JPH0429562B2 - - Google Patents

Info

Publication number
JPH0429562B2
JPH0429562B2 JP58119666A JP11966683A JPH0429562B2 JP H0429562 B2 JPH0429562 B2 JP H0429562B2 JP 58119666 A JP58119666 A JP 58119666A JP 11966683 A JP11966683 A JP 11966683A JP H0429562 B2 JPH0429562 B2 JP H0429562B2
Authority
JP
Japan
Prior art keywords
pitch
length
tire
noise
main groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58119666A
Other languages
Japanese (ja)
Other versions
JPS6012318A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58119666A priority Critical patent/JPS6012318A/en
Publication of JPS6012318A publication Critical patent/JPS6012318A/en
Publication of JPH0429562B2 publication Critical patent/JPH0429562B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0318Tread patterns irregular patterns with particular pitch sequence
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • B60C2011/0346Circumferential grooves with zigzag shape

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はジグザグ状の主溝を含むリブパターン
のタイヤにおいて、ジグザグの主溝のピツチエレ
メントの選択によつてタイヤ騒音を低減しうる低
騒音タイヤに関する。 主として、良路走行のトラツク・バス及び軽ト
ラツク用タイヤとして利用されているリブパター
ンを有するタイヤは、操縦安定性と高速耐久性に
優れるとともに、かかるリブタイプはパターンの
接地が連続的であり、非舗装路使用を主体に設計
されたラグパターンと異なり、転動に伴う騒音に
対しては比較的有利である。 しかしながら、近年、自動車騒音に対する規制
は厳しくなり、エンジン音、吸排気系や冷却フア
ンなどの音と共にタイヤ騒音の低下が望まれる。 ここで、タイヤによる騒音を、その発生機構よ
り大別すると次のように整理することができる。 (1) パターンノイズ パターンの溝が接地することにより溝が変形
し、溝内の空気が圧縮・排気されて周囲の空気を
振動させるために起こる騒音で、パターンピツチ
の頻度に一致した周波数が主体となつた騒音が発
生する。 (2) 弾性振動音 道路の凹凸、タイヤの不均一性(トレツドゴム
の厚み、パターンの変化)から、タイヤ回転の
際、路面との間に周期的な衝撃が生じ、トレツド
やケースが振動することにより、外部の空気に疎
密波を生じさせて騒音が発生する。 (3) すべり、きしみ音 タイヤの接地面内におけるトレツドの動きに伴
うすべり音及び接地前後にトレツドが変形し、部
分的なすべりが生じてきしむ音。 一般にタイヤの騒音はパターンのタイプに関係
なく、車の速度が速くなると騒音が高くなるが、
その騒音の大部分は前記(1)、(2)に起因するもの
で、通常の使用速度80Km/H以下では前記(1)、(2)
がほぼ同等に寄与していることが判つている。 従つて、この低騒音化において、(1)及び(2)の原
因のうち一方だけを除いても、騒音の防止効果は
十分でなく、又騒音防止対策のために、タイヤの
重要な性能である高速安定性、操縦性能、耐摩耗
性等の面で劣る結果を招いては意味がない。 従来、この種の騒音を抑制する第1の方法とし
て、騒音のもつ周波数を広い周波数帯域に分散し
て、騒音を目立たなくさせ、かつ車両各部分との
共振による騒音の増大を防止するため、トレツド
デザインのくり返しの基本となつているピツチエ
レメントの配列を改良したバリアブルピツチ法が
よく知られている。 この方法は、何種類かの、普通3種類のピツチ
長さの異なるピツチエレメントをタイヤ周方向に
適当に組合わせて配列し、タイヤが転動中に発生
する前記パターンノイズあるいは振動を時間的に
変化させ、ある特定の周波数に騒音が集中しない
ようにする手法であり、いわゆる周波数変調理論
にもとずくものである。 第2の方法として、トレツド接地面のトレツド
曲率半径を小さくして、路面との衝撃音を少なく
して、弾性振動音を減じ、又溝内の空気の排出を
容易にすることにより騒音を低下させる等の方法
である。 以上のような騒音低減方法は、いずれもその相
当に効果が認められるのであるが、その反面、前
記第1の方法である周波数変調理論に基づく方法
は、騒音の分散度においてすぐれたピツチエレメ
ントの配列を組むことが出来ても、たとえば最長
ピツチをもつピツチエレメントの長さと最短ピツ
チをもつピツチエレメントの長さとの比が大きい
と、各ピツチエレメント毎のパターン剛性におい
て、その差異が大きくなることはさけ難く、タイ
ヤ転動時の振動特性にこれが悪影響を及ぼし弾性
振動音を助長する他、トレツドの摩耗が均一に進
行せず、いわゆる摩耗外観において大変見劣りの
するタイヤとなり、タイヤ寿命が大巾に低下する
原因となる。 又、前記第2の方法であるトレツド曲率半径を
小さくする方法においては、トレツドクラウン部
の接地圧が上昇して、クラウン部の摩耗が早期に
進行し、このためタイヤの寿命が大巾に短縮され
ることになり、大変不経済なタイヤとなる。 なお前記バリアブルピツチ法について、例えば
特公昭51−41723号公報は、複数の構成要素から
なり平均長さが異なる2組のピツチエレメント
を、実質上疑似ランダム2進信号の規則に従つて
ピツチ配列を行うことを要旨としたトレツドパタ
ーンのピツチ配列方法を開示している。 又特公昭58−22364号公報は、1本のリブに配
されるピツチエレメントの最大と最小とのピツチ
エレメントの長さ比を1.20〜1.60としを規制し、
かつ異なるピツチエレメント数が3個以上含まれ
しかもピツチエレメントをある規則性に組合わせ
たもののくり返しであるモード数を2〜12とした
タイヤを開示し、かつ前者の特公昭51−41723号
公報のものに比して、低騒音効果に優れるとして
いる。 しかしながら前記提案のものは、いずれも、各
溝におけるピツチエレメントについてのものであ
り、複数本の主溝のいずれにも同一のピツチエレ
メントを設けることを前提としている。 本発明は、ジグザグの主溝を有するリブパター
ンのタイヤにおいて、低騒音化について種々研究
の結果完成したものであり、トレツド部に設ける
2種類の主溝において互いにピツチエレメントに
差異を与えしかもピツチ長さの比を特定すること
によつて、低騒音化しうることを見出し本発明を
完成したものである。 そこで、本発明は、パターン騒音を有効に軽減
しうる低騒音タイヤの提供を目的としている。 本発明は、タイヤトレツド面にタイヤ周方向に
のびる複数本の主溝を設け、かつ該主溝が少なく
とも2本のジグザグ状の主溝を含むリブパターン
のタイヤにおいて、前記主溝は、円周方向の長さ
であるピツチ長さSiが互いに異なり最小長さS1
ら最大長さSyまでS1<…Si-1<Si…<Syの関係
で順次ピツチ長さSiを増す複数種類のく字に折曲
がるピツチエレメントがバリアブルピツチで配列
された第1の種類のジグザグの主溝Gyと、前記
第1の種類の主溝Gyにおけるピツチエレメント
の最大ピツチ長さSyよりも大きなピツチ長さTj
を有しかつピツチ長さTjが互いに異なり、最小
長さT1から最大長さTzまでT1<…Tj-1<Tj…<
Tzの関係で順次ピツチ長さTjを増す複数種類の
く字に折曲がるピツチエレメントがバリアブルピ
ツチで配列された第2の種類の主溝Gzとの2種
類からなり、前記各ピツチエレメントのピツチ長
さのピツチ比Si/Si-1=Pi、Tj/Tj-1=Qjはとも
に1.05以上かつ1.25以下とするとともに、前記主
溝Gzの最小のピツチ長さT1と、前記主溝Gyの最
大のピツチ長さSyのピツチ比T1/Sy=Rを1.3よ
りも小とし、かつ前記ピツチ比Pi、Qj、Rの内
