JPH0429402A - Plane antenna for satellite broadcast reception - Google Patents

Plane antenna for satellite broadcast reception

Info

Publication number
JPH0429402A
JPH0429402A JP13307290A JP13307290A JPH0429402A JP H0429402 A JPH0429402 A JP H0429402A JP 13307290 A JP13307290 A JP 13307290A JP 13307290 A JP13307290 A JP 13307290A JP H0429402 A JPH0429402 A JP H0429402A
Authority
JP
Japan
Prior art keywords
waveguide
electromagnetic waves
antenna
plane antenna
feed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13307290A
Other languages
Japanese (ja)
Inventor
Shoichi Furukawa
昌一 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP13307290A priority Critical patent/JPH0429402A/en
Publication of JPH0429402A publication Critical patent/JPH0429402A/en
Pending legal-status Critical Current

Links

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

PURPOSE:To offer a wideband plane antenna with the same cross polarization characteristic and input VSWR as that of a parabolic antenna by using a feed horn used in the parabolic antenna by miniaturizing as the unit reception element of the plane antenna. CONSTITUTION:A large number of feed horns 1 are mounted by arranging at the outside box 10 of the plane antenna as the unit reception elements of the antenna, and the oscillation probe 5 of each feed horn 1 is connected to a connection line 11 so as to keep an equal distance from the feed point A of the plane antenna, and a voltage induced on the oscillation probe 5 of each unit reception element is fetched in the feed point A so as to be set in-phase, and it is drawn out to the outside from the feed point A on the connection line 11, which is set as the reception signal of the plane antenna.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、衛星放送の受信アンテナ装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a receiving antenna device for satellite broadcasting.

近年、衛星放送の受信アンテナとしてパラボラアンテナ
や平面アンテナが開発されており、さらに平面アンテナ
としては、マイクロストリップアンテナやスロットアン
テナ等が開発されている。
In recent years, parabolic antennas and planar antennas have been developed as receiving antennas for satellite broadcasting, and microstrip antennas, slot antennas, and the like have also been developed as planar antennas.

〔従来の技術〕[Conventional technology]

従来のパラボラアンテナは、効率良く電磁波を集めるこ
とができ、受信可能な周波数帯域も広帯域であり、損失
も少ないという利点があるが、反射鏡の鏡面精度に高い
精度が要求されて製造コストが高くなることや、設置場
所を広くとることや、反射鏡やフィードホーンに雪が付
着しやす(、雪の付着により受信状態が悪くなるといっ
た問題点があり、また従来のマイクロストリップアンテ
ナやスロットアンテナ等の平面アンテナにおいては、設
置場所の制約が少なくなり、雪の付着もしにくいという
利点があるが、交差偏波特性、入力VSWR共に狭帯域
となり、また、アンテナ素子への給N’lA路における
損失が大きいといった問題点があった。
Conventional parabolic antennas have the advantage of being able to collect electromagnetic waves efficiently, have a wide receivable frequency band, and have little loss, but they require high precision in the mirror surface of the reflector, making manufacturing costs high. There are problems such as the installation space is large, snow tends to stick to the reflector and feed horn (snow builds up, and the reception condition worsens), and conventional microstrip antennas, slot antennas, etc. Planar antennas have the advantage that there are fewer restrictions on the installation location and are less prone to snow buildup, but both cross-polarization characteristics and input VSWR have narrow bands, and losses in the N'lA path feeding the antenna element There was a problem with the large amount of

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、平面アンテナの単位受信素子としてフィード
ホーンを使用することにより、交差偏波特性、人力VS
WR共に広帯域の平面アンテナを提供することを目的と
する。
By using a feed horn as a unit receiving element of a planar antenna, the present invention improves cross-polarization characteristics, human power VS.
The purpose is to provide a wideband planar antenna for both WR and WR.

