JP4287520B2 - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP4287520B2
JP4287520B2 JP31352898A JP31352898A JP4287520B2 JP 4287520 B2 JP4287520 B2 JP 4287520B2 JP 31352898 A JP31352898 A JP 31352898A JP 31352898 A JP31352898 A JP 31352898A JP 4287520 B2 JP4287520 B2 JP 4287520B2
Authority
JP
Japan
Prior art keywords
pitch
tire
length
sound pressure
pneumatic tire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31352898A
Other languages
Japanese (ja)
Other versions
JP2000142029A (en
Inventor
知栄子 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP31352898A priority Critical patent/JP4287520B2/en
Publication of JP2000142029A publication Critical patent/JP2000142029A/en
Application granted granted Critical
Publication of JP4287520B2 publication Critical patent/JP4287520B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0318Tread patterns irregular patterns with particular pitch sequence

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、トレッド面に長さの異なる複数種類のピッチをタイヤ周方向に配列したピッチ列を有する空気入りタイヤであって、より詳しくはピッチの配列に基づくタイヤ周上の剛性変化をより均一な方向へと分散させることにより、タイヤのユニフォミティを向上させ、振動、騒音などを低減しうる空気入りタイヤに関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
タイヤは、ゴム、カーカス、ベルトなど種々の材料からなる複合体であるため、詳細に見ればタイヤ周方向で均一な剛性とすることは非常に困難となる。そのため、このような周上で不均一な剛性をもったタイヤを回転させると、路面側からタイヤ回転に応じた周期的な反力を受け、シミー、シェイク、フラッタ、こもり音、ビート音などの振動、騒音の原因となる。
【0003】
またトレッド部は、特定の周波数に騒音が集中しないように、バリアブルピッチ手法が採用されることが多い。この手法は、長さの異なる複数種類のピッチをタイヤ周方向にランダムに配列し、各ピッチが接地する際に生じるパルス騒音又は振動の時間的間隔を変化させるものである。ところが、長さが小さい小ピッチでは、長さが大きい大ピッチに比べると、ゴムブロックの形状効果により圧縮弾性率が小さくなり、また小ピッチ付近では僅かではあるものの転がり半径が小さくなり、半径方向の変動成分であるラジアルフォースバリエーション(RFV)の高次成分が大きくなることが判っている。
【0004】
本発明は、このような問題点に鑑み案出なされたもので、トレッド面に長さの異なる複数種類のピッチをタイヤ周方向に配列するとともに、このピッチの配列に基づくタイヤ周上の剛性変化をより均一な方向へと分散させることにより、タイヤのユニフォミティを向上させ、振動、騒音などを低減しうる空気入りタイヤを提供することを目的としている。
【0005】
【課題を解決するための手段】
前記の目的を達成するため本発明のうち請求項1記載の発明は、トレッド面に長さの異なる複数種類のピッチをタイヤ周方向に配列したピッチ列を有する空気入りタイヤであって、前記ピッチ列から、各ピッチの長さに応じた大きさの音圧パルスが前記ピッチの配列の順番で、かつ各ピッチの長さに応じた間隔で次々と発生するものとしてモデル化される音圧パルスモデルを下記数1によりフーリエ変換して求めた1〜10次の振幅値Fiが、いずれも2.5以下であることを特徴とするものである。
【数2】