の最大値と最小値との差を0.15以下とした低騒音
タイヤである。 このように、リブパターンのタイヤにおいて、
2種類の主溝を有しかつこの2種類のジグザグの
主溝において、各ピツチエレメントのピツチ比
Pi、Qjを所定の範囲とし、かつ2種類の主溝間
においてもピツチエレメントピツチ長さの比Rの
範囲を定め、しかもピツチ比Pi、Qj、Rの差を
設定することにより、ピツチ長さが互いに変化す
ることになり、騒音のホワイトノイズ化を高める
他、各溝間において最長、最短ピツチ長さの差を
低減でき、ピツチエレメントの剛性差を低下さ
せ、パターン剛性を均一化することとなり、その
結果、運動特性を維持しつつタイヤ転動時の振動
特性を良好とし、弾性振動音とともに騒音特性を
ホワイトノズル化しうる。又パターン剛性を均一
化しうるため、摩耗を均一化し、かつ高速耐久性
を保つ。 以下本発明の一実施例を図面に基づき説明す
る。 第1,2図において本発明の低騒音タイヤA
は、トレツド部1には、トレツド面を円周方向に
のびるジグザグの2種類の第1、第2の主溝を含
む主溝を設けたリブパターンをなし、本実施例で
は、タイヤ赤道Cを挾んで両側に配列した第1の
主溝Gy、第2の主溝Gzを具え、前記2つの主溝
Gy,Gzは複数種類のく字に折曲がるピツチエレ
メントからなるジグザグ溝をなす。 又前記2つの主溝Gy,Gzに加えてタイヤ赤道
C上に周方向に直線でのびるストレートの主溝
Gaが付設され、排水性を高めている。 又トレツド部1は、サイドウオール部、ビード
部とともにタイヤ基体を形成し、かつタイヤ基体
には、ケーシング5、ベルト層6を介在させその
剛性を高めている。 本実施例では、第1の主溝Gyは、第2図に示
す如く、タイヤ円周方向の長さであるピツチ長さ
Siが最小長さS1から最大長さS3までS1<S2<S3
関係で順次ピツチ長さを増すピツチ長さが互いに
異なる3個の種類のピツチエレメントからなる。 又第2の主溝Gzは前記ピツチ長さTjが最小長
さT1<T2<T3の関係で順次ピツチ長さTjを増し
ピツチ長さが互いに異なる3個の種類のピツチエ
レメントによつて形成される。 又主溝Gy,Gzにおいて、ピツチ長さS1〜S3
T1〜T3のピツチエレメントは、その並び方が一
定とはならないように、順序を散在させる、いわ
ゆるバリアブルピツチに基づいて配列される。 本発明においては、第1の主溝Gyがy個、他
の主溝Gzがz個の各ピツチエレメントによつて
形成された場合には、一つの主溝Gyにおいて、
ピツチ長さSiが最小長さS1から最大長さSyまで S1<Si-1<Si…Sy の関係で順次ピツチ長さSiを増す。 第2の主溝Gzにおいては、ピツチ長さTjは、
第1の主溝Gyのピツチエレメントのピツチ長さ
Siよりも大きく、かつピツチ長さTjは、最大長
さT1から最大長さTzまで T1<…Ti-1<Tj…Tz の関係で順次ピツチ長さTjを増加させる。 又2つの主溝Gy、主溝Gzは前記した関係で隣
り合うピツチエレメントのピツチ長さSi、Tjの
各ピツチ比 Si/Si-1=Pj Tj/Ti-1=Qj をともに1.05以上かつ1.2以下としている。 さらに第1の主溝Gy、第2の主溝Gzの間に
は、主溝Gzの最小のピツチ長さT1のピツチエレ
メントと、主溝Gyの最長のピツチ長さSyのピツ
チエレメントのピツチ比T1/Sy=Rを1.3より小
としている。なお1よりも大である。 しかも前記ピツチ比Pi、Qj、Rの内、最大値
と最小値との差を0.15以下としている。 これにより、最長、最短ピツチ長さの差を低減
でき、ピツチエレメントの剛性差を低下させ、パ
ターン剛性を均一化するとともに、タイヤ転動時
の振動特性を良好とし、弾性振動音とともに騒音
特性をホワイトノイズ化しうるのが見出されてい
る。 又パターン剛性を均一化しうるため、摩耗を均
一化し、摩耗後の外観の見映えを損なわず、かつ
タイヤ寿命の低下を抑制する。 さらに2つの溝間において、ピツチ長さが変化
することになり、騒音のホワイトノイズ化を高め
る他、各溝間においてピツチ比を異ならせ、しか
もピツチ比Pi、Qj、Rを所定の範囲としている
ため、各溝間においてもパターン剛性の差異を低
減し、タイヤ特性を損じることなく低騒音化をは
かる。 なお第1の主溝Gy及び第2の主溝Gzは、第3
図に示す如くタイヤ赤道の両側にそれぞれ複数条
ずつ設けてもよい。 なお空気入りタイヤとはバイアス、ラジアル及
びセミラジアル構造等を有する全ての車両用空気
入りタイヤを含む。 なお第1の主溝Gy、第2の主溝Gzの各1周当
たりのピツチエレメントの総個数、即ちピツチ数
N1、N2は、 |N1/N2−M|<0.05 の範囲を除外する。ここでMは任意の整数とす
る。 例えばN1=MN2の場合には、ピツチ個数N2
M次ハーモニクスがピツチ個数N1の1次ハーモ
ニクス成分と一致する。 たとえば第5図は、N2=50ピツチで、N1=60
〜140まで変化させたときのN1の1次成分のピー
クレベルを示したものであり、N1=100ピツチの
とき、N2の2次成分とN1の1次成分が重なり合
つてピークが高くなり、ピツチノイズが極端に悪
化するところのあることを示したものであり、ピ
ツチエレメントの配列において上記条件に一致す
るところを除かなければならない。 これは、コンピユータシユミレーシヨンによる
同期の条件である以下の式からも求めうる。 式は、周期関数を三角関数の和として表すフー
リエ級数から求まる式であり、各ピツチ長さを、
パルス列として表現するものであつて、この式に
より、ハーモニクス解析を行うことによつて同期
の条件が求まる。 Ho=CoNK=1 An Ei2nπ/lXk Ho=n次ハーモニクス成分 Co:正規化定数 An:パルスの重みづけ定数 l:タイヤ1周の長さ Xk:k番目のパルス位置 N:パルスの数 n:整数 前記式から、ハーモニクス1次成分(H1)は
ピツチ個数をNとするとNのとき、又ハーモニク
ス2次成分(H2)は2Nのときにノイズは高くな
る。従つて、前記例にあてはまると、N1、N2
比N1/N2が整数n(=前記M)となる範囲を除
外するのがよいのがわかる。さらに、0.05の範囲
を除外することにより、同期を減少しうる。 以下、この発明の第3図に示す実施例Aと、第
2図に示す実施例Bと、第4図に示す従来技術に
もとづく比較例とについて、騒音測定の結果を第
6図、第7図、第8図に示す。このテストに用い
たタイヤの主な仕様は第1表に示す通りであり、
試験条件は次の通りである。なお比較例品は、第
1表に示すように3種のピツチ長さのピツチエレ
メント、即ち模様構成単位からなる同一構成の4
本の種溝G…をトレツド部に設けている。 タイヤサイズ:7.00−15 8PR、 内圧:3.25Kgf/cm2又は2.40Kgf/cm2、 荷重:530 f/タイヤ、集音マイクをタイヤの
真横でタイヤ巾の中心より100cmのへだたり、接
地面より25cmの高さに設置、無響室内でドラムを
回転させることによりタイヤを駆動しながら測定
した(JASO C606規定のタイヤ騒音試験法に準
拠している)。 本発明品はすぐれた騒音低減の効果を示してい
る。 さらに、タイヤ性能即ち耐摩耗性、操縦安定
性、高速耐久性等について、比較テストをおこな
つた。テスト結果は第2表に示す、表中の値は比
較例品を100とした時の値を指数で表しており、
いずれの特性値についても値の大きい方がすぐれ
ていることを示す。
The present invention relates to a low-noise tire having a rib pattern including zigzag main grooves, in which tire noise can be reduced by selecting pitch elements of the zigzag main grooves. Tires with a rib pattern, which are mainly used as tires for trucks, buses, and light trucks that run on good roads, have excellent handling stability and high-speed durability. Unlike lug patterns designed primarily for use on paved roads, it is relatively advantageous in reducing noise caused by rolling. However, in recent years, regulations regarding automobile noise have become stricter, and it is