JPH04293651A - Pseudo vehicle speed calculating method for four-wheel drive vehicle - Google Patents

Pseudo vehicle speed calculating method for four-wheel drive vehicle

Info

Publication number
JPH04293651A
JPH04293651A JP8353091A JP8353091A JPH04293651A JP H04293651 A JPH04293651 A JP H04293651A JP 8353091 A JP8353091 A JP 8353091A JP 8353091 A JP8353091 A JP 8353091A JP H04293651 A JPH04293651 A JP H04293651A
Authority
JP
Japan
Prior art keywords
vehicle speed
pseudo
wheel
speed
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8353091A
Other languages
Japanese (ja)
Other versions
JP3410112B2 (en
Inventor
Mitsuru Makabe
眞壁 満
Kazunari Tezuka
一成 手塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP08353091A priority Critical patent/JP3410112B2/en
Publication of JPH04293651A publication Critical patent/JPH04293651A/en
Application granted granted Critical
Publication of JP3410112B2 publication Critical patent/JP3410112B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve the control capability and responsiveness by comparing both change quantities of the first vehicle speed by the lowest wheel speed and the second vehicle speed integrated with the acceleration/deceleration of a G sensor, judging the grip and slip of a wheel, and selectively using the change quantity with higher precision to calculate the pseudo vehicle speed. CONSTITUTION:Wheel speed sensors 15a-15d are provided on the right and left front wheels 8R, 8L and rear wheels 13R, 13L respectively to individually detect the wheel speed omega. A G sensor 16 is provided at the center position of a vehicle body to detect the longitudinal acceleration/deceleration G of the vehicle body. The primary acceleration/deceleration Ga of the vehicle body and the acceleration/deceleration Gb of the horizontal component of the vehicle body due to the gravitational force at the time of traveling on a slope are added and outputted. A steering angle sensor 18 detecting the steering angle phiat the time of turning is provided on a steering device 17, and these sensor signals are inputted to a slip control unit 30. The slip control unit 30 continuously calculates the pseudo vehicle speed Vr at the time of traveling under acceleration/deceleration.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、4輪駆動車のトラクシ
ョン制御(TCS)やアンチブレーキ制御(ABS)に
用いられる車両の対地車速を疑似的に算出する疑似車速
算出方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for calculating a pseudo vehicle speed for use in traction control (TCS) and anti-brake control (ABS) of a four-wheel drive vehicle.

【0002】0002

【従来の技術】近年、車両においては加速時のスリップ
を防止するトラクション制御、ブレーキ時のスリップを
防止するアンチブレーキ制御が現実に行われつつある。 このようなスリップ時の制御においては、必然的に車輪
グリップ時のみならずスリップ時の対地車速も高精度で
検出することが必要不可欠になる。ここで、特に加速ス
リップ時に関しては、2輪駆動車のように駆動輪と従動
輪を有するものにあっては、駆動輪のスリップの際に従
動輪から対地車速を直接的に検出できる。しかし、4輪
駆動車の場合は全輪が駆動輪であるから4輪同時にスリ
ップすることになり、2輪駆動車のように対地車速を検
出することはできない。そこで、4輪同時にスリップす
る場合に、車輪速以外の手段を用いて対地車速に高精度
で一致する疑似車速を算出することが要求される。
BACKGROUND OF THE INVENTION In recent years, traction control to prevent slips during acceleration and anti-brake control to prevent slips during braking have been implemented in vehicles. In such control during slipping, it is essential to detect with high precision not only the wheel grip but also the ground vehicle speed during slipping. Here, particularly regarding the acceleration slip, in a vehicle having a driving wheel and a driven wheel such as a two-wheel drive vehicle, the ground vehicle speed can be directly detected from the driven wheel when the driving wheel slips. However, in the case of a four-wheel drive vehicle, since all wheels are drive wheels, all four wheels slip at the same time, and the ground speed cannot be detected as in a two-wheel drive vehicle. Therefore, when all four wheels slip at the same time, it is required to calculate a pseudo vehicle speed that matches the ground vehicle speed with high accuracy using a means other than wheel speed.

