JPH04294302A - Composite type optical part - Google Patents

Composite type optical part

Info

Publication number
JPH04294302A
JPH04294302A JP3083428A JP8342891A JPH04294302A JP H04294302 A JPH04294302 A JP H04294302A JP 3083428 A JP3083428 A JP 3083428A JP 8342891 A JP8342891 A JP 8342891A JP H04294302 A JPH04294302 A JP H04294302A
Authority
JP
Japan
Prior art keywords
curable resin
powder particles
rubber elastomer
transparent rubber
resin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3083428A
Other languages
Japanese (ja)
Inventor
雅道 ▲ひじ▼野
Masamichi Hijino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP3083428A priority Critical patent/JPH04294302A/en
Publication of JPH04294302A publication Critical patent/JPH04294302A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an optical part which is optically uniform and has a single- layer resin structure with small hardening shrinkage is molding and has excellent coating property and characteristics against high temp. and high humidity environment. CONSTITUTION:A hardening resin layer 4 is formed on the surface of a glass substrate 1. This hardening resin layer 4 consists of a hardening resin 2 which hardens with irradiation of UV ray 6 or the like and contains 5-70wt.% transparent rubber elastomer powder particles 3. These particles are dispersed so that the distribution has a gradient from the highest density in the glass substrate side to the lowest in the surface side. Differences of refractive index and Abbe number of the transparent elastomer powder particles 3 from those of the hardening resin 2 are -0.0005 to +0.0005 and -1 to +1, respectively.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、光学ガラスにより形成
した基材とこの基材表面に形成した硬化性樹脂層とから
なる複合型光学部品に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite optical component comprising a base material made of optical glass and a curable resin layer formed on the surface of the base material.

【0002】0002

【従来の技術】近年、レンズ枚数の削減,コンパクト化
等を図るために非球面レンズへの要求が高まっている。 ところが、非球面レンズは球面レンズと比べて研磨加工
が困難であり、射出成形等によるプラスチックレンズも
低コストで量産が可能である反面、成形後にひけが生じ
るため、焦点距離が狂ってしまう欠点があった。この欠
点を補う光学部品として、所望の光学的形状を有する金
型とガラス基材との間に硬化性樹脂を介在させてこれを
硬化させることにより、ガラス基材の表面に光学表面を
有する硬化性樹脂層を形成した、いわゆる複合型光学部
品が知られている。
2. Description of the Related Art In recent years, there has been an increasing demand for aspherical lenses in order to reduce the number of lenses and make them more compact. However, aspherical lenses are more difficult to polish than spherical lenses, and while plastic lenses made by injection molding can be mass-produced at low cost, they suffer from sink marks that occur after molding, which distorts the focal length. there were. As an optical component that compensates for this drawback, by interposing a curable resin between a mold having a desired optical shape and a glass base material and curing it, a hardening resin that has an optical surface on the surface of the glass base material is used. 2. Description of the Related Art So-called composite optical components are known, in which a synthetic resin layer is formed.

【0003】従来、上記複合型光学部品としては、例え
ば特開昭60−56544号公報に開示されるように、
ガラス基材上に硬度等の特性が異なる2種類の樹脂を2
層構造として設けたものや、特開昭62−258401
号公報に開示されるように、ガラス基材上に2〜4官能
ウレタン変性ポリエステル(メタ)アクリレートと3官
能(メタ)アクリレートと単官能(メタ)アクリレート
と光重合開始剤とを含有する組成物を紫外線により硬化
させて単一樹脂層を設けたものがある。
Conventionally, as the above-mentioned composite optical component, as disclosed in Japanese Patent Laid-Open No. 60-56544, for example,
Two types of resin with different properties such as hardness are placed on a glass substrate.
Those provided as a layered structure, and those provided in JP-A No. 62-258401
As disclosed in the publication, a composition containing a 2- to 4-functional urethane-modified polyester (meth)acrylate, a trifunctional (meth)acrylate, a monofunctional (meth)acrylate, and a photopolymerization initiator on a glass substrate There are products that are cured with ultraviolet light to form a single resin layer.