desired to reduce tire noise as well as engine noise, intake and exhaust system noise, and cooling fan noise. Here, the noise caused by tires can be roughly classified according to its generation mechanism as follows. (1) Pattern noise This noise is caused by the pattern groove deforming when it comes into contact with the ground, and the air inside the groove being compressed and exhausted, causing the surrounding air to vibrate.The noise mainly has a frequency that matches the frequency of pattern pitches. A loud noise occurs. (2) Elastic vibration noise Due to road irregularities and tire non-uniformity (changes in tread rubber thickness and pattern), periodic impacts occur between the tire and the road surface when the tire rotates, causing the tread and case to vibrate. This causes compressional waves in the outside air and generates noise. (3) Sliding and squeaking noises Sliding noises caused by the movement of the tread within the tire's contact surface, as well as squeaks caused by partial slipping caused by deformation of the treads before and after contact with the ground. In general, tire noise is independent of the type of pattern, and the faster the vehicle speed, the higher the noise.
Most of the noise is caused by (1) and (2) above, and at normal operating speeds of 80 km/h or less,
It has been found that both contribute almost equally. Therefore, in reducing noise, even if only one of the causes (1) and (2) is eliminated, the noise prevention effect is not sufficient, and the important performance of the tire must be There is no point in causing inferior results in terms of high-speed stability, maneuverability, wear resistance, etc. Conventionally, the first method to suppress this type of noise is to disperse the frequency of the noise into a wide frequency band to make the noise less noticeable and to prevent the noise from increasing due to resonance with various parts of the vehicle. A well-known variable pitch method is an improved arrangement of pitch elements, which is the basis of the repeating tread design. This method involves arranging several types of pitch elements, usually three types, with different pitch lengths in appropriate combinations in the circumferential direction of the tire, and temporally suppressing the pattern noise or vibration that occurs while the tire is rolling. This is a method to prevent noise from concentrating on a certain frequency by changing the frequency, and is based on the so-called frequency modulation theory. The second method is to reduce the tread radius of curvature of the tread contact surface to reduce impact noise with the road surface, reduce elastic vibration noise, and reduce noise by making it easier to discharge air in the groove. This is a method such as letting All of the above noise reduction methods are recognized to be quite effective, but on the other hand, the first method, which is based on frequency modulation theory, uses pitch elements that have excellent noise dispersion. Even if an array can be assembled, for example, if the ratio of the length of the pitch element with the longest pitch to the length of the pitch element with the shortest pitch is large, the difference in pattern rigidity for each pitch element will become large. This is difficult to avoid, and not only does this adversely affect the vibration characteristics when the tire rolls, promoting elastic vibration noise, but the tread wear does not progress evenly, resulting in a tire with a very poor appearance due to wear, which significantly shortens the tire's lifespan. This may cause a decrease in the temperature. In addition, in the second method of reducing the tread radius of curvature, the ground contact pressure at the tread crown increases, causing premature wear of the crown, which significantly shortens the