【0003】従来、上記疑似車速の算出に関しては、例
えば特開昭63−11470号公報の先行技術がある。 ここで、制動開始時に車輪速を初期値として車体加減速
度を積分して疑似車速を求め、積分回路は一定時間ごと
にリセットして疑似車速を車輪速と同じ値にすることが
示されている。また、特開昭63−41273号公報の
先行技術において、上記先行技術と同様に疑似車速を求
め、且つ車体減速度が所定値以上になること、及び車輪
加速度のピーク値が所定値以下であることに基づいて、
減速度の積分を中止して車輪速から疑似車速を求めるこ
とが示されている。
Conventionally, regarding the calculation of the above-mentioned pseudo vehicle speed, there is a prior art technique disclosed in, for example, Japanese Patent Application Laid-open No. 11470/1983. Here, it is shown that at the start of braking, the wheel speed is the initial value, and the acceleration/deceleration of the vehicle body is integrated to obtain the pseudo vehicle speed, and the integration circuit is reset at regular intervals to make the pseudo vehicle speed the same value as the wheel speed. . Furthermore, in the prior art of Japanese Patent Application Laid-Open No. 63-41273, a pseudo vehicle speed is obtained in the same manner as in the above-mentioned prior art, and the vehicle body deceleration is greater than or equal to a predetermined value, and the peak value of wheel acceleration is less than or equal to a predetermined value. Based on that,
It is shown that the integration of deceleration is stopped and the pseudo vehicle speed is determined from the wheel speed.

【0004】0004

【発明が解決しようとする課題】ところで、上記先行技
術のものにあっては、制動時に一時的に車体減速度を積
分して疑似車速を求めるものであるから、車両の走行中
に車体減速度を用いて連続的に疑似車速を算出すること
ができない。また、Gセンサの車体減速度を積分した値
のみで疑似車速を求めているので、実際にスリップを発
生するときと発生しないときの疑似車速を正確に算出す
ることができず、さらにGセンサの検出値に誤差を生じ
る場合に疑似車速の値もそのまま誤差を生じることにな
って、高い精度を得ることが難しい等の問題がある。
[Problems to be Solved by the Invention] By the way, in the prior art described above, since the pseudo vehicle speed is obtained by temporarily integrating the vehicle body deceleration during braking, it is difficult to calculate the vehicle body deceleration while the vehicle is running. It is not possible to continuously calculate the pseudo vehicle speed using In addition, since the pseudo vehicle speed is calculated only from the integrated value of the G sensor's vehicle body deceleration, it is not possible to accurately calculate the pseudo vehicle speed when slipping actually occurs and when it does not occur. When an error occurs in the detected value, an error also occurs in the value of the pseudo vehicle speed, resulting in problems such as difficulty in obtaining high accuracy.

【0005】本発明は、この点に鑑みてなされたもので
、加減速走行時の車輪のグリップ及びスリップ時の疑似
車速を、車輪速センサとGセンサの信号を用いて連続的
に高精度で算出することを目的とする。
[0005] The present invention has been made in view of this point, and uses signals from wheel speed sensors and G sensors to continuously and accurately measure the grip of wheels during acceleration/deceleration and the pseudo vehicle speed when slipping. The purpose is to calculate.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
、本発明は、各車輪の車輪速を検出する車輪速センサ、
車体の加減速度を検出するGセンサを備え、最低車輪速
による第1の車速の単位時間当たりの変化量と、車体の
加減速度を積分して積算することで求める第2の車速の
単位時間当たりの変化量とを算出し、両変化量の差が小
さい場合は第1の車速の変化量を用いて疑似車速を算出
し、大きい場合は第2の車速の変化量を用いて疑似車速
を連続的に算出するものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a wheel speed sensor for detecting the wheel speed of each wheel;
Equipped with a G sensor that detects the acceleration/deceleration of the vehicle body, the amount of change per unit time in the first vehicle speed due to the lowest wheel speed and the second vehicle speed per unit time determined by integrating and accumulating the acceleration/deceleration of the vehicle body. If the difference between the two changes is small, calculate the pseudo vehicle speed using the first change in vehicle speed, and if it is large, use the second change in vehicle speed to continuously calculate the pseudo vehicle speed. It is calculated based on the

【0007】[0007]

【作用】上記方法により、4輪駆動での走行時に最低車
輪速による第1の車速の変化量と、車体の加減速度によ
る第2の車速の変化量との差により車輪のグリップとス
リップが判断され、これらのグリップとスリップ時にそ
れぞれ精度の高い変化量を選択使用して疑似車速を算出
することで、走行中に常に高精度の疑似車速が連続して
算出される。
[Operation] By the above method, wheel grip and slip are determined based on the difference between the amount of change in the first vehicle speed due to the lowest wheel speed and the amount of change in the second vehicle speed due to acceleration/deceleration of the vehicle body when driving in four-wheel drive. By selecting and using these highly accurate changes in grip and slip to calculate the pseudo vehicle speed, highly accurate pseudo vehicle speeds are continuously calculated during driving.