【0004】0004

【発明が解決しようとする課題】しかし、上記従来の2
層構造の複合型光学部品では、その製造に際して硬化の
工程を2度行わなければならず、生産設備が増える、工
程が長くなってスペースをとる、時間がかかる等の問題
があり、コストアップを招いていた。また、硬化性樹脂
層を単一樹脂層とした従来の複合型光学部品では、コス
ト的には有利なものの、ガラス基材と樹脂層との熱およ
び吸湿による線膨張率が大きく異なり、また樹脂層の硬
度も低かった。さらに、樹脂層の上に反射防止のための
蒸着膜を設けた場合にも、ガラス基材や蒸着層と樹脂層
との間で上記と同様の問題を生じた。このため、耐環境
特性に欠け、蒸着膜を設けた場合、シワや膜ヌケなどを
生じるという問題があった。
[Problem to be solved by the invention] However, the above conventional two
Composite optical components with a layered structure require a curing process twice during manufacturing, which increases production equipment, lengthens the process, takes up space, and takes time, leading to increased costs. I was invited. In addition, although conventional composite optical components in which the curable resin layer is a single resin layer are advantageous in terms of cost, the coefficient of linear expansion due to heat and moisture absorption between the glass base material and the resin layer is significantly different, and the resin The hardness of the layer was also low. Furthermore, even when a vapor-deposited film for antireflection was provided on the resin layer, the same problem as above occurred between the glass substrate or the vapor-deposited layer and the resin layer. For this reason, it lacks environmental resistance, and when a vapor-deposited film is provided, there is a problem in that wrinkles, film peeling, etc. occur.

【0005】また、上記以外の公知の技術として、多官
能系のエネルギー照射硬化型アクリレートを用いたもの
が提案されているが、この場合でも、硬化収縮率や熱線
膨張率の差が大きく、大きな歪を発生し、ガラス基材を
歪ませたり、樹脂層にクラックを生じ、成形不能となる
場合があった。
[0005] In addition, as a known technique other than the above, one using a polyfunctional energy irradiation curable acrylate has been proposed, but even in this case, there is a large difference in curing shrinkage rate and coefficient of linear thermal expansion. In some cases, distortion occurs, distorting the glass substrate or causing cracks in the resin layer, making molding impossible.

【0006】本発明は、かかる従来の問題点に鑑みてな
されたもので、光学的に均一で、成形時の硬化収縮率が
小さい単一層の樹脂層構造を有し、コーティング性およ
び高温高湿環境特性に優れた複合型光学部品を提供する
ことを目的とする。
The present invention has been made in view of these conventional problems, and has a single-layer resin layer structure that is optically uniform and has a small curing shrinkage rate during molding, and has excellent coating properties and high temperature and high humidity. The purpose is to provide composite optical components with excellent environmental characteristics.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、光学ガラスにより形成した基材とこの基
材表面に形成した硬化性樹脂層とからなる複合型光学部
品において、前記硬化性樹脂との屈折率差が−0.00
05〜+0.0005でかつアッベ数差が−1〜+1の
範囲にある透明ゴムエラストマー粉末粒子を硬化性樹脂
層内に5〜70重量%含有し、その含有率が前記基材側
で最も多くかつ表面側で最も少なくなるように傾斜的に
分布させた。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a composite optical component comprising a base material made of optical glass and a curable resin layer formed on the surface of this base material. The refractive index difference with the curable resin is -0.00
05 to +0.0005 and an Abbe number difference in the range of -1 to +1, the curable resin layer contains 5 to 70% by weight of transparent rubber elastomer powder particles, the content of which is highest on the base material side. It was also distributed in a gradient manner so that it was least on the surface side.

