張と約0.8%の収縮を繰り返し、サイクルの経過とともに徐々に積層型リチウムイオン二次電池100が膨らむ傾向にあった。また、電池の容量維持率も膨らみの増加に伴って、低下傾向にあった。比較電池に比べ、本発明の一実施形態における積層型リチウムイオン二次電池100は、膨張傾向が見られず、サイクル特性も大幅に改善された。これは、負極22の膨張、収縮挙動に追従して発泡層11を備えた多層セパレータ1が圧縮と復元を繰り返し、電解液を常に維持できたためと考える。 As the initial characteristics of the charge / discharge cycle, the total thickness of the battery at the time of full charge and full discharge of the comparative battery was compared. As a result, the battery expanded approximately 1.2% and contracted approximately 0.8%. The laminated lithium ion secondary battery 100 gradually swelled. Also, the capacity retention rate of the battery tended to decrease as the swelling increased. Compared with the comparative battery, the laminated lithium ion secondary battery 100 according to one embodiment of the present invention showed no expansion tendency and the cycle characteristics were greatly improved. This is considered to be because the multilayer separator 1 provided with the foamed layer 11 repeatedly compressed and restored following the expansion and contraction behavior of the negative electrode 22, and the electrolyte solution was always maintained.
実施例1では積層型リチウムイオン二次電池100の例を取り上げたが、捲回型のリチウムイオン二次電池に適用することも可能である。この場合には、捲回時の電極の張力やセパレータの張力を考慮して、発泡層11のみかけの密度を適度な値に選定する必要がある。捲回型のリチウムイオン二次電池に軸芯を設けない場合、発泡層11を備えないセパレータ20を先に複数周捲回させることが望ましい。発泡層11を備えた多層セパレータ1を先に捲回した場合、その後電極を捲くのに張力とのバランスで不安定になる可能性がある。 Although the example of the stacked lithium ion secondary battery 100 is taken up in Embodiment 1, the present invention can also be applied to a wound lithium ion secondary battery. In this case, it is necessary to select the apparent density of the foam layer 11 to an appropriate value in consideration of the tension of the electrode during winding and the tension of the separator. When the winding type lithium ion secondary battery is not provided with a shaft core, it is desirable to wind a plurality of separators 20 that do not include the foam layer 11 first. When the multi-layer separator 1 provided with the foam layer 11 is wound first, there is a possibility that the electrode will be rolled after that and may become unstable due to the balance with the tension.
一般的に、捲回体の半径方向の応力は、200kPa程度と推定されることから、多層セパレータ1の発泡層11の50%圧縮時の反発弾性率として約500kPa程度の連続気孔を有するフォームを適用すれば良い。また、捲回型の電極群は、セパレータ20、負極22、セパレータ20、正極21の順に渦巻状に捲かれるが、2枚のうち少なくとも1枚を発泡層11付きの多層セパレータ1とすることで、充放電時の電極の膨張、収縮を吸収可能である。さらに、今後普及が予想される大容量、大型のリチウムイオン電池や、エネルギー密度が高く膨張、収縮量の大きな合金負極を適用した電池にも本セパレータが適用でき、良好なサイクル特性を得ることができる。 Generally, since the stress in the radial direction of the wound body is estimated to be about 200 kPa, a foam having continuous pores of about 500 kPa as the rebound resilience at the time of 50% compression of the foam layer 11 of the multilayer separator 1 is used. Apply it. The wound electrode group is spirally wound in the order of the separator 20, the negative electrode 22, the separator 20, and the positive electrode 21, but at least one of the two is a multilayer separator 1 with a foam layer 11. It is possible to absorb the expansion and contraction of the electrode during charging and discharging. Furthermore, this separator can be applied to large capacity, large lithium ion batteries that are expected to become popular in the future, and batteries to which an alloy negative electrode with high energy density and high expansion and contraction is applied, and good cycle characteristics can be obtained. it can.