Figure 0004287520
【0006】
また請求項2記載の発明では、前記ピッチ列は、ピッチの長さが最小の最小ピッチからピッチの長さが最大の最大ピッチへ移行する移行回数をNとするとき、前記音圧パルスモデルを前記数1でフーリエ変換したときのN次の振幅値が2.5以下であることを特徴とする請求項1記載の空気入りタイヤである。
【0007】
なお本明細書において、「ピッチ」とは、トレッド部のパターンを構成する繰り返し模様の最小単位であって、例えばブロックパターンであれば1つのブロックとこのブロックのタイヤ周方向の一方で隣り合う横溝とから構成され、またリブパターンであればタイヤ周方向に延びるジグザグ溝の谷−谷間又は山−山間の領域で構成され、さらにラグパターンであれば1つのラグ溝とこのラグ溝のタイヤ周方向の一方で隣り合う陸部とでそれぞれ1つのピッチを構成するものとする。
【0008】
【発明の実施の形態】
以下、本発明の実施の一形態を図面に基づき説明する。
図1には、本実施形態の空気入りタイヤのトレッドパターンの展開図を示しており、図において、トレッド面2には、タイヤ周方向にのびる縦溝3と、この縦溝3と交わる向きにのびる横溝4とにより区分される複数のブロック5が形成されたものを例示している。そして、本例ではトレッドパターンの繰り返し模様の最小単位として、前記1つのブロック5と、このブロックのタイヤ周方向の一方の側に隣り合う1つの横溝4とが1つのピッチ7を構成しているものを示す。
【0009】
またこのようなピッチ7は、周方向の長さの異なる複数種類、例えば5種類で構成されるとともに、トレッド面2にこれらのピッチを後述する要件を充足するように並べたピッチ列9を少なくとも1列、本例では5列有している。なおピッチの種類数は3〜10、好ましくは生産性を考慮して3〜8程度、さらに好ましくは3〜5とするのが望ましい。またタイヤ1周でのピッチの総数nは、例えば45以上、好ましくは50以上、より好ましくは60以上とするのが望ましい。
【0010】
なお前記複数種類のピッチを長さの順に並べたときの隣り合うピッチ間のピッチの長さの増加比が大きすぎると偏摩耗をもたらす傾向があり、小さすぎると特定周波数に騒音が集中しかねない。かかる観点より前記隣接ピッチ間のピッチの長さの比は、1.05〜1.40、より好ましくは1.10〜1.30の範囲とするのが好ましい。
【0011】
そして本発明者らは、種々の実験の結果、タイヤを路面に1周回転させたときのタイヤピッチ騒音の疑似モデルとして、一つのピッチからは一つのパルス音が発生すること、またそのパルス音はピッチの長さ(つまり、ピッチの剛性)に応じて変化する音圧レベルをなすこと、さらにはこのパルス音はピッチの長さに応じた間隔で次々と発生するものであること、との仮定の下に得られる音圧パルスモデルを知見した。そして、ピッチの配列に伴うトレッド面2のタイヤ周方向の剛性変化をより均一に分散させるために、タイヤ1周を1周期とするこの音圧パルスモデルを下記数1によりフーリエ変換して求めた1〜10次の振幅値Fiを、一定範囲に抑制すれば良いとの知見を得たのである。
【数3】
Figure 0004287520
【0012】
このような1〜10次の振幅値Fiは、実際のタイヤから直接測定されるものとは異なってはいるが、発明者らの実験の結果、実測値に近い相関があること、また数1より得られる各振幅値のうち、実際のタイヤの周長並びに接地長さ等を考慮すれば1〜10次まで振幅値を規制すればよいこと、さらには、これらの1〜10次の振幅値Fiが、いずれも2.5以下であることによりトレッド面2に剛性変化を好適に分散しうることを見出し本発明を完成させるに至った。
【0013】
図2には、本実施形態の音圧パルスモデルの一例を示す。図において縦軸は音圧、横軸は時間であり、音圧(つまり、パルスの大きさ)にはパターンの剛性を考えてピッチ比を代用している。ここで「ピッチ比」とは、複数種類のピッチの中で基準となる一つの基準ピッチを定め、この基準ピッチの長さ(K)に対する各ピッチの長さ(Li)の比(Li/K)をもって表される。なお基準ピッチは、好ましくは全種類のピッチを長さの順に並べたときの中間もしくはそれに近いピッチとするのが好ましい。なお、図2では、起点からj番目のピッチのピッチ比をP(j)で表している。
【0014】
また本例では、一つのピッチからは、そのピッチ比に等しい一つのパルス音が発生するものとしているが、そのパルスは、等間隔ではなくて各ピッチの長さに応じた間隔x(j)(jは1〜nの整数である。)で次々と発生するものとする。そして、このような音圧パルスモデルは、タイヤ1周において作成される。
【0015】
次に、このような音圧パルスモデルを1周期とする関数を前記数1に従いフーリエ変換して得られる1〜10次までの次数の振幅値Fiを2.5以下、より好ましくは1.8以下となるようにピッチの配列を定める。これにより、ピッチの配列に基づくタイヤ周上の剛性変化をより均一な方向へと分散させることにより、タイヤのユニフォミティを向上させ、振動、騒音などを低減しうる。
【0016】
なお前記1〜10次までの次数の振幅値Fiにおいて、2.5を超えるものがあると、その振幅値が大きいほど、トレッドの剛性変化が不均一化し、タイヤのユニフォミティが悪化しかつタイヤの回転ごとに例えば「トントン」と周期的な打音が聴取され易くなるなど、ノイズフィーリングをも低下させてしまう。
【0017】
また、前記ピッチ列は、ピッチの長さが最小の最小ピッチからピッチの長さが最大の最大ピッチへ移行する移行回数をNとするとき、前記音圧パルスモデルを前記数1でフーリエ変換したときのN次の振幅値が2.5以下であることが特に望ましい。タイヤ1周上において、最小ピッチから最大ピッチに移行する際に、転がり半径の差が大きくなるので、この移行回数であるN次の振幅値FNが2.5以下、より好ましくは1.8以下となるのが望ましいためである。
【0018】
【実施例】
タイヤサイズ195/55R15でありかつ5種類のピッチを並べたピッチ列を有する4種類のブロックパターンのラジアルタイヤを試作した。なお各ピッチの長さは次の通りであり、ピッチ総数nは68とした。
A:20.38mm(最小のピッチ)
B:23.77mm
C:27.21mm(基準ピッチ)
D:30.63mm
E:34.06mm(最大のピッチ)
【0019】
図3〜図6には、これらの各タイヤの音圧パルスモデルとそれをフーリエ変換したときの各次数とその振幅値との関係を示す。また表1には、前記各ピッチの配列とともに、これらの各供試タイヤを15×6JJのリムに内圧226kPaでリム組みし、排気量1600ccの国産FF乗用車(車重1.3トン)に装着して速度約50km/hで走行したときの運転者のフィーリングノイズテスト結果(評点及びノイズの印象)を示している。
【0020】
【表1】
Figure 0004287520
【0021】
実施例1、2では、1〜10次の振幅値がいずれも2.5以下に抑えられており、トレッドの剛性変化が均一化するとともに、フィーリングノイズテストでも良好な結果が得られている。なお実施例2では、1〜10次の振幅値がいずれも1.8以下に抑えられているため、実施例1よりもさらに剛性変化が分散化されており、ノイズ評価も良くなっていることが判る。また、これらのピッチ列は、最小のピッチEから最大のピッチAまでに移行回数が「5」であり、5次の振幅値も2.5以下に抑えられているため良好である。
【0022】
これに対して、比較例1では、5次の振幅値F5が2.5を超えているため、剛性変化の分散が悪く、ユニフォミティが実施例に比べて相対的に低下するのは明らかで、フィーリングノイズテストでも「トントン」という周期的な打音が聴取された。また音圧パルスモデルが、正弦波状に規則的に繰り返す従来例では、タイヤの回転に同期して「ドンドン」という打音が聴取された。
【0023】
【発明の効果】
以上説明したように本発明によれば、トレッド面に長さの異なる複数種類のピッチをタイヤ周方向に配列するとともに、このピッチの配列に基づくタイヤ周上の剛性変化をより均一な方向へと分散させることにより、タイヤのユニフォミティを向上させ、振動、騒音などを低減しうる空気入りタイヤが得られる。
【図面の簡単な説明】
【図1】本実施形態のトレッドパターンの展開図である。
【図2】音圧パルスモデルを説明する線図である。
【図3】(a)は実施例1の音圧パルスモデル、(b)はこれをフーリエ展開した各次数の振幅値を示すグラフである。
【図4】(a)は実施例2の音圧パルスモデル、(b)はこれをフーリエ展開した各次数の振幅値を示すグラフである。
【図5】(a)は比較例の音圧パルスモデル、(b)はこれをフーリエ展開した各次数の振幅値を示すグラフである。
【図6】(a)は従来例の音圧パルスモデル、(b)はこれをフーリエ展開した各次数の振幅値を示すグラフである。
【符号の説明】
2 トレッド面
3 縦溝
4 横溝
5 ブロック
7 ピッチ
9 ピッチ列[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pneumatic tire having a pitch train in which a plurality of types of pitches having different lengths are arranged in the tire circumferential direction on a tread surface, and more specifically, a change in rigidity on the tire circumference based on the arrangement of pitches is more uniform. The present invention relates to a pneumatic tire capable of improving tire uniformity and reducing vibration, noise, and the like by dispersing in various directions.
