JPH04295228A - Protective unit for ac/dc converter - Google Patents

Protective unit for ac/dc converter

Info

Publication number
JPH04295228A
JPH04295228A JP3055391A JP5539191A JPH04295228A JP H04295228 A JPH04295228 A JP H04295228A JP 3055391 A JP3055391 A JP 3055391A JP 5539191 A JP5539191 A JP 5539191A JP H04295228 A JPH04295228 A JP H04295228A
Authority
JP
Japan
Prior art keywords
converter
overvoltage
circuit breaker
inverter
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3055391A
Other languages
Japanese (ja)
Inventor
Hiroshi Takeuchi
弘 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3055391A priority Critical patent/JPH04295228A/en
Publication of JPH04295228A publication Critical patent/JPH04295228A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inverter Devices (AREA)
  • Protection Of Static Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Rectifiers (AREA)

Abstract

PURPOSE:To suppress overvoltage at the time of overload interruption by transferring energy stored in a filter and a capacitor, installed in two AC systems linked through a converter and an inverter, to DC side and then opening a circuit breaker while dissipating thus transferred energy. CONSTITUTION:Two AC systems 100, 200 are connected through HPFs 12, 22, reactive power compensating capacitors 13, 23 and linking transformers 11, 21 with a converter 10 and an inverter 20, respectively, which are linked through a DC system 300 comprising coils 28, 28' and a resistor 29. When an inverter side controller 31 receives a load interruption command 201 from an overvoltage detector 25 or an emergency interruption command 202 from an operation command board 27, converter control angle is shifted from 120-160 deg. to within the operating region of the converter, i.e., 90 deg., thus making transfer to bypass pair operation. Energy stored in the HPF 22 and the capacitor 23 is converted and dissipated through the resistor 29 in the DC system 300. Consequently, overvoltage is suppressed upon opening of a load circuit breaker 24.

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の目的] [Purpose of the invention]

【0001】0001

【産業上の利用分野】本発明は直流送電、周波数変換等
に用いられる交直変換用サイリスタ変換器の保護装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a protection device for a thyristor converter for AC/DC conversion used in DC power transmission, frequency conversion, etc.

【0002】0002

【従来の技術】電力用交直変換装置の逆変換器側交流系
統の事故検出に伴ない、過電圧検出時、負荷遮断を行な
う場合、逆変換器交流系統に過電圧の発生することはよ
く知られた事実である。しかしながら、この過電圧が実
際どの程度の規模に及ぶかについてのデ―タは、万が一
の機器に及ぼす損害を考慮し、定量的に把握されていな
かった。
[Prior Art] It is well known that overvoltage occurs in the inverter AC system when load shedding is performed when overvoltage is detected due to fault detection in the AC system on the inverter side of a power AC/DC converter. It is a fact. However, data on the actual scale of this overvoltage had not been quantitatively determined, considering the damage it would cause to equipment in the unlikely event that it occurred.

【0003】最近において、過電圧に無障害の電力用シ
ュミレ―タを用いて、かかる遮断器開閉時の解析がなさ
れつつあるが、過渡現象時における過電圧発生の大きさ
は、通常運転時の数倍にも達し、変換器等の機器に与え
るショックは予想以上に大きいことが明らかになった。 従来における負荷遮断の手順は、過電圧検出後、直ちに
バイパスペアに移行し、しかる後、遮断器の開閉を行な
うものであった。
[0003]Recently, analysis of the opening and closing of such circuit breakers is being carried out using power simulators that are free from overvoltage problems, but the magnitude of overvoltage generation during transient phenomena is several times greater than during normal operation. It became clear that the shock to equipment such as converters was greater than expected. The conventional load shedding procedure was to immediately switch to a bypass pair after detecting an overvoltage, and then open and close the circuit breaker.

【0004】しかしながら、バイパスペアに移行せしむ
るものも、電力の流れは直流から交流へ向う方向のまま
であり、遮断器オフ時の位相によっては、検出時以上の
過電圧が発生する可能性が大であった。
[0004] However, even if the circuit breaker is switched to a bypass pair, the power flow remains in the direction from direct current to alternating current, and depending on the phase when the circuit breaker is off, there is a possibility that an overvoltage higher than that at the time of detection may occur. It was huge.