【0008】本発明において、硬化性樹脂層を形成する
エネルギー照射硬化型樹脂としては、透明性の高い樹脂
、好ましくは透過率90%以上の樹脂を用いるとよい。 また、透明ゴムエラストマー粉末粒子の粒子径は、硬化
性樹脂層の厚さ以下でなければならない。さらに、透明
ゴムエラストマー粉末粒子は、多官能シラン系カップリ
ング剤により一般的な表面処理を施しておき、硬化性樹
脂との密着性を高めるようにするとよい。本発明に用い
る透明ゴムエラストマーとしては、透明度の良いものが
望ましく、例えばシリコーンゴム,エチレンプロピレン
ゴム,アクリルゴムなどが好適であり、ジエン化合物,
ジエンとその他のビニル化合物との共重合によって合成
されたゴム,あるいはこれらをイオウ加硫、バーオキサ
イド等によって架橋したものを用いることができる。樹
脂硬化用のエネルギーとしては、熱,電子線,紫外線等
を用いる。なお、用途によっては、硬化性樹脂層上に真
空蒸着等により、SiO,SiO2 等の蒸着膜を形成
してもよい。
In the present invention, as the energy irradiation curable resin forming the curable resin layer, it is preferable to use a highly transparent resin, preferably a resin with a transmittance of 90% or more. Furthermore, the particle size of the transparent rubber elastomer powder particles must be less than or equal to the thickness of the curable resin layer. Furthermore, the transparent rubber elastomer powder particles are preferably subjected to a general surface treatment using a polyfunctional silane coupling agent to improve adhesion to the curable resin. The transparent rubber elastomer used in the present invention is preferably one with good transparency, such as silicone rubber, ethylene propylene rubber, acrylic rubber, etc., and diene compounds,
Rubbers synthesized by copolymerization of dienes and other vinyl compounds, or rubbers crosslinked by sulfur vulcanization, peroxide, etc., can be used. Heat, electron beams, ultraviolet rays, etc. are used as energy for curing the resin. Depending on the application, a deposited film of SiO, SiO2, etc. may be formed on the curable resin layer by vacuum deposition or the like.

【0009】[0009]

【作用】上記構成の複合型光学部品において、重合した
硬化性樹脂層は、屈折率およびアッベ数が一様であり、
光学的には均一である。硬化性樹脂と透明ゴムエラスト
マー粉末粒子との屈折率差およびアッベ数差がそれぞれ
−0.0005〜+0.0005および−1〜+1の範
囲外であると、色分散,反射による散乱を生じ、実用不
可能となってしまう。特に、透明ゴムエラストマー粉末
粒子を無含有の硬化性樹脂に比べて、上記硬化性樹脂は
透明ゴムエラストマー粉末粒子の含有率が増すにつれて
、熱および吸水線膨張率、硬化収縮率が低下していく。 これは、透明ゴムエラストマー粉末粒子を含有すること
により硬化性樹脂成分の含有比率が小さくなること、構
造用部材等に用いられる無機物含有樹脂材料と同様に樹
脂と無機物との相互作用によるものである。ここに、透
明ゴムエラストマー粉末粒子の含有量が5重量%未満で
あると、上記熱および吸水線膨張率,硬化収縮率の低下
という効果が得られない。一方、透明ゴムエラストマー
粉末粒子の含有量が70重量%を超えると、平均粘度,
チクソトロピー等の影響により作業性が悪化し、面形状
の制御が困難になる。
[Function] In the composite optical component having the above structure, the polymerized curable resin layer has a uniform refractive index and Abbe number,
It is optically uniform. If the refractive index difference and Abbe number difference between the curable resin and the transparent rubber elastomer powder particles are outside the ranges of -0.0005 to +0.0005 and -1 to +1, respectively, color dispersion and scattering due to reflection will occur, making it difficult to put into practical use. It becomes impossible. In particular, compared to a curable resin that does not contain transparent rubber elastomer powder particles, as the content of transparent rubber elastomer powder particles increases, the thermal and water absorption coefficients of linear expansion and curing shrinkage of the curable resin decrease. . This is due to the fact that the content ratio of the curable resin component is reduced due to the inclusion of transparent rubber elastomer powder particles, and the interaction between the resin and inorganic matter, similar to the case with inorganic-containing resin materials used for structural members, etc. . Here, if the content of the transparent rubber elastomer powder particles is less than 5% by weight, the effects of lowering the thermal and water absorption linear expansion coefficients and curing shrinkage ratio cannot be obtained. On the other hand, when the content of transparent rubber elastomer powder particles exceeds 70% by weight, the average viscosity
Workability deteriorates due to the effects of thixotropy, etc., making it difficult to control the surface shape.