〔課題を解決するための手段〕[Means to solve the problem]

第1図及び第2図に示すように管内波長が異なる直交し
た2つの電磁波のモードを有する導波管3の一端をホー
ン形状の一次放射器2とし、同導波管の他端に終端面6
と短絡板4とを設け、同導波管の中間に励振プローブ5
を設けたフィードホーン1を多数並べて取り付けて、前
記一次放射器2により入射された衛星放送信号の電磁波
を効率良く集めて導波管3へ導き、同導波管3で入射さ
れた円偏波の電磁波を直線偏波の電磁波に変換し、同直
線偏波の電磁波を前記励振プローブ5に結合させて、前
記終端面6と短絡板4とで電磁波を反射させることによ
り前記励振プローブ5に対してインピーダンスを整合さ
せて、同励振プローブ5に誘起する電圧を取り出して単
位受信素子の出力とし、各単位受信素子間を接続して前
記出力を取り出してアンテナの受信信号としている。
As shown in FIGS. 1 and 2, one end of a waveguide 3 having two orthogonal electromagnetic wave modes with different internal wavelengths is a horn-shaped primary radiator 2, and the other end of the waveguide is a terminal surface. 6
and a shorting plate 4, and an excitation probe 5 is provided in the middle of the waveguide.
A large number of feed horns 1 are installed in a row, and the electromagnetic waves of the satellite broadcasting signal incident on the primary radiator 2 are efficiently collected and guided to the waveguide 3, and the circularly polarized waves incident on the waveguide 3 are by converting the electromagnetic waves into linearly polarized electromagnetic waves, coupling the same linearly polarized electromagnetic waves to the excitation probe 5, and reflecting the electromagnetic waves at the termination surface 6 and the shorting plate 4. The impedances are matched, and the voltage induced in the co-excitation probe 5 is taken out as the output of the unit receiving element, and each unit receiving element is connected and the output is taken out as a reception signal of the antenna.

〔作用〕[Effect]

本発明は上記に説明したように平面アンテナの単位受信
素子としてパラボラアンテナに使用−されているフィー
ドホーンを小型にして使用しており、従来のプリント基
板上にマイクロストリップラインやスロットを設けて単
位受信素子としたものより、交差偏波特性、入力VSW
R共に広帯域の平面アンテナとすることができる。
As explained above, the present invention uses the feed horn used in parabolic antennas as a unit receiving element of a planar antenna in a smaller size. Cross polarization characteristics, input VSW from the receiving element
Both R can be used as broadband planar antennas.

【実施例〕【Example〕

第1図は本発明の一実施例を示すフィードホーンの開口
からみた正面図であり、1はフィードホーンであり、同
フィードホーン1は管内波長が異なる直交した2つの電
磁波のモードが発生するように、導波管3の開口が長径
(y)と短径(ト)を有するように略楕円形に形成され
ている。
FIG. 1 is a front view seen from the opening of a feed horn showing an embodiment of the present invention. 1 is a feed horn, and the feed horn 1 is designed to generate two orthogonal electromagnetic wave modes with different pipe wavelengths. The opening of the waveguide 3 is formed into a substantially elliptical shape having a major axis (y) and a minor axis (g).

同導波管3の一端をホーン形状に形成して一次放射器2
としており、一次放射器2で入射された衛星放送信号の
電磁波を効率良く集めて前記導波管3に導いている。
The primary radiator 2 is formed by forming one end of the waveguide 3 into a horn shape.
The electromagnetic waves of the satellite broadcasting signal incident on the primary radiator 2 are efficiently collected and guided to the waveguide 3.