【0005】[0005]

【発明が解決しようする課題】この発明は上記の問題点
を解決するためになされたもので、負荷遮断に伴なう過
電圧の発生を抑えるべく、交流側に設置されたフィルタ
、並びにコンデンサの蓄積エネルギを、交直変換装置の
直流側に戻し、これを消滅しながら、遮断器の開閉を行
なうものである。 [発明の構成]
[Problems to be Solved by the Invention] This invention has been made to solve the above-mentioned problems.In order to suppress the occurrence of overvoltage due to load shedding, a filter installed on the AC side and an accumulation of capacitors are used. The energy is returned to the DC side of the AC/DC converter, and the circuit breaker is opened and closed while extinguishing the energy. [Structure of the invention]

【0006】[0006]

【課題を解決するための手段】本発明は前記目的を達成
するために、異る2つの交流系統を、それぞれ交流側に
フィルタ及び無効電力補償用コンデンサを設置して成る
1対の変換装置で構成される交直変換装置で連系し、両
交流系統間で電力の授受を行うよにした装置において、
前記それぞれの変換装置の交流側の過電圧を検出する過
電圧検出手段と、前記変換装置の内逆変換器運転してい
る変換装置側の過電圧検出手段の動作時、もしくは当該
変換装置側の遮断器の緊急遮断指令時に当該変換装置を
順変換器運転へ移行せしめ、しかる後バイパスペア運転
に移行させる手段を具備したことを特徴とするものであ
る。
[Means for Solving the Problems] In order to achieve the above object, the present invention converts two different AC systems by a pair of conversion devices each having a filter and a reactive power compensation capacitor installed on the AC side. In a device that is interconnected with an AC/DC converter configured to transfer power between both AC systems,
When the overvoltage detection means for detecting overvoltage on the alternating current side of each of the conversion devices and the overvoltage detection means on the side of the conversion device that is operating the inverse converter of the conversion device or the circuit breaker on the side of the conversion device are operated. The present invention is characterized in that it includes means for shifting the converter to forward converter operation when an emergency shutdown command is issued, and then shifting to bypass pair operation.

【0007】[0007]

【作用】前述のように構成された本発明の制御装置によ
れば、緊急負荷遮断時、通常運転時における120度―
160度近辺の逆変換器運転制御角を、90度以内の順
変換器動作にまで移行せしめる。
[Operation] According to the control device of the present invention configured as described above, during emergency load shedding and during normal operation, 120 degrees -
The inverse converter operation control angle of around 160 degrees is shifted to the forward converter operation within 90 degrees.

【0008】この結果、直流回路から交流系統へ送電さ
れていてエネルギが直流側に戻され、連系用変圧器リア
クトル並びに、フィルタに蓄えられていたエネルギが消
費され、遮断器開閉時の過電圧が抑えられる。
As a result, the energy that was being transmitted from the DC circuit to the AC system is returned to the DC side, the energy stored in the interconnection transformer reactor and filter is consumed, and the overvoltage when the circuit breaker opens and closes is reduced. It can be suppressed.

【0009】[0009]

【実施例】本発明による負荷遮断時過電圧防止策を施し
た交直変換装置の実施例を図1に示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment of an AC/DC converter having measures to prevent overvoltage during load cutoff according to the present invention.

【0010】図1の装置は、順変換装置10、連系トラ
ンス11、高調波除去フィルタ12、無効電力補償用コ
ンデンサ13、逆変換装置20、連系トランス21、高
調波除去フィルタ22、無効電力補償用コンデンサ23
、遮断器24、過電圧検出装置25、運転指令盤26,
27、直流回路リアクトル28、同抵抗29、変換器制
御装置30,31、順変換器側交流母線100、逆変換
器側交流母線200、直流回路300から成る。次に上
記構成からなる装置の動作を説明する。
The device shown in FIG. 1 includes a forward converter 10, a interconnection transformer 11, a harmonic removal filter 12, a reactive power compensation capacitor 13, an inverse converter 20, an interconnection transformer 21, a harmonic removal filter 22, and a reactive power Compensation capacitor 23
, circuit breaker 24, overvoltage detection device 25, operation command panel 26,
27, a DC circuit reactor 28, a resistor 29, converter control devices 30, 31, a forward converter side AC bus 100, an inverse converter side AC bus 200, and a DC circuit 300. Next, the operation of the apparatus having the above configuration will be explained.