【0010】透明ゴムエラストマー粉末粒子の含有率を
基材側で多く、表面に近づくほど小さくなるように傾斜
的に分布させることにより、基材側では大きなゴム弾性
を有しており、コート面に近づくほど小さくなり、コー
ト面ではゴム弾性が最も小さく、硬度が大きくなる。こ
れにより、コート面での問題点であった硬度不足による
シワ,膜ヌケがなくなり、基材面での問題点であった歪
発生をゴム弾性によって吸収でき、硬化性樹脂層のクラ
ック等の発生を防止できる。また、透明ゴムエラストマ
ーに表面処理を施しておけば、透明ゴムエラストマーと
硬化性樹脂との密着力は大きくなり、界面での剥離も生
じない。
[0010] By distributing the transparent rubber elastomer powder particles in a gradient manner such that the content is higher on the base material side and becomes smaller as it approaches the surface, the base material side has large rubber elasticity, and the coated surface The closer you get, the smaller the rubber elasticity becomes, and the coated surface has the lowest rubber elasticity and the highest hardness. This eliminates wrinkles and film peeling due to insufficient hardness, which were problems on the coated surface, and allows the rubber elasticity to absorb distortion, which was a problem on the base material surface, and prevents cracks in the curable resin layer. can be prevented. Furthermore, if the transparent rubber elastomer is subjected to a surface treatment, the adhesion between the transparent rubber elastomer and the curable resin will be increased, and peeling at the interface will not occur.

【0011】透明ゴムエラストマー粉末粒子の含有率を
上記のように分布させるには、透明ゴムエラストマー粉
末粒子の含有率の異なる数種類の硬化性樹脂を用意し、
含有率の大きい硬化性樹脂から順に基材上に積層させて
その後硬化させる方法、重力や遠心力等により透明ゴム
エラストマー粉末粒子を沈降させる方法等の種々の方法
がある。
In order to distribute the content of transparent rubber elastomer powder particles as described above, several types of curable resins having different contents of transparent rubber elastomer powder particles are prepared.
There are various methods, such as a method in which the curable resin is laminated on a substrate in order of increasing content and then cured, and a method in which transparent rubber elastomer powder particles are sedimented by gravity, centrifugal force, or the like.

【0012】0012

【実施例1】図1は、本実施例の複合型光学部品の製造
過程を示す縦断面図である。BK7からなる直径25.
0mmのガラス基材1の一方の面(図1において下面)
1aは、曲率半径40.0mmの凸状球面となるように
研磨されている。また、ガラス基材1の他方の面(図1
において上面)1bは、所望の光学的非球面に近似した
球面となるように曲率半径40.0mmの凹状球面に研
磨されており、ガラス基材1の中心厚は2.0mmにな
っている。
Embodiment 1 FIG. 1 is a longitudinal sectional view showing the manufacturing process of a composite optical component according to this embodiment. Diameter 25. Made of BK7.
One side of the 0mm glass substrate 1 (bottom side in Figure 1)
1a is polished to have a convex spherical surface with a radius of curvature of 40.0 mm. In addition, the other surface of the glass substrate 1 (Fig. 1
The upper surface (1b) is polished into a concave spherical surface with a radius of curvature of 40.0 mm so as to be a spherical surface that approximates a desired optical aspheric surface, and the center thickness of the glass substrate 1 is 2.0 mm.