第1図で垂直方向をY軸、水平方向をX軸とすると、導
波管3に入射される円偏波の電磁波はX軸方向の電界成
分Y1とX軸方向の電界成分X1とに分けることができ
、YlとXlは90度位相がずれた状態にある。導波管
3の開口の水平方向の短径をX、垂直方向の長径をyと
してあり、導波管3の内部を伝播する電磁波の管内波長
は構造的に電界成分X1の管内波長を電界成分Y、の管
内波長より短くすることができ、周波数は変化しないた
。め管内の伝播速度は電界成分X1の方が遅れ、Y、と
X、の位相差がOになる位置では入射された円偏波が直
線偏波に変換された状態となり、その位置に励振プロー
ブ5を取り付けるようにし、取り付は角度をYlとXl
の合成ベクトルの方向に合致させるためにY軸及びX軸
に対して45度の角度をなすようにしている。
In Figure 1, if the vertical direction is the Y axis and the horizontal direction is the X axis, the circularly polarized electromagnetic wave incident on the waveguide 3 is divided into an electric field component Y1 in the X axis direction and an electric field component X1 in the X axis direction. , and Yl and Xl are out of phase by 90 degrees. The horizontal minor axis of the opening of the waveguide 3 is X, and the vertical major axis is y, and the internal wavelength of the electromagnetic wave propagating inside the waveguide 3 is structurally the internal wavelength of the electric field component X1. The wavelength can be made shorter than the wavelength within the tube of Y, and the frequency does not change. The propagation speed in the tube is slower for electric field component X1, and at a position where the phase difference between Y and 5, and the angle of installation is Yl and Xl.
It is made to form an angle of 45 degrees with respect to the Y axis and the X axis in order to match the direction of the resultant vector.

第2図は本発明の一実施例を示すフィードホーンの側面
図であり、導波管3の開口部より導波管3の長手方向の
長さZlの位置に前記励振プローブ5が取り付けられて
おり、このZIの長さは導波管3に入射された円偏波が
直線偏波に変換される長さに合致させている。
FIG. 2 is a side view of a feed horn showing an embodiment of the present invention, in which the excitation probe 5 is attached at a position a length Zl in the longitudinal direction of the waveguide 3 from the opening of the waveguide 3. The length of this ZI is made to match the length at which a circularly polarized wave incident on the waveguide 3 is converted into a linearly polarized wave.

さらに、励振プローブ5の取り付は位置より長手方向に
zzlれた位置に終端面6を設け、同しく i 離れた
位置に短絡板4の先端部分が(るように前記終端面6に
短絡板4を取り付けて、同終端面6で管内波長の長い方
の電磁波を反射させ、短絡板4で管内波長の短い方の電
磁波を反射させることにより前記励振プローブ5に対し
てインピーダンスを整合させて、同励振プローブ5に誘
起される電圧が大きくなるようにしている。
Furthermore, in order to attach the excitation probe 5, the terminal surface 6 is provided at a position zzl in the longitudinal direction from the position, and the short-circuit plate 6 is attached to the terminal surface 6 so that the tip of the short-circuit plate 4 is located at a position (i) away from the position. 4, the terminal surface 6 reflects electromagnetic waves with longer wavelengths in the tube, and the shorting plate 4 reflects electromagnetic waves with shorter wavelengths in the tube, thereby matching the impedance to the excitation probe 5. The voltage induced in the same excitation probe 5 is made to be large.

短絡板4は金属性を使用し、機械的強度がもてばできる
だけ薄いものを使用するようにし、導波管3の側面に励
振プローブ引き出し部8を設けて、励振プローブ5を励
振プローブ引き出し部8の内部に設けた励振プローブ支
持材7により支持して導波管3の外部に引き出すように
している。
The shorting plate 4 should be made of metal, and should be as thin as possible if it has mechanical strength.An excitation probe extraction part 8 is provided on the side of the waveguide 3, and the excitation probe 5 is connected to the excitation probe extraction part. It is supported by an excitation probe support member 7 provided inside the waveguide 8 and drawn out to the outside of the waveguide 3.