life of the tire. This results in a very uneconomical tire. Regarding the variable pitch method, for example, Japanese Patent Publication No. 51-41723 discloses that two sets of pitch elements each consisting of a plurality of components and having different average lengths are pitch arranged according to the rules of a pseudo-random binary signal. This disclosure discloses a pitch arrangement method for a tread pattern. In addition, Japanese Patent Publication No. 58-22364 regulates the length ratio of the maximum pitch element to the minimum pitch element arranged on one rib to be 1.20 to 1.60,
Moreover, it discloses a tire that includes three or more different numbers of pitch elements, and has a repeating mode number of 2 to 12 in which the pitch elements are combined with a certain regularity, and the former Japanese Patent Publication No. 51-41723. It is said to be superior in terms of noise reduction compared to other products. However, the above proposals all concern pitch elements in each groove, and are based on the premise that the same pitch element is provided in all of the plurality of main grooves. The present invention was completed as a result of various research into reducing noise in rib pattern tires with zigzag main grooves. The present invention was completed by discovering that the noise could be reduced by specifying the ratio of the noise. Therefore, an object of the present invention is to provide a low-noise tire that can effectively reduce pattern noise. The present invention provides a tire having a rib pattern in which a plurality of main grooves extending in the circumferential direction of the tire are provided on the tire tread surface, and the main grooves include at least two zigzag-shaped main grooves. Multiple types of doglegs whose pitch lengths Si , which are lengths of A first type of zigzag main groove Gy in which pitch elements that can be bent are arranged in a variable pitch, and a pitch length Tj larger than the maximum pitch length Sy of pitch elements in the first type of main groove Gy.
and the pitch lengths Tj are different from each other, and from the minimum length T 1 to the maximum length Tz T 1 <...Tj -1 <Tj...<
There are two types of pitch elements: a second type of main groove Gz in which plural types of pitch elements are bent in a dogleg shape and the pitch length Tj is increased sequentially in relation to Tz, and the pitch length of each pitch element is The pitch ratio Si/Si -1 = Pi, Tj/Tj -1 = Qj are both 1.05 or more and 1.25 or less, and the minimum pitch length T 1 of the main groove Gz and the maximum pitch length of the main groove Gy A low-noise tire in which the pitch ratio T 1 /Sy=R of the pitch length Sy is smaller than 1.3, and the difference between the maximum value and the minimum value of the pitch ratios Pi, Qj, and R is 0.15 or less. be. In this way, in rib pattern tires,
It has two types of main grooves, and in these two types of zigzag main grooves, the pitch ratio of each pitch element is
By setting Pi and Qj within predetermined ranges, determining the range of the pitch element pitch length ratio R between the two types of main grooves, and setting the difference between the pitch ratios Pi, Qj, and R, the pitch length can be adjusted. In addition to increasing the white noise, it also reduces the difference in the longest and shortest pitch lengths between each groove, reduces the difference in pitch element rigidity, and equalizes the pattern rigidity. As a result, the vibration characteristics during tire rolling can be improved while maintaining the motion characteristics, and the noise characteristics as well as the elastic vibration sound can be made into a white nozzle. Furthermore, since the pattern rigidity can be made uniform, wear is made uniform and high-speed durability is maintained. An embodiment of the present invention will be described below based on the drawings. In Figs. 1 and 2, a low noise tire A of the present invention is shown.