1、2、3 多層セパレータ
10 基材層
11 発泡層
12 連通気孔
13 連続気泡
14 独立気泡
20 セパレータ
21 正極
22 負極
23 アルミラミネートフィルム
33 隙間
100 積層型リチウムイオン二次電池
1, 2, 3 Multi-layer separator 10 Base layer 11 Foam layer 12 Continuous vent 13 Open cell 14 Closed cell 20 Separator 21 Positive electrode 22 Negative electrode 23 Aluminum laminate film 33 Gap 100 Multilayer lithium ion secondary battery
Claims (8)
前記基材層の片面に設けられた発泡層と、を有するリチウムイオン二次電池用セパレータであって、
前記発泡層のみかけの密度が10〜100kg/m3、圧縮残留ひずみが10%以下であり、
前記発泡層に前記基材層と連通する連通気孔が設けられている二次電池用セパレータ。 A base material layer;
A foam layer provided on one side of the base material layer, and a lithium ion secondary battery separator,
The apparent density of the foamed layer is 10 to 100 kg / m 3 , the compressive residual strain is 10% or less,
A separator for a secondary battery, wherein the foam layer is provided with a continuous air hole communicating with the base material layer.
前記発泡層に前記発泡層外部の気体と前記発泡層内部の気体が連通できる連続気泡が設けられている二次電池用セパレータ。 In claim 1,
A separator for a secondary battery, wherein the foam layer is provided with open cells that allow gas outside the foam layer and gas inside the foam layer to communicate with each other.
前記二次電池用セパレータとして前記基材層が二層形成され、
前記二層の基材層の間に前記発泡層が形成される二次電池用セパレータ。 In claim 1 or 2,
The base material layer is formed in two layers as the secondary battery separator,
A separator for a secondary battery in which the foamed layer is formed between the two base material layers.
JlS P8117に規定されたガーレ試験法で100ccの空気が前記二次電池用セパレータを通過する秒数は、50〜800秒である二次電池用セパレータ。 In any one of Claims 1 thru | or 3,
A secondary battery separator in which 100 cc of air passes through the secondary battery separator according to the Gurley test method specified in JlS P8117, and is 50 to 800 seconds.
前記発泡層はポリウレタンで形成される二次電池用セパレータ。 In any one of Claims 1 thru | or 4,
The foam layer is a secondary battery separator formed of polyurethane.
負極活物質を含む負極と、
前記正極および前記負極の間に形成された請求項1乃至5のいずれかの二次電池用セパレータと、を有する電極群と、
前記電極群を覆うラミネートフィルムと、を有する二次電池であって、
前記正極、前記負極、前記二次電池用セパレータは積層されて構成される二次電池。 A positive electrode including a positive electrode active material;
A negative electrode containing a negative electrode active material;
An electrode group comprising: a separator for a secondary battery according to any one of claims 1 to 5 formed between the positive electrode and the negative electrode;
A secondary battery having a laminate film covering the electrode group,
The positive electrode, the negative electrode, and the secondary battery separator are laminated secondary batteries.
前記二次電池用セパレータは、前記電極群の積層方向の中央部のみに配される二次電池。 In claim 6,
The secondary battery separator is a secondary battery disposed only in a central portion of the electrode group in the stacking direction.