【0013】ガラス基材1の前記他方の面1b上には、
エネルギー照射硬化型の硬化性樹脂2内に透明ゴムエラ
ストマー粉末粒子3を含有した硬化性樹脂層4が形成さ
れる。硬化性樹脂2には、ウレタンアクリレート系樹脂
とエステルアクリレート系樹脂とのブレンド樹脂を用い
た。一方、透明ゴムエラストマー粉末粒子3には、平均
粒子径15μmのアクリルゴム粉末粒子を用い、この透
明ゴムエラストマー粉末粒子3は予め多官能シラン系カ
ップリング剤により表面処理を施しておいた。透明ゴム
エラストマー粉末粒子3の含有量は、20重量%とした
。また、透明ゴムエラストマー3の含有率は、ガラス基
材1側で最も多く、かつ表面側で最も少なくなるように
傾斜的に分布させた。
On the other surface 1b of the glass substrate 1,
A curable resin layer 4 containing transparent rubber elastomer powder particles 3 is formed in an energy irradiation curable curable resin 2 . As the curable resin 2, a blend resin of a urethane acrylate resin and an ester acrylate resin was used. On the other hand, acrylic rubber powder particles having an average particle diameter of 15 μm were used as the transparent rubber elastomer powder particles 3, and the transparent rubber elastomer powder particles 3 had been previously surface-treated with a polyfunctional silane coupling agent. The content of the transparent rubber elastomer powder particles 3 was 20% by weight. Further, the content of the transparent rubber elastomer 3 was distributed in a gradient manner so that it was highest on the glass substrate 1 side and lowest on the surface side.

【0014】金型5は、直径22.0mmの円柱状で、
その成形面5aは曲率半径37.0mmでかつ部分的に
5〜10μmの範囲で変化する非球面形状とした。
The mold 5 has a cylindrical shape with a diameter of 22.0 mm,
The molding surface 5a had an aspherical shape with a radius of curvature of 37.0 mm and partially varying within a range of 5 to 10 μm.

【0015】本実施例の複合型光学部品を製造するには
、まずガラス基材1上に、透明ゴムエラストマー粉末粒
子3を含有した硬化性樹脂2を適量滴下した。その後、
その硬化性樹脂2上に金型5を重ねて、硬化性樹脂層4
が中心厚100μmになるように押圧した。この状態で
、ガラス基材1越しに硬化性樹脂2に対して紫外線6を
照射し、重合を行った。硬化性樹脂2が硬化した後、離
型し、複合型光学部品を得た。
To manufacture the composite optical component of this example, first, an appropriate amount of curable resin 2 containing transparent rubber elastomer powder particles 3 was dropped onto a glass substrate 1 . after that,
The mold 5 is placed on top of the curable resin 2, and the curable resin layer 4
was pressed so that the center thickness was 100 μm. In this state, the curable resin 2 was irradiated with ultraviolet rays 6 through the glass substrate 1 to perform polymerization. After the curable resin 2 was cured, it was released from the mold to obtain a composite optical component.

【0016】表1に、本実施例で使用した硬化性樹脂2
および透明ゴムエラストマー粉末粒子3の屈折率および
アッベ数を示した。
Table 1 shows the curable resin 2 used in this example.
and the refractive index and Abbe number of the transparent rubber elastomer powder particles 3.

【0017】[0017]

【表1】[Table 1]

【0018】また、本実施例の複合型光学部品について
、以下のように硬化性収縮率、吸水率、耐高温高湿環境
試験およびコーティング性の評価を行った。その結果を
表2に示した。なお、比較のため、透明ゴムエラストマ
ー粉末粒子を無含有の前記ブレンド樹脂を用いて本実施
例と同様に製造した従来の複合型光学部品(比較例1)
についても上記と同様に試験を行い、その結果を表2中
に併記した。
Furthermore, the composite optical component of this example was evaluated for curing shrinkage, water absorption, high temperature and high humidity environment resistance test, and coating properties as follows. The results are shown in Table 2. For comparison, a conventional composite optical component (Comparative Example 1) was manufactured in the same manner as in this example using the blended resin containing no transparent rubber elastomer powder particles.
Tests were also conducted in the same manner as above, and the results are also listed in Table 2.