[0002]
[Prior art and problems to be solved by the invention]
Since the tire is a composite made of various materials such as rubber, carcass, and belt, it is very difficult to make the tire uniform in the tire circumferential direction in detail. Therefore, when a tire with non-uniform rigidity is rotated on such a circumference, it receives periodic reaction force according to the tire rotation from the road surface side, such as shimmy, shake, flutter, booming sound, beat sound, etc. Cause vibration and noise.
[0003]
The tread portion often employs a variable pitch method so that noise does not concentrate on a specific frequency. In this method, a plurality of types of pitches having different lengths are randomly arranged in the tire circumferential direction, and a time interval of pulse noise or vibration generated when each pitch contacts the ground is changed. However, in the small pitch with a small length, the compression elastic modulus is reduced due to the shape effect of the rubber block as compared with the large pitch with a large length, and the rolling radius is small in the vicinity of the small pitch, but slightly in the radial direction. It has been found that the higher-order component of radial force variation (RFV), which is the fluctuation component, increases.
[0004]
The present invention has been devised in view of such problems, and a plurality of types of pitches having different lengths are arranged on the tread surface in the tire circumferential direction, and the rigidity change on the tire circumference based on the arrangement of the pitches is provided. An object of the present invention is to provide a pneumatic tire capable of improving tire uniformity and reducing vibration, noise, and the like by dispersing the tire in a more uniform direction.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 of the present invention is a pneumatic tire having a pitch row in which a plurality of types of pitches having different lengths are arranged in the tire circumferential direction on the tread surface, and the pitch A sound pressure pulse modeled as a sound pressure pulse having a magnitude corresponding to the length of each pitch is generated from the sequence in the order of arrangement of the pitches and at intervals corresponding to the length of each pitch. The first to tenth-order amplitude values Fi obtained by Fourier transforming the model according to the following equation 1 are all 2.5 or less.
[Expression 2]
Figure 0004287520
[0006]
According to a second aspect of the present invention, when the number of transitions in which the pitch train shifts from the minimum pitch with the smallest pitch length to the maximum pitch with the largest pitch length is N, the sound pressure pulse model is 2. The pneumatic tire according to claim 1, wherein an Nth-order amplitude value when Fourier transform is performed by Equation 1 is 2.5 or less.
[0007]
In this specification, “pitch” is a minimum unit of a repetitive pattern constituting a pattern of a tread portion. For example, in the case of a block pattern, one block and a lateral groove adjacent to one of the blocks in the tire circumferential direction are used. If it is a rib pattern, it is composed of a zigzag groove valley-to-valley or mountain-to-mountain region extending in the tire circumferential direction, and if it is a lag pattern, one lug groove and the tire circumferential direction of this lug groove Each of the adjacent land portions constitutes one pitch.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a development view of the tread pattern of the pneumatic tire of the present embodiment. In the figure, the tread surface 2 has a longitudinal groove 3 extending in the tire circumferential direction and a direction intersecting with the longitudinal groove 3. An example is shown in which a plurality of blocks 5 divided by the extending lateral grooves 4 are formed. In this example, as a minimum unit of the repeated pattern of the tread pattern, the one block 5 and one lateral groove 4 adjacent to one side in the tire circumferential direction of the block constitute one pitch 7. Show things.
[0009]