The tread portion 1 has a rib pattern including two types of zigzag main grooves extending in the circumferential direction of the tread surface, and includes two types of zigzag first and second main grooves. A first main groove Gy and a second main groove Gz are arranged on both sides, and the two main grooves
Gy and Gz form zigzag grooves consisting of pitch elements that bend in multiple types of doglegs. In addition to the two main grooves Gy and Gz, there is also a straight main groove that extends in a straight line in the circumferential direction on the tire equator C.
Ga is attached to improve drainage performance. Further, the tread portion 1 forms a tire base together with the sidewall portion and the bead portion, and a casing 5 and a belt layer 6 are interposed in the tire base to increase its rigidity. In this embodiment, the first main groove Gy has a pitch length, which is the length in the tire circumferential direction, as shown in FIG.
Si consists of three types of pitch elements whose pitch lengths are different from each other and whose pitch lengths increase sequentially from the minimum length S 1 to the maximum length S 3 in the relationship S 1 <S 2 <S 3 . Further, the second main groove Gz is formed by three types of pitch elements whose pitch lengths are different from each other, with the pitch length Tj increasing sequentially in the relationship of minimum length T 1 < T 2 < T 3 . It is formed by Also, in the main grooves Gy and Gz, the pitch lengths S 1 to S 3 ,
The pitch elements T 1 to T 3 are arranged based on a so-called variable pitch, in which the order is scattered so that the arrangement is not constant. In the present invention, when the first main groove Gy is formed by y pitch elements and the other main groove Gz is formed by z pitch elements, in one main groove Gy,
The pitch length Si increases sequentially from the minimum length S 1 to the maximum length Sy according to the relationship S 1 < Si -1 < Si...Sy. In the second main groove Gz, the pitch length Tj is
Pitch length of pitch element of first main groove Gy
The pitch length Tj is larger than Si, and the pitch length Tj is increased sequentially from the maximum length T 1 to the maximum length Tz in the relationship of T 1 <...Ti -1 <Tj...Tz. In addition, the two main grooves Gy and Gz have pitch lengths Si and Tj of adjacent pitch elements having the pitch ratios Si/Si -1 = Pj Tj/Ti -1 = Qj both of 1.05 or more and 1.2. It is as follows. Further, between the first main groove Gy and the second main groove Gz, there is a pitch element with a minimum pitch length T 1 of the main groove Gz and a pitch element with a maximum pitch length Sy of the main groove Gy. The ratio T 1 /Sy=R is set to be smaller than 1.3. Note that it is larger than 1. Moreover, the difference between the maximum value and the minimum value among the pitch ratios Pi, Qj, and R is set to 0.15 or less. This reduces the difference in the longest and shortest pitch lengths, reduces the difference in rigidity of the pitch elements, equalizes pattern rigidity, improves vibration characteristics during tire rolling, and reduces elastic vibration noise and noise characteristics. It has been found that it can be turned into white noise. Furthermore, since the pattern rigidity can be made uniform, wear is made uniform, the appearance after wear is not impaired, and a decrease in tire life is suppressed. Furthermore, the pitch length changes between the two grooves, which increases the white noise of the noise, and the pitch ratio is different between each groove, and the pitch ratios Pi, Qj, and R are kept within a predetermined range. Therefore, differences in pattern rigidity between each groove are reduced, reducing noise without impairing tire characteristics. Note that the first main groove Gy and the second main groove Gz are similar to the third main groove Gy.