【0019】[0019]

【表2】[Table 2]

【0020】■硬化収縮率・・・JISK−7112に
基づきピクノメータを用いて硬化前と硬化後の比重を測
定し、その比重差を硬化後の比重で除した数値を硬化収
縮率とした。
[0020] Curing shrinkage rate: The specific gravity before and after curing was measured using a pycnometer according to JISK-7112, and the value obtained by dividing the difference in specific gravity by the specific gravity after curing was defined as the curing shrinkage rate.

【0021】■吸水率・・・JISK−6911に基づ
き、煮沸前後の重量測定により定めた。
■Water absorption rate: Determined based on JISK-6911 by weight measurement before and after boiling.

【0022】■耐高温高湿環境試験・・・得られたレン
ズに反射防止用蒸着膜を設けた後、70℃,80%RH
の高温高湿環境下に500時間放置し、放置前後の外観
検査を行った。
■ High temperature and high humidity environment test: After providing the obtained lens with an anti-reflection vapor deposited film, it was tested at 70°C and 80% RH.
It was left in a high temperature, high humidity environment for 500 hours, and its appearance was inspected before and after being left.

【0023】■コーティング性・・・得られたレンズに
反射防止用蒸着膜を設けた後、70℃,80%RHの高
温高湿環境下に500時間放置し、放置前後で外観検査
、テープ剥離試験を実施した。
■Coating property: After providing the obtained lens with an anti-reflection vapor deposition film, it was left in a high temperature and high humidity environment of 70°C and 80% RH for 500 hours, and the appearance was inspected and the tape was peeled off before and after being left. A test was conducted.

【0024】本実施例の複合型光学部品は、光学的に均
一であり、硬化収縮率が小さく、高温高湿環境下におい
ても変化がなく、コーティングにシワ,膜ヌケ等は発生
しなかった。また、透明ゴムエラストマー粉末粒子3は
カップリング処理を施してあるので、透明ゴムエラスト
マー粉末粒子3と硬化性樹脂2との密着力は大きく、界
面での剥離を生じなかった。
The composite optical component of this example was optically uniform, had a small curing shrinkage rate, remained unchanged even under high temperature and high humidity environments, and did not exhibit wrinkles or film peeling in the coating. Further, since the transparent rubber elastomer powder particles 3 were subjected to a coupling treatment, the adhesion between the transparent rubber elastomer powder particles 3 and the curable resin 2 was large, and no peeling occurred at the interface.

【0025】なお、本発明においては、図2示すように
、ガラス基材1上の硬化性樹脂4の表面に、一般的な真
空蒸着法等によりSiO,SiO2 等からなる蒸着膜
7を形成してもよい。
In the present invention, as shown in FIG. 2, a deposited film 7 made of SiO, SiO2, etc. is formed on the surface of the curable resin 4 on the glass substrate 1 by a general vacuum deposition method or the like. You can.

【0026】[0026]

【実施例2】硬化性樹脂層を形成するエネルギー照射硬
化型の硬化性樹脂として、エンチオール系樹脂を用いた
。また、含有する透明ゴムエラストマー粉末粒子には、
平均粒径10μmのエチレンプロピレンゴム粉末粒子を
用いた。透明ゴムエラストマー粉末粒子の含有量は、3
0重量%とした。その他の構成は、実施例1と同様であ
る。
Example 2 Ethiol-based resin was used as an energy irradiation-curable curable resin to form a curable resin layer. In addition, the transparent rubber elastomer powder particles contained include:
Ethylene propylene rubber powder particles with an average particle size of 10 μm were used. The content of transparent rubber elastomer powder particles is 3
It was set to 0% by weight. The other configurations are the same as in the first embodiment.