第3図は本発明の一実施例を示す平面アンテナの受信部
の正面図、第4図は同上の平面アンテナの破断側面図で
あり、フィードホーン1をアンテナの単位受信素子とし
て平面アンテナ外箱10に多数並べて取り付けてあり、
各フィードホーン1の励振プローブ5を平面アンテナの
給電点Aから等距離になるように接続線路11で接続し
、各単位受信素子の励振プローブ5に誘起する電圧を同
位相になるように給電点Aに取り出して、給電点Aから
外部へ接続線路11で引き出して平面アンテナの受信信
号としている。
FIG. 3 is a front view of a receiving section of a planar antenna showing an embodiment of the present invention, and FIG. 4 is a cutaway side view of the same planar antenna, in which the feed horn 1 is used as a unit receiving element of the antenna, and the outer box of the planar antenna is A large number of them are installed side by side in 10,
The excitation probes 5 of each feed horn 1 are connected by a connection line 11 so as to be equidistant from the feed point A of the planar antenna, and the voltages induced in the excitation probes 5 of each unit receiving element are in the same phase at the feed point. The signal is taken out from the feeding point A, and is led out from the feeding point A via a connecting line 11 to serve as a reception signal for the planar antenna.

第1図において、逆旋の円偏波を受信しようとする場合
は、垂直方向のY軸に対して反対側に励振プローブ5を
移動して、同Y軸に対して45度の角度をなすように取
り付けて単位受信素子とし、第3図のように並べて接続
すればよい。この場合単位受信素子の長径は第3図の同
きと90度異なるようにして取り付けるようにする。
In Fig. 1, if you want to receive counter-rotating circularly polarized waves, move the excitation probe 5 to the opposite side to the vertical Y-axis and make an angle of 45 degrees with the Y-axis. They may be attached as shown in FIG. 3 to form a unit receiving element, and then connected side by side as shown in FIG. In this case, the unit receiving element is attached so that its major axis is different from that shown in FIG. 3 by 90 degrees.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば平面アンテナの単
位受信素子としてパラボラアンテナに使用されているフ
ィードホーンを小型にして使用するようにしており、パ
ラボラアンテナ並みの交差偏波特性、入力VSWR共に
広帯域の平面アンテナを提供することができ、パラボラ
アンテナに比較して設置場所の制約が少なくなり、雪の
付着もしにくくなり、衛星放送受信アンテナの性能向上
に寄与するところが大きい。
As explained above, according to the present invention, the feed horn used in a parabolic antenna is used in a smaller size as a unit receiving element of a planar antenna, and the cross-polarization characteristics and input VSWR are comparable to those of a parabolic antenna. Both can provide a wideband planar antenna, have fewer restrictions on installation locations than parabolic antennas, and are less prone to snow buildup, greatly contributing to improving the performance of satellite broadcast receiving antennas.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すフィードホーンの開口
からみた正面図、第2図は同上のフィードホーンの側面
図、第3図は本発明の一実施例を示す平面アンテナの受
信部の正面図、第4図は同上の平面アンテナの破断側面
図である。 1−−−−−−フィードホーン、2−−−−−一次放射
器、3導波管、4− 短絡板、5− 励振プローブ、6
− 終端面、7−・・−励振プローブ支持材、8励振プ
ローブ引き出し部、10 −  平面アンテナ外箱、1
1−  接続線路。
FIG. 1 is a front view seen from the opening of a feed horn showing an embodiment of the present invention, FIG. 2 is a side view of the same feed horn, and FIG. 3 is a receiving section of a planar antenna showing an embodiment of the present invention. FIG. 4 is a cutaway side view of the same planar antenna. 1--Feed horn, 2--Primary radiator, 3 Waveguide, 4- Shorting plate, 5- Excitation probe, 6
- Termination surface, 7 - excitation probe support material, 8 excitation probe drawer part, 10 - flat antenna outer box, 1
1- Connection line.