As shown in the figure, a plurality of strips may be provided on both sides of the tire equator. Note that pneumatic tires include all vehicle pneumatic tires having bias, radial, and semi-radial structures. In addition, the total number of pitch elements per revolution of the first main groove Gy and the second main groove Gz, that is, the number of pitches.
N 1 and N 2 exclude the range of |N 1 /N 2 −M|<0.05. Here, M is an arbitrary integer. For example, when N 1 =MN 2 , the M-order harmonics of N 2 pitches match the first-order harmonics component of N 1 pitches. For example, in Figure 5, N 2 = 50 pitches and N 1 = 60 pitches.
This shows the peak level of the first-order component of N 1 when changing it up to ~140. When N 1 = 100 pitch, the second-order component of N 2 and the first-order component of N 1 overlap and reach a peak. This shows that there are places where the pitch noise becomes extremely high and the pitch noise becomes extremely bad, and it is necessary to exclude places where the pitch element arrangement meets the above conditions. This can also be determined from the following equation, which is a condition for synchronization by computer simulation. The formula is derived from a Fourier series that expresses a periodic function as a sum of trigonometric functions, and each pitch length is
It is expressed as a pulse train, and the synchronization conditions can be found by performing harmonics analysis using this equation. H o = Co NK=1 An E i 2nπ/lXk H o = nth harmonics component Co: Normalization constant An: Pulse weighting constant l: Length of one circumference of the tire Xk: k-th pulse position N : Number of pulses n: Integer From the above equation, the noise becomes high when the harmonics first-order component (H 1 ) has a pitch number of N, and when the harmonics second-order component (H 2 ) has a pitch of 2N. Therefore, when applying to the above example, it is understood that it is better to exclude the range in which the ratio N 1 /N 2 of N 1 and N 2 is an integer n (=the above-mentioned M). Furthermore, by excluding the 0.05 range, synchronization can be reduced. Below, the results of noise measurements are shown in FIGS. 6 and 7 for Example A shown in FIG. 3 of the present invention, Example B shown in FIG. 2, and a comparative example based on the prior art shown in FIG. As shown in FIG. The main specifications of the tires used in this test are shown in Table 1.
The test conditions are as follows. As shown in Table 1, the comparative example product has pitch elements of three different pitch lengths, that is, four pitch elements of the same configuration consisting of pattern constituent units.
A book seed groove G... is provided in the tread portion. Tire size: 7.00-15 8PR, internal pressure: 3.25Kgf/cm 2 or 2.40Kgf/cm 2 , load: 530 f/tire, sound collection microphone directly beside the tire, 100cm apart from the center of the tire width, on the ground contact surface. The tire was installed at a height of 25 cm and measured while driving the tire by rotating a drum in an anechoic chamber (conforms to the tire noise test method specified in JASO C606). The product of the present invention exhibits excellent noise reduction effects. Furthermore, comparative tests were conducted on tire performance, such as wear resistance, handling stability, and high-speed durability. The test results are shown in Table 2. The values in the table are expressed as an index, with the comparative example product set as 100.
For any characteristic value, a larger value indicates better quality.