The pitch 7 is composed of a plurality of types having different circumferential lengths, for example, five types, and at least a pitch row 9 arranged on the tread surface 2 so as to satisfy the requirements described later. There are 1 row, 5 rows in this example. The number of pitch types is 3 to 10, preferably about 3 to 8 and more preferably 3 to 5 in consideration of productivity. Further, the total number n of the pitches per tire is, for example, 45 or more, preferably 50 or more, more preferably 60 or more.
[0010]
If the pitch increase ratio between adjacent pitches when the plural types of pitches are arranged in order of length is too large, there is a tendency to cause uneven wear, and if it is too small, noise may concentrate on a specific frequency. Absent. From such a viewpoint, the ratio of the pitch lengths between the adjacent pitches is preferably 1.05 to 1.40, more preferably 1.10 to 1.30.
[0011]
As a result of various experiments, the present inventors have found that, as a pseudo model of tire pitch noise when the tire is rotated once on the road surface, one pulse sound is generated from one pitch, and the pulse sound. Has a sound pressure level that changes according to the length of the pitch (that is, the rigidity of the pitch), and further, this pulse sound is generated one after another at intervals corresponding to the length of the pitch. The sound pressure pulse model obtained under the assumption was found. Then, in order to more uniformly disperse the change in rigidity in the tire circumferential direction of the tread surface 2 due to the pitch arrangement, this sound pressure pulse model with one cycle of the tire as one cycle was obtained by Fourier transform using the following equation (1). It has been found that the 1st to 10th amplitude values Fi should be suppressed within a certain range.
[Equation 3]
Figure 0004287520
[0012]
Such 1st to 10th order amplitude values Fi are different from those measured directly from an actual tire, but as a result of experiments by the inventors, there is a correlation close to the actual measurement value, and Of the amplitude values obtained, the amplitude value may be restricted to the 1st to 10th orders in consideration of the actual tire circumference and the contact length, and further, the 1st to 10th order amplitude values. It has been found that the change in rigidity can be suitably dispersed on the tread surface 2 when Fi is 2.5 or less, and the present invention has been completed.
[0013]
FIG. 2 shows an example of the sound pressure pulse model of the present embodiment. In the figure, the vertical axis represents sound pressure, the horizontal axis represents time, and the pitch ratio is substituted for the sound pressure (that is, the magnitude of the pulse) in consideration of the rigidity of the pattern. Here, the “pitch ratio” defines one reference pitch as a reference among a plurality of types of pitches, and the ratio (Li / K) of the length (Li) of each pitch to the length (K) of this reference pitch. ). The reference pitch is preferably set to an intermediate or close pitch when all types of pitches are arranged in order of length. In FIG. 2, the pitch ratio of the jth pitch from the starting point is represented by P (j).
[0014]
In this example, one pulse sound equal to the pitch ratio is generated from one pitch, but the pulse is not equally spaced but has an interval x (j) corresponding to the length of each pitch. (J is an integer of 1 to n). And such a sound pressure pulse model is created in the tire 1 round.
[0015]
Next, the amplitude value Fi of the 1st to 10th order obtained by Fourier transforming a function having such a sound pressure pulse model as one cycle according to the above formula 1 is 2.5 or less, more preferably 1.8. The pitch arrangement is determined to be as follows. Accordingly, by distributing the change in rigidity on the tire circumference based on the pitch arrangement in a more uniform direction, the uniformity of the tire can be improved, and vibration, noise, and the like can be reduced.
[0016]
If there is an amplitude value Fi of order 1 to 10 that exceeds 2.5, the greater the amplitude value, the more uneven the tread stiffness changes, the worse the tire uniformity, and the tire For example, periodic tapping sounds such as “ton tons” are easily heard with each rotation, and noise feeling is also reduced.