Claims (1)

【特許請求の範囲】[Claims]  管内波長が異なる直交した2つの電磁波のモードを有
する導波管の一端をホーン形状の一次放射器とし、同導
波管の他端に終端面と短絡板とを設け、同導波管の中間
に励振プローブを設けたフィードホーンを多数並べて取
り付けて、前記一次放射器により入射された衛星放送信
号の電磁波を効率良く集めて前記導波管へ導き、同導波
管で入射された円偏波の電磁波を直線偏波の電磁波に変
換し、同直線偏波の電磁波を前記励振プローブに結合さ
せて、前記終端面と短絡板とで電磁波を反射させること
により前記励振プローブに対してインピーダンスを整合
させて、同励振プローブに誘起する電圧を取り出して単
位受信素子の出力とし、各単位受信素子間を接続して前
記出力を取り出して受信信号とすることを特徴とする衛
星放送受信用平面アンテナ。
One end of the waveguide, which has two orthogonal electromagnetic wave modes with different guide wavelengths, is used as a horn-shaped primary radiator, and the other end of the waveguide is provided with a termination surface and a short-circuit plate. A large number of feed horns equipped with excitation probes are installed in a row in order to efficiently collect the electromagnetic waves of the satellite broadcasting signal incident on the primary radiator, guide them to the waveguide, and generate circularly polarized waves incident on the waveguide. converting the electromagnetic waves into linearly polarized electromagnetic waves, coupling the same linearly polarized electromagnetic waves to the excitation probe, and matching the impedance to the excitation probe by reflecting the electromagnetic waves at the termination surface and the shorting plate. A planar antenna for receiving satellite broadcasting, characterized in that the voltage induced in the coexcitation probe is extracted and used as an output of a unit receiving element, and each unit receiving element is connected to take out the output and used as a received signal.
JP13307290A 1990-05-23 1990-05-23 Plane antenna for satellite broadcast reception Pending JPH0429402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13307290A JPH0429402A (en) 1990-05-23 1990-05-23 Plane antenna for satellite broadcast reception

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13307290A JPH0429402A (en) 1990-05-23 1990-05-23 Plane antenna for satellite broadcast reception

Publications (1)

Publication Number Publication Date
JPH0429402A true JPH0429402A (en) 1992-01-31

Family

ID=15096193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13307290A Pending JPH0429402A (en) 1990-05-23 1990-05-23 Plane antenna for satellite broadcast reception

Country Status (1)

Country Link
JP (1) JPH0429402A (en)

Similar Documents

Publication Publication Date Title
US9742069B1 (en) Integrated single-piece antenna feed
US4978965A (en) Broadband dual-polarized frameless radiating element
US5940036A (en) Broadband circularly polarized dielectric resonator antenna
JP3195923B2 (en) Circularly polarized dielectric antenna
US6304226B1 (en) Folded cavity-backed slot antenna
US5619173A (en) Dual polarization waveguide including means for reflecting and rotating dual polarized signals
US4398199A (en) Circularly polarized microstrip line antenna
JP2001320228A (en) Dielectric leakage wave antenna
US7576703B1 (en) Parallel waveguide slot coupler with reactive buffering region
WO2011030703A1 (en) Inverse-l shaped antenna
US8305157B2 (en) Waveguide adapter for converting linearly polarized waves into a circularly polarized wave including an impedance matching metal grate member
US6094175A (en) Omni directional antenna
US4199764A (en) Dual band combiner for horn antenna
CN111585015A (en) Broadband circularly polarized eight-arm slot helical antenna with microstrip line coupling feed
US6661390B2 (en) Polarized wave receiving apparatus
CA2671118C (en) Waveguide radiator, in particular for synthetic aperture radar systems
US4590479A (en) Broadcast antenna system with high power aural/visual self-diplexing capability
US5359336A (en) Circularly polarized wave generator and circularly polarized wave receiving antenna
US6008771A (en) Antenna with nonradiative dielectric waveguide
US6154183A (en) Waveguide antenna
JPH0429402A (en) Plane antenna for satellite broadcast reception
JP2641944B2 (en) Traveling wave fed coaxial slot antenna
JP3662446B2 (en) Dual frequency feed
CN112310624A (en) Ku-waveband elliptical waveguide standing wave array antenna and standing wave bandwidth expanding method
Lee A compact QK-band dual frequency feed horn