〔発明の効果〕〔Effect of the invention〕

このように、本発明は、タイヤ諸性能を損なう
ことなく、タイヤ騒音を効果的に低減しうる。
Thus, the present invention can effectively reduce tire noise without impairing tire performance.

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すタイヤ軸方向
断面図、第2図はそのトレツドパターンを拡大し
て示す展開平面図、第3図は他の実施例のトレツ
ドパターンを拡大して示す展開平面図、第4図は
比較例タイヤのパターンを示す展開平面図、第5
図はピツチ個数とノイズレベルとの関係を示すグ
ラフ、第6,7図は騒音周波数と音圧レベルとの
関係を示すグラフ、第8図は速度と騒音レベルと
の関係を示すグラフである。 Gy…主溝、Gz…主溝、Si,Tj…ピツチ長さ。
Fig. 1 is an axial cross-sectional view of a tire showing one embodiment of the present invention, Fig. 2 is a developed plan view showing an enlarged tread pattern of the tire, and Fig. 3 is an enlarged view of a tread pattern of another embodiment. FIG. 4 is a developed plan view showing the pattern of the comparative tire; FIG.
The figure is a graph showing the relationship between pitch number and noise level, Figures 6 and 7 are graphs showing the relationship between noise frequency and sound pressure level, and Figure 8 is a graph showing the relationship between speed and noise level. Gy...Main groove, Gz...Main groove, Si, Tj...Pitch length.

Claims (1)

【特許請求の範囲】 1 タイヤトレツド面にタイヤ周方向にのびる複
数本の主溝を設け、かつ該主溝が少なくとも2本
のジグザグ状の主溝を含むリブパターンのタイヤ
において、 前記主溝は、 円周方向の長さであるピツチ長さSiが互いに異
なり最小長さS1から最大長さSyまでS1<…Si-1
Si…<Syの関係で順次ピツチ長さSiを増す複数
種類のく字に折曲がるピツチエレメントがバリア
ブルピツチで配列された第1の種類のジグザグの
主溝Gyと、 前記第1の種類の主溝Gyにおけるピツチエレ
メントの最大ピツチ長さSyよりも大きなピツチ
長さTjを有しかつピツチ長さTjが互いに異なり、
最小長さT1から最大長さTzまでT1<…Tj-1<Tj
…<Tzの関係で順次ピツチ長さTjを増す複数種
類のく字に折曲がるピツチエレメントがバリアブ
ルピツチで配列された第2の種類の主溝Gzとの
2種類からなり、 前記各ピツチエレメントのピツチ長さのピツチ
比Si/Si-1=Pi、Tj/Tj-1=Qjはともに1.05以上
かつ1.25以下とするとともに、 前記主溝Gzの最小のピツチ長さT1と、前記主
溝Gyの最大のピツチ長さSyのピツチ比T1/Sy=
Rを1.3よりも小とし、かつ 前記ピツチ比Pi、Qj、Rの内の最大値と最小
値との差を0.15以下とした低騒音タイヤ。
[Scope of Claims] 1. A tire having a rib pattern in which a plurality of main grooves extending in the circumferential direction of the tire are provided on the tire tread surface, and the main grooves include at least two zigzag-shaped main grooves, wherein the main grooves are: The pitch length Si, which is the length in the circumferential direction, is different from each other, and from the minimum length S 1 to the maximum length Sy, S 1 <...Si -1 <
A first type of zigzag main groove Gy in which plural types of pitch elements bent in a dogleg shape are arranged in a variable pitch, increasing the pitch length Si sequentially according to the relationship Si...<Sy; and the first type of main groove Gy. have a pitch length Tj larger than the maximum pitch length Sy of the pitch element in the groove Gy, and the pitch lengths Tj are different from each other;
From the minimum length T 1 to the maximum length Tz T 1 <...Tj -1 <Tj
There are two types of pitch elements, each of which is bent in a dogleg shape and whose pitch length Tj is increased sequentially according to the relationship of <Tz, and the second type of main groove Gz is arranged in a variable pitch. The pitch ratio of the pitch lengths Si/Si -1 = Pi, Tj/Tj -1 = Qj are both 1.05 or more and 1.25 or less, and the minimum pitch length T 1 of the main groove Gz and the main groove Gy The pitch ratio of the maximum pitch length Sy is T 1 /Sy=
A low-noise tire in which R is smaller than 1.3 and the difference between the maximum and minimum pitch ratios Pi, Qj, and R is 0.15 or less.
JP58119666A 1983-06-30 1983-06-30 Low noise tyre Granted JPS6012318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58119666A JPS6012318A (en) 1983-06-30 1983-06-30 Low noise tyre