[0017]
Further, the pitch train is obtained by performing Fourier transform on the sound pressure pulse model according to the equation (1), where N is the number of transitions from the smallest pitch having the smallest pitch length to the largest pitch having the largest pitch length. It is particularly desirable that the Nth-order amplitude value is 2.5 or less. When shifting from the minimum pitch to the maximum pitch on one turn of the tire, the difference in rolling radius increases, so the Nth-order amplitude value FN that is the number of transitions is 2.5 or less, more preferably 1.8 or less. This is because it is desirable.
[0018]
【Example】
A radial tire having four types of block patterns having a tire size of 195 / 55R15 and having a pitch row in which five types of pitches are arranged was manufactured. The length of each pitch is as follows, and the total number of pitches n is 68.
A: 20.38 mm (minimum pitch)
B: 23.77mm
C: 27.21 mm (reference pitch)
D: 30.63mm
E: 34.06 mm (maximum pitch)
[0019]
3 to 6 show the sound pressure pulse models of these tires and the relationship between the respective orders and their amplitude values when the Fourier transform is performed. Table 1 also shows the arrangement of each pitch as well as each of these test tires assembled on a 15 × 6JJ rim at an internal pressure of 226 kPa and mounted on a domestic FF passenger car (vehicle weight 1.3 tons) with a displacement of 1600 cc. The driver's feeling noise test results (score and noise impression) when traveling at a speed of about 50 km / h are shown.
[0020]
[Table 1]
Figure 0004287520
[0021]
In Examples 1 and 2, the amplitude values of the 1st to 10th orders are all suppressed to 2.5 or less, the change in rigidity of the tread is made uniform, and good results are also obtained in the feeling noise test. . In Example 2, since the first to tenth order amplitude values are all suppressed to 1.8 or less, the change in rigidity is further dispersed compared to Example 1, and noise evaluation is also improved. I understand. These pitch trains are good because the number of transitions is “5” from the minimum pitch E to the maximum pitch A, and the fifth-order amplitude value is suppressed to 2.5 or less.
[0022]
On the other hand, in Comparative Example 1, since the fifth-order amplitude value F5 exceeds 2.5, it is clear that the dispersion of the rigidity change is poor and the uniformity is relatively lowered as compared with the Example. In the feeling noise test, a periodic tapping sound of “tonton” was heard. In addition, in the conventional example in which the sound pressure pulse model is regularly repeated in a sine wave shape, a sound of “don't beat” was heard in synchronization with the rotation of the tire.
[0023]
【The invention's effect】
As described above, according to the present invention, a plurality of types of pitches having different lengths are arranged on the tread surface in the tire circumferential direction, and the change in rigidity on the tire circumference based on the arrangement of the pitches is more uniformly directed. By dispersing, a pneumatic tire capable of improving tire uniformity and reducing vibration, noise, and the like can be obtained.
[Brief description of the drawings]
FIG. 1 is a development view of a tread pattern of the present embodiment.
FIG. 2 is a diagram illustrating a sound pressure pulse model.
3A is a sound pressure pulse model of the first embodiment, and FIG. 3B is a graph showing amplitude values of respective orders obtained by Fourier expansion of the model.
4A is a sound pressure pulse model of Example 2, and FIG. 4B is a graph showing amplitude values of respective orders obtained by Fourier expansion of the model.
FIG. 5A is a graph showing the amplitude value of each order obtained by Fourier expansion of the sound pressure pulse model of the comparative example, and FIG. 5B.
6A is a graph showing the sound pressure pulse model of the conventional example, and FIG. 6B is a graph showing amplitude values of respective orders obtained by Fourier expansion of the model.
[Explanation of symbols]
2 Tread surface 3 Vertical groove 4 Horizontal groove 5 Block 7 Pitch 9 Pitch row