【0027】表1に、本実施例で使用した硬化性樹脂お
よび透明ゴムエラストマー粉末粒子の屈折率およびアッ
ベ数を示した。また、本実施例の複合型光学部品につい
て、実施例1と同様に、硬化収縮率、吸水率、耐高温高
湿環境試験およびコーティング性の試験を行い、その結
果を表2に示した。なお、比較のため、透明ゴムエラス
トマー粉末粒子を無含有のエンチオール系樹脂を用いて
本実施例と同様に製造した従来の複合型光学部品(比較
例2)についても同様の試験を行い、その結果を表2中
に併記した。
Table 1 shows the refractive index and Abbe number of the curable resin and transparent rubber elastomer powder particles used in this example. Further, the composite optical component of this example was subjected to curing shrinkage rate, water absorption rate, high temperature and high humidity environment test, and coating property test in the same manner as in Example 1, and the results are shown in Table 2. For comparison, a similar test was also conducted on a conventional composite optical component (Comparative Example 2) manufactured in the same manner as in this example using an enethiol-based resin containing no transparent rubber elastomer powder particles, and the results were are also listed in Table 2.

【0028】本実施例の複合型光学部品についても、実
施例1と同様の作用・効果が得られた。
[0028] The composite optical component of this example also had the same functions and effects as those of Example 1.

【0029】なお、エネルギー照射硬化型の硬化性樹脂
としては、前記実施例で用いた樹脂の他、エポキシ系樹
脂、エポキシアクリレート系樹脂、ポリエステルアクリ
レート系樹脂、シリコーン変成アクリレート樹脂等の樹
脂を単独または2種類以上ブレンドして用いてもよい。
In addition to the resins used in the above examples, energy irradiation curable resins include resins such as epoxy resins, epoxy acrylate resins, polyester acrylate resins, and silicone-modified acrylate resins. Two or more types may be blended and used.

【0030】[0030]

【発明の効果】以上のように、本発明の複合型光学部品
によれば、硬化性樹脂と屈折率およびアッベ数がほぼ等
しい透明ゴムエラストマー粉末粒子を硬化性樹脂層内に
含有させたので、光学的に均一で、成形時の硬化収縮率
が小さい単一層の樹脂層構造を有し、コーティング性お
よび高温高湿環境特性に優れた複合型光学部品となる。
As described above, according to the composite optical component of the present invention, transparent rubber elastomer powder particles having approximately the same refractive index and Abbe number as the curable resin are contained in the curable resin layer. It has a single-layer resin layer structure that is optically uniform and has a low curing shrinkage rate during molding, resulting in a composite optical component that has excellent coating properties and characteristics in high-temperature, high-humidity environments.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の実施例1に係る複合型光学素子の製造
過程を示す縦断面図である。
FIG. 1 is a longitudinal sectional view showing the manufacturing process of a composite optical element according to Example 1 of the present invention.

【図2】本発明の実施例1の複合型光学部品に蒸着膜を
設けたものの縦断面図である。
FIG. 2 is a longitudinal cross-sectional view of a composite optical component according to Example 1 of the present invention provided with a vapor deposited film.

【符号の説明】[Explanation of symbols]

1  ガラス基材 2  硬化性樹脂 3  透明ゴムエライトマー 4  硬化性樹脂層 6  紫外線 1 Glass base material 2 Curable resin 3 Transparent rubber elastomer 4 Curable resin layer 6. Ultraviolet rays