負極活物質を含む負極と、
前記正極および前記負極の間に形成された請求項1乃至5のいずれかの二次電池用セパレータと、を有する電極群、を有する二次電池であって、
前記電極群は捲回されて構成される二次電池。 A positive electrode including a positive electrode active material;
A negative electrode containing a negative electrode active material;
A secondary battery comprising an electrode group having a separator for a secondary battery according to any one of claims 1 to 5 formed between the positive electrode and the negative electrode,
A secondary battery in which the electrode group is wound.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012091499A JP2013222510A (en) | 2012-04-13 | 2012-04-13 | Separator for secondary battery and secondary battery using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012091499A JP2013222510A (en) | 2012-04-13 | 2012-04-13 | Separator for secondary battery and secondary battery using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013222510A true JP2013222510A (en) | 2013-10-28 |
Family
ID=49593368
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012091499A Pending JP2013222510A (en) | 2012-04-13 | 2012-04-13 | Separator for secondary battery and secondary battery using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013222510A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200058650A (en) * | 2018-11-19 | 2020-05-28 | 한국기계연구원 | Separation membrane and battery including the same |
WO2023000290A1 (en) * | 2021-07-23 | 2023-01-26 | 江苏时代新能源科技有限公司 | Electrode assembly, battery cell, battery and electric device |
KR20230095831A (en) | 2021-12-22 | 2023-06-29 | 프라임 플래닛 에너지 앤드 솔루션즈 가부시키가이샤 | Separator, non-aqueous electrolyte secondary cell including the same, and assembled battery |
-
2012
- 2012-04-13 JP JP2012091499A patent/JP2013222510A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200058650A (en) * | 2018-11-19 | 2020-05-28 | 한국기계연구원 | Separation membrane and battery including the same |
KR102161542B1 (en) | 2018-11-19 | 2020-10-06 | 한국기계연구원 | Battery |
WO2023000290A1 (en) * | 2021-07-23 | 2023-01-26 | 江苏时代新能源科技有限公司 | Electrode assembly, battery cell, battery and electric device |
EP4177996A4 (en) * | 2021-07-23 | 2024-07-17 | Jiangsu Contemporary Amperex Tech Ltd | Electrode assembly, battery cell, battery and electric device |
KR20230095831A (en) | 2021-12-22 | 2023-06-29 | 프라임 플래닛 에너지 앤드 솔루션즈 가부시키가이샤 | Separator, non-aqueous electrolyte secondary cell including the same, and assembled battery |
EP4207417A1 (en) | 2021-12-22 | 2023-07-05 | Prime Planet Energy & Solutions, Inc. | Separator, non-aqueous electrolyte secondary cell including the same, and assembled battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Venugopal et al. | Characterization of microporous separators for lithium-ion batteries | |
KR100686804B1 (en) | Electrod Assemblay with Supercapacitor and Li Secondary Battery comprising the same | |
JP5069252B2 (en) | Heat transfer structure of battery unit laminate | |
JP2005285385A (en) | Separator and nonaqueous electrolyte battery using the separator | |
JPWO2012081173A1 (en) | Battery pack | |
US20140329117A1 (en) | Non-aqueous electrolyte wound type secondary battery | |
KR102483158B1 (en) | The Method For Manufacturing Secondary Battery And The Apparatus For Degassing Secondary Battery | |
KR102183772B1 (en) | Process for Preparation of Pouch-typed Battery Cell Using Member for Preventing Electrolyte Leakage | |
KR20160105124A (en) | Pouch type secondary battery | |
KR102270120B1 (en) | Electrode and electrode-assembly | |
WO2003063269A1 (en) | Nonaqueous secondary cell and electronic device incorporating same | |
JP2013062028A (en) | Secondary battery and manufacturing method therefor | |
JP5838073B2 (en) | Cylindrical wound battery | |
KR20170030791A (en) | Electrode assembly and secondary battery comprising the same | |
US10797356B2 (en) | Managing battery current based on temperature | |
JP2013222510A (en) | Separator for secondary battery and secondary battery using the same | |
KR20160031639A (en) | Pouch, flexible battery using the same and manufacturing method thereof | |
JP2011192518A (en) | Secondary battery | |
KR20220015250A (en) | Lithium secondary battery and method of fabricating the same | |
KR20000025571A (en) | Lithium polymer battery and method for fabricating the same | |
JP2000082451A (en) | Nonaqueous electrolyte secondary battery | |
KR101576597B1 (en) | Secondary battery and battery pack including the same | |
JP4439870B2 (en) | Nonaqueous electrolyte secondary battery | |
KR101849990B1 (en) | Battery Cell Having Separation Film of Suppressed Thermal Shrinkage | |
JP2013246908A (en) | Nonaqueous electrolyte secondary battery |