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58119666A JPS6012318A (en) 1983-06-30 1983-06-30 Low noise tyre

Publications (2)

Publication Number Publication Date
JPS6012318A JPS6012318A (en) 1985-01-22
JPH0429562B2 true JPH0429562B2 (en) 1992-05-19

Family

ID=14767052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58119666A Granted JPS6012318A (en) 1983-06-30 1983-06-30 Low noise tyre

Country Status (1)

Country Link
JP (1) JPS6012318A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997015464A1 (en) * 1995-10-27 1997-05-01 The Yokohama Rubber Co., Ltd. Pneumatic tire

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060011A (en) * 1983-09-12 1985-04-06 Sumitomo Rubber Ind Ltd Low noise tire
JPS62240142A (en) * 1986-04-11 1987-10-20 Furukawa Electric Co Ltd:The Production of bar type casting block
JP2807598B2 (en) * 1992-08-11 1998-10-08 住友ゴム工業株式会社 Pneumatic tire
JP3997422B2 (en) * 2003-03-28 2007-10-24 信越化学工業株式会社 Liquid epoxy resin composition and semiconductor device
JP6492605B2 (en) * 2014-12-11 2019-04-03 横浜ゴム株式会社 Pneumatic tire

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141723A (en) * 1974-10-08 1976-04-08 Yasuro Ito TATEGATASUIKOSEIBUTSUSHITSUKONRENBUTSUCHUNIUZOKEISOCHI
JPS5822364A (en) * 1981-07-29 1983-02-09 Hitachi Ltd Preparation of zirconium base alloy
JPS59230810A (en) * 1983-06-13 1984-12-25 Sumitomo Rubber Ind Ltd Low noise tire

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141723A (en) * 1974-10-08 1976-04-08 Yasuro Ito TATEGATASUIKOSEIBUTSUSHITSUKONRENBUTSUCHUNIUZOKEISOCHI
JPS5822364A (en) * 1981-07-29 1983-02-09 Hitachi Ltd Preparation of zirconium base alloy
JPS59230810A (en) * 1983-06-13 1984-12-25 Sumitomo Rubber Ind Ltd Low noise tire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997015464A1 (en) * 1995-10-27 1997-05-01 The Yokohama Rubber Co., Ltd. Pneumatic tire

Also Published As

Publication number Publication date
JPS6012318A (en) 1985-01-22

Similar Documents

Publication Publication Date Title
US5269357A (en) Reduced noise generating tread pattern for a tire
US3926238A (en) Modulating noise produced by rotating bodies
JP3377407B2 (en) Pneumatic tire
JPS60240507A (en) Low noise multi-siping tire
JP3281629B2 (en) Evaluation method of tread pattern pitch arrangement for pneumatic tires
JPH07179103A (en) Pneumatic tire
JPH0429562B2 (en)
JPS5878801A (en) Pneumatic tyre of bias structure with low noise
JP3104029B2 (en) Pneumatic tire
JP4266705B2 (en) Pneumatic tire
EP0402021B1 (en) Low noise tyre
US7387696B2 (en) Tire tread design and the construction method thereof
JP4287520B2 (en) Pneumatic tire
JPS6171208A (en) Low noise tire
JPH04372406A (en) Pneumatic tire
JPH05169915A (en) Pneumatic tire
JPS6025806A (en) Low noise tire
JPH0825914A (en) Pneumatic tire
JPH0429563B2 (en)
JP3397374B2 (en) Pneumatic tire
JPH08300908A (en) Pneumatic tyre
JPS63106111A (en) Pneumatic tyre with low noise
JP4287519B2 (en) Pneumatic tire
JP4255049B2 (en) Pneumatic tire
JPS6160306A (en) Low noise tyre