【0011】図1は、通常の交直変換装置であり、順変
換装置10と逆変換装置20を用いて、交流母線100
側の電力が直流回路300を介して交流母線200へ送
電される。この場合、一般に交直変換装置はスイッチン
グにより電力の変換を行なうので、交流母線側には多く
の高調波が発生する。従って、この高調波を除くために
、フィルタ12,22が設置される。
FIG. 1 shows a normal AC/DC converter, which uses a forward converter 10 and an inverse converter 20 to convert an AC bus 100
power is transmitted to the AC bus 200 via the DC circuit 300. In this case, since the AC/DC converter generally converts power by switching, many harmonics are generated on the AC bus side. Therefore, filters 12, 22 are installed to remove this harmonic.

【0012】又他励式変換器を用いた場合は、一般に力
率が悪くなるので、力率改善上から無効電力補償用コン
デンサ13,23が設置される。補償用無効電力は送電
有効電力の約1/2に及ぶものであり、コンデンサ容量
はかなりの大きさになる。
When a separately excited converter is used, the power factor generally becomes poor, so reactive power compensation capacitors 13 and 23 are installed to improve the power factor. The compensation reactive power is approximately 1/2 of the transmitted active power, and the capacitor capacity is quite large.

【0013】制御装置30,31は、変換器の点弧角を
制御するものであり、一般には個別に設置される。制御
手法は図2に示すように、順変換器側においては定電流
制御、逆変換器側においては定電圧制御(もしくは定余
裕角制御)が行われる。
The control devices 30 and 31 control the firing angle of the converter, and are generally installed separately. As shown in FIG. 2, the control method is such that constant current control is performed on the forward converter side, and constant voltage control (or constant margin angle control) is performed on the inverse converter side.

【0014】変換器の点弧角制御は、交流母線100,
200から電圧、電流、電力量を取り込み、定電流制御
、定電圧制御で定まる位相量で設定する。位相設定は、
交流母線電圧に同期した電圧位相を基準にする。
The firing angle control of the converter is performed using the AC bus 100,
The voltage, current, and power amount are taken in from 200 and set with the phase amount determined by constant current control and constant voltage control. The phase setting is
The voltage phase synchronized with the AC bus voltage is used as the reference.

【0015】さて上記のようなフィルタやコンデンサを
設置された状態で、負荷遮断を行うと、上記機器に蓄え
られていたエネルギにより過電圧を発生する。過電圧は
、交直変換装置の機器を傷め、状況により運転機能の喪
失をもたらす恐れがある。
[0015] If load shedding is performed with the above-mentioned filters and capacitors installed, overvoltage will be generated due to the energy stored in the above-mentioned equipment. Overvoltage may damage the equipment of the AC/DC converter and, depending on the situation, may result in loss of operating function.

【0016】本発明は従って、このような過電圧の発生
を抑えるべくフィルタやコンデンサに蓄えられていたエ
ネルギを直流側へ移し、これを消滅させながら、遮断の
開閉を行なわしむるものである。
[0016] Therefore, in order to suppress the occurrence of such overvoltage, the present invention transfers the energy stored in the filter or capacitor to the DC side and eliminates it while opening and closing the cutoff.

【0017】今、逆変換装置側の制御装置31が過電圧
検出装置25から、負荷遮断指令201を、或いは運転
指令盤27から緊急遮断指令202を受けると、変換器
制御角を通常制御角(120度―160度)から、順変
換器動作領域である90度以内の運転にまで移行せしめ
る。
Now, when the control device 31 on the reverse converter side receives a load cutoff command 201 from the overvoltage detection device 25 or an emergency cutoff command 202 from the operation command panel 27, the converter control angle is changed to the normal control angle (120 -160 degrees) to operation within 90 degrees, which is the operating range of the converter.