Claims (2)

トレッド面に長さの異なる複数種類のピッチをタイヤ周方向に配列したピッチ列を有する空気入りタイヤであって、
前記ピッチ列から、各ピッチの長さに応じた大きさの音圧パルスが前記ピッチの配列の順番で、かつ各ピッチの長さに応じた間隔で次々と発生するものとしてモデル化される音圧パルスモデルを下記数1によりフーリエ変換して求めた1〜10次の振幅値Fiが、いずれも2.5以下であることを特徴とする空気入りタイヤ。
Figure 0004287520
A pneumatic tire having a pitch row in which a plurality of pitches having different lengths are arranged in the tire circumferential direction on a tread surface,
Sound that is modeled from the pitch train as sound pressure pulses having a magnitude corresponding to the length of each pitch are generated one after another in the order of arrangement of the pitch and at intervals corresponding to the length of each pitch. A pneumatic tire characterized in that each of the first to tenth amplitude values Fi obtained by Fourier transforming the pressure pulse model according to the following formula 1 is 2.5 or less.
Figure 0004287520
前記ピッチ列は、ピッチの長さが最小の最小ピッチからピッチの長さが最大の最大ピッチへ移行する移行回数をNとするとき、前記音圧パルスモデルを前記数1でフーリエ変換したときのN次の振幅値が2.5以下であることを特徴とする請求項1記載の空気入りタイヤ。The pitch train is obtained when the sound pressure pulse model is Fourier-transformed by the equation 1 where N is the number of transitions from the smallest pitch with the smallest pitch length to the largest pitch with the largest pitch length. The pneumatic tire according to claim 1, wherein the Nth-order amplitude value is 2.5 or less.
JP31352898A 1998-11-04 1998-11-04 Pneumatic tire Expired - Lifetime JP4287520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31352898A JP4287520B2 (en) 1998-11-04 1998-11-04 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31352898A JP4287520B2 (en) 1998-11-04 1998-11-04 Pneumatic tire