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  光学ガラスにより形成した基材とこの
基材表面に形成した硬化性樹脂層とからなる複合型光学
部品において、前記硬化性樹脂との屈折率差が−0.0
005〜+0.0005でかつアッベ数差が−1〜+1
の範囲にある透明ゴムエラストマー粉末粒子を硬化性樹
脂層内に5〜70重量%含有し、その含有率が前記基材
側で最も多くかつ表面側で最も少なくなるように傾斜的
に分布したことを特徴とする複合型光学部品。
1. A composite optical component comprising a base material made of optical glass and a curable resin layer formed on the surface of this base material, wherein the difference in refractive index with the curable resin is -0.0.
005 to +0.0005 and the Abbe number difference is -1 to +1
The curable resin layer contains 5 to 70% by weight of transparent rubber elastomer powder particles falling within the range of 5 to 70% by weight, and is distributed in a gradient manner so that the content is highest on the base material side and lowest on the surface side. A composite optical component featuring:
【請求項2】  前記透明ゴムエラストマーに表面処理
を施したことを特徴とする請求項1記載の複合型光学部
品。
2. The composite optical component according to claim 1, wherein the transparent rubber elastomer is surface-treated.
JP3083428A 1991-03-22 1991-03-22 Composite type optical part Withdrawn JPH04294302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3083428A JPH04294302A (en) 1991-03-22 1991-03-22 Composite type optical part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3083428A JPH04294302A (en) 1991-03-22 1991-03-22 Composite type optical part

Publications (1)

Publication Number Publication Date
JPH04294302A true JPH04294302A (en) 1992-10-19

Family

ID=13802173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3083428A Withdrawn JPH04294302A (en) 1991-03-22 1991-03-22 Composite type optical part

Country Status (1)

Country Link
JP (1) JPH04294302A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001007938A1 (en) * 1999-07-23 2001-02-01 Nikon Corporation Resin-bond type optical element, production method therefor and optical article
JP2004317734A (en) * 2003-04-15 2004-11-11 Fuji Photo Film Co Ltd Antireflection coating, its manufacturing method, antireflection film, and image display device
JP2009227861A (en) * 2008-03-24 2009-10-08 Washi Kosan Co Ltd Primer composition and plastic lens

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001007938A1 (en) * 1999-07-23 2001-02-01 Nikon Corporation Resin-bond type optical element, production method therefor and optical article
JP2004317734A (en) * 2003-04-15 2004-11-11 Fuji Photo Film Co Ltd Antireflection coating, its manufacturing method, antireflection film, and image display device
JP2009227861A (en) * 2008-03-24 2009-10-08 Washi Kosan Co Ltd Primer composition and plastic lens

Similar Documents

Publication Publication Date Title
US7070862B1 (en) Resin-bond type optical element, production method therefor and optical article
KR100852561B1 (en) Hard-coated film, method of manufacturing the same, optical device, and image display
KR100852562B1 (en) Hard-coated antiglare film, method of manufacturing the same, optical device, polarizing plate, and image display
KR100917949B1 (en) Hard-coated antiglare film, polarizing plate, image display, and method of manufacturing hard-coated antiglare film
JP4080520B2 (en) Antiglare hard coat film, method for producing antiglare hard coat film, optical element, polarizing plate and image display device
CN104592703B (en) (methyl) acrylic resin composition and (methyl) acrylic resin film using the composition
GB2144436A (en) Optical lenses having a scratch-resistant coating
JPS5948017B2 (en) How to protect plastic surfaces
JPH11504875A (en) Adhesive photochromic matrix layer used for optical products
JP2002267815A (en) Reflection preventive molded part and method for manufacturing the same
US11708510B2 (en) Optical adhesive
JP2005031282A (en) Resin composition for optical element, resin cured product for optical element, and optical element
KR20020077152A (en) Antireflection substrate with weak reflective color
CN110591490A (en) Anti-fingerprint coating composition
JP2010169708A (en) Composite optical element
JP2000053921A (en) Composition for forming low reflectance coating
JPH04294302A (en) Composite type optical part
WO1997015858A1 (en) Higlhy refractive plastic spectacle lenses
KR20110095464A (en) Composition for manufacturing anti-glare film, and anti-glare film prepared by using the same
JPH04294303A (en) Composite type optical part
KR20050050591A (en) Antiglare film
US2575998A (en) Optical element of polymerized methacrylate resin coated with thin film of thermoset resin
JPH0228267A (en) Coating composition
CN218115338U (en) Wear-resisting high printing opacity lens protection film and lens protection architecture
CN210803757U (en) Anti-reflection film

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514