【0018】これにより、交流母線200側の電力、特
にフィルタもしくはコンデンサに蓄えられていたエネル
ギが直流側に移される。ただし交直変換装置の動作原理
により直流回路内の電流の向は変わらない。よって、順
変換器動作領域に移行せしめた後、バイパスペア操作に
移るならば直流回路に移されたエネルギは直流回路内抵
抗29により消費せられる。
As a result, the power on the AC bus 200 side, particularly the energy stored in the filter or capacitor, is transferred to the DC side. However, due to the operating principle of the AC/DC converter, the direction of the current in the DC circuit does not change. Therefore, if the bypass pair operation is performed after the transition to the forward converter operating region, the energy transferred to the DC circuit will be consumed by the resistance 29 in the DC circuit.

【0019】通常遮断器24の動作は遮断指令後2〜3
サイクルを要するので。この間に相当量のエネルギを消
滅せしめることができる。従って、遮断器24の開閉に
伴う過電圧の発生が抑えられる。ただし上記点弧角の位
相は、逆変換器側から過電圧もしくは高調波発生のない
範囲で行い、出来るだけ高速に行う。
Normally, the circuit breaker 24 operates 2 to 3 times after the shutdown command.
Because it takes a cycle. During this time, a considerable amount of energy can be dissipated. Therefore, generation of overvoltage due to opening and closing of the circuit breaker 24 is suppressed. However, the above firing angle phase is set within a range where no overvoltage or harmonics occur from the inverter side, and as fast as possible.

【0020】この場合の一連の操作は、制御機能もしく
は制御定数の変更がオンラインで行えるマイクロプロセ
サを用いるのが好都合である。マイクロプロセサを用い
るならばアナログ方式に比べて、変換器点弧角の設定が
移相幅、移相時間の両面において自由に行えるからであ
る。又、順変換器への移行は、順変換器側の交流系統が
強い場合は、電流マ―ジンの変更による潮流反転と同様
の原理で行うことも可能である。
For the series of operations in this case, it is convenient to use a microprocessor that can change control functions or control constants online. This is because if a microprocessor is used, the converter firing angle can be set more freely in terms of both phase shift width and phase shift time, compared to analog systems. Furthermore, if the AC system on the forward converter side is strong, the transition to the forward converter can be performed using the same principle as power flow reversal by changing the current margin.

【0021】ただし、事故時の処理であるので、潮流反
転の速さは、通常時の速度を上回る速度で行う。この場
合の、制御速度の切換えもマイクロプロセサを用いるな
らば自由に行える。
[0021] However, since this is a process to be performed in the event of an accident, the speed of the current reversal is performed at a speed higher than the normal speed. In this case, the control speed can also be switched freely if a microprocessor is used.

【0022】[0022]

【発明の効果】以上説明のように本発明によれば、交直
変換装置の逆変換器側交流系統に設置されたフィルタ並
びに、コンデンサに蓄えられていたエネルギを直流側に
移し、これを消滅しながら、遮断器の開閉を行うので負
荷遮断時の過電圧を抑制することが出来る。本発明は負
荷遮断時の変換器の制御を行うに当り、マイクロプロセ
サの適用を図っている。マイクロプロセサは、逆変換器
から順変換器への点弧角位相を自由に制御出来る利点が
ある。
[Effects of the Invention] As explained above, according to the present invention, the energy stored in the filter and capacitor installed in the AC system on the inverter side of the AC/DC converter is transferred to the DC side and is eliminated. However, since the circuit breaker is opened and closed, overvoltage during load shedding can be suppressed. The present invention aims to apply a microprocessor to control the converter during load shedding. The microprocessor has the advantage of being able to freely control the firing angle phase from the inverse converter to the forward converter.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例を示す交直変換装置のブロッ
ク図。
FIG. 1 is a block diagram of an AC/DC converter according to an embodiment of the present invention.

【図2】[図1]に示す交直変換装置の通常運転時にお
ける特性図である。
FIG. 2 is a characteristic diagram of the AC/DC converter shown in FIG. 1 during normal operation.