Publications (2)

Publication Number Publication Date
JP2000142029A JP2000142029A (en) 2000-05-23
JP4287520B2 true JP4287520B2 (en) 2009-07-01

Family

ID=18042408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31352898A Expired - Lifetime JP4287520B2 (en) 1998-11-04 1998-11-04 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP4287520B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2338867T3 (en) * 2001-08-22 2010-05-13 Bridgestone Americas Tire Operations, Llc METHOD OF ANALYSIS OF A SPACING SEQUENCE OF A TIRE BASED ON THE TACOS RIGIDITY VARIATIONS.
WO2004041555A1 (en) * 2002-11-01 2004-05-21 Bridgestone/Firestone North American Tire, Llc Method for designing tire noise pitch sequence
CN102781686B (en) 2010-01-27 2015-02-18 普利司通美国轮胎运营有限责任公司 Tire with noise-reducing tread pattern
JP2012176756A (en) * 2012-06-22 2012-09-13 Toyo Tire & Rubber Co Ltd Pneumatic tire
JP6911824B2 (en) * 2017-12-01 2021-07-28 住友ゴム工業株式会社 tire
JP6911823B2 (en) * 2017-12-01 2021-07-28 住友ゴム工業株式会社 tire
JP7497583B2 (en) 2020-03-19 2024-06-11 住友ゴム工業株式会社 Tire, tire manufacturing method, tire design method, and method for determining arrangement of pattern constituent units
JP7497584B2 (en) 2020-03-19 2024-06-11 住友ゴム工業株式会社 Tire, tire manufacturing method, tire design method, and method for determining arrangement of pattern constituent units
JP7497585B2 (en) 2020-03-19 2024-06-11 住友ゴム工業株式会社 Tire, method for determining arrangement of tire pattern units, method for determining division position of tread segments, tire design method, and tire manufacturing method

Also Published As

Publication number Publication date
JP2000142029A (en) 2000-05-23

Similar Documents

Publication Publication Date Title
JP3566939B2 (en) Unit pattern arrangement method for pneumatic tires
JPH05213009A (en) Tire
JP4287520B2 (en) Pneumatic tire
US5974872A (en) Pitch arrangement evaluation system of tread pattern of pneumatic tire
JPH11310013A (en) Pneumatic radial tire
CN109968908B (en) Tyre
JP4311788B2 (en) Pneumatic tire
US5690760A (en) Pitch sequence
JP3168432B2 (en) Pneumatic tire
CN109968909B (en) Tyre for vehicle wheels
JP2018131163A (en) Method for estimating pattern noise of pneumatic tire
JPH05608A (en) Pneumatic tire
JPH11217006A (en) Pneumatic radial tire
JP3096924B2 (en) Pneumatic radial tires for passenger cars
JP2000043507A (en) Pneumatic tire
JPH01178005A (en) Tread pattern costruction of pneumatic tire
JP2796241B2 (en) Pneumatic tire
JPH0453722B2 (en)
JP3154023B2 (en) Pneumatic tire
JP3127109B2 (en) Pneumatic tire
JPH03136908A (en) Pneumatic tire with reduced noise characteristics
JP4067393B2 (en) Tire with tread pattern, method for designing tire with tread pattern, and method for manufacturing tire with tread pattern
JP7497584B2 (en) Tire, tire manufacturing method, tire design method, and method for determining arrangement of pattern constituent units
JP3193496B2 (en) Pneumatic tire
JP2021146907A (en) Tire, tire manufacturing method, tire design method, and method for determining arrangement of pattern constitution unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090327

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term