【符号の説明】[Explanation of symbols]

10…順変換装置                 
   11…連系用変圧器 12…高調波除去フィルタ            1
3…無効電力補償用コンデンサ 20…逆変換装置                 
   21…連系用変圧器 22…高調波除去フィルタ            2
3…無効電力補償用コンデンサ 24…遮断器                   
     25…過電圧検出器 26…運転指令盤                 
   27…運転指令盤 28…直流回路コイル               
 29…直流回路抵抗 30…変換器制御装置               
 31…変換器制御装置 100…交流母線                 
   200…交流母線 201…過電圧検出信号              
202…緊急遮断指令 300…直流回路
10... Forward conversion device
11... Grid connection transformer 12... Harmonic removal filter 1
3... Capacitor for reactive power compensation 20... Inverse conversion device
21... Grid connection transformer 22... Harmonic removal filter 2
3... Capacitor for reactive power compensation 24... Circuit breaker
25...Overvoltage detector 26...Operation command panel
27...Operation command panel 28...DC circuit coil
29...DC circuit resistance 30...Converter control device
31...Converter control device 100...AC bus bar
200...AC bus 201...Overvoltage detection signal
202...Emergency shutdown command 300...DC circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】      異る2つの交流系統を、それ
ぞれ交流側にフィルタ及び無効電力補償用コンデンサを
設置して成る1対の変換装置で構成される交直変換装置
で連系し、両交流系統間で電力の授受を行うよにした装
置において、前記それぞれの変換装置の交流側の過電圧
を検出する過電圧検出手段と、前記変換装置の内逆変換
器運転している変換装置側の過電圧検出手段の動作時、
もしくは当該変換装置側の遮断器の緊急遮断指令時に当
該変換装置を順変換器運転へ移行せしめ、しかる後バイ
パスペア運転に移行させる手段を具備してなる交直変換
装置の保護装置。
[Claim 1] Two different AC systems are interconnected by an AC/DC converter consisting of a pair of converters each having a filter and a reactive power compensation capacitor installed on the AC side, and a In a device configured to transfer and receive electric power, an overvoltage detection means for detecting overvoltage on the alternating current side of each of the conversion devices, and an overvoltage detection means on the side of the conversion device in which the inverter of the conversion device is operating. During operation,
Alternatively, a protection device for an AC/DC converter comprising means for shifting the converter to forward converter operation and then to bypass pair operation when an emergency shutdown command is issued to the circuit breaker on the converter side.
JP3055391A 1991-03-20 1991-03-20 Protective unit for ac/dc converter Pending JPH04295228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3055391A JPH04295228A (en) 1991-03-20 1991-03-20 Protective unit for ac/dc converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3055391A JPH04295228A (en) 1991-03-20 1991-03-20 Protective unit for ac/dc converter

Publications (1)

Publication Number Publication Date
JPH04295228A true JPH04295228A (en) 1992-10-20

Family

ID=12997220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3055391A Pending JPH04295228A (en) 1991-03-20 1991-03-20 Protective unit for ac/dc converter

Country Status (1)

Country Link
JP (1) JPH04295228A (en)

Similar Documents

Publication Publication Date Title
Lee et al. A voltage sag supporter utilizing a PWM-switched autotransformer
RU2740012C1 (en) Longitudinal compensator and control method
EP2394356B1 (en) A hybrid distribution transformer with ac&dc power capabilities
TW480800B (en) Protection system for power receiving station
JPH1032932A (en) Reactive power compensating device
CN110299704A (en) A kind of the power distribution network intelligent trouble processing unit and method of grid type
JPH04295228A (en) Protective unit for ac/dc converter
JPH02272365A (en) Phase detecting circuit for switching device control apparatus
JPH0833199A (en) Capacitor protective device
JP3926980B2 (en) Series capacitor controlled protection device controlled by thyristor
CN108736494B (en) Electric locomotive test wire balance power supply system
JP2001005541A (en) Automatic voltage adjusting device
JPH10145974A (en) Control of phase advance capacitor installation
Sugimoto et al. Fault current limiting system for 500‐kV power systems
JP2003079053A (en) Power factor improvement device
JP2000092708A (en) Harmonic current suppression device
Pavlyuk Application of static transfer switch for induction motor load transfer
JPH1032922A (en) Ratio differential relay
Noosuk et al. Commissioning experience of the 300 MW Thailand-Malaysia interconnection project
JPS6321152Y2 (en)
JPH06105484A (en) Uninterruptible power source
JPH05300654A (en) Method for controlling ac filter facility
KHAN et al. A Control Strategy Used in Interrupting Fault Current by Dynamic Voltage Restorer
JPH0368620B2 (en)
JPH10145976A (en) Control of phase advance capacitor installation