【0008】[0008]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図2において、4輪駆動車の駆動系とトラクショ
ン制御系の概略について説明する。符号1はエンジンで
あり、このエンジン1がクラッチ2、変速機3を介しセ
ンターデフ等のトランスファ装置4に連結して動力配分
される。トランスファ装置4の一方の出力側はフロント
ドライブ軸5、フロントディファレンシャル6、車軸7
を介して左右前輪8L,8Rに連結され、他方の出力側
はリヤドライブ軸9、プロペラ軸10、リヤディファレ
ンシャル11、車軸12を介して左右後輪13L,13
Rに連結されて、4輪駆動走行するように構成される。
Embodiments Hereinafter, embodiments of the present invention will be explained based on the drawings. Referring to FIG. 2, an outline of the drive system and traction control system of a four-wheel drive vehicle will be explained. Reference numeral 1 denotes an engine, and this engine 1 is connected to a transfer device 4 such as a center differential via a clutch 2 and a transmission 3 to distribute power. One output side of the transfer device 4 has a front drive shaft 5, a front differential 6, and an axle 7.
The other output side is connected to the left and right rear wheels 13L, 13 via the rear drive shaft 9, propeller shaft 10, rear differential 11, and axle 12.
R and is configured to run in four-wheel drive.

【0009】制御系について説明すると、左右の前輪8
L,8Rと後輪13L,13Rにそれぞれ車輪速ωを各
別に検出するように車輪速センサ15a〜15dが設け
られる。また、車体の中心位置にGセンサ16が車体の
前後方向の加減速度Gを検出するように設けられるが、
この場合に例えば車体本来の加減速度Gaと、坂道走行
時の重力による車体水平成分の加減速度Gbとを加算し
て出力する。更に、ステアリング装置17に旋回時の舵
角φを検出する舵角センサ18が設けられ、これらのセ
ンサ信号がスリップ制御ユニット30に入力する。スリ
ップ制御ユニット30は後述するように、加減速の走行
時に疑似車速Vrを連続して算出し、この疑似車速Vr
、車輪速ω、舵角φ等によりスリップ時のトラクション
制御信号を決定して、エンジン制御ユニット20に出力
する。エンジン制御ユニット20はトラクション制御信
号により例えば点火時期リタード制御、燃料噴射減量制
御し、エンジン出力を強制的に制限してスリップ防止す
るように構成される。
To explain the control system, the left and right front wheels 8
Wheel speed sensors 15a to 15d are provided for the rear wheels L, 8R and the rear wheels 13L, 13R, respectively, so as to separately detect the wheel speed ω. Further, a G sensor 16 is installed at the center of the vehicle body to detect acceleration/deceleration G in the longitudinal direction of the vehicle body.
In this case, for example, the acceleration/deceleration Ga inherent to the vehicle body and the acceleration/deceleration Gb of the horizontal component of the vehicle body due to gravity when traveling on a slope are added and output. Further, the steering device 17 is provided with a steering angle sensor 18 that detects the steering angle φ during turning, and these sensor signals are input to the slip control unit 30. As will be described later, the slip control unit 30 continuously calculates a pseudo vehicle speed Vr during acceleration/deceleration driving, and calculates the pseudo vehicle speed Vr.
, wheel speed ω, steering angle φ, etc., determines a traction control signal at the time of slip, and outputs it to the engine control unit 20. The engine control unit 20 is configured to perform, for example, ignition timing retard control and fuel injection reduction control based on the traction control signal, and forcibly limit engine output to prevent slippage.

【0010】図1において、スリップ制御ユニット30
の制御系について説明する。先ず、制御原理について説
明すると、4輪駆動の車輪速ωの最低車輪速ωminに
より第1の車速Vminを検出することができ、同時に
Gセンサの積分値を積算することにより第2の車速VG
を求めることができる。そこで、車輪グリップ時にはこ
れらの第1、第2の車速Vmin,VGは略一致して変
化し、加減速において車輪スリップすると第1の車速V
minのみが大きく変動した挙動になる。従って、第1
の車速と第2の車速の変化量ΔVmin,ΔVGを比較
判断することで、車輪のグリップとスリップを判定する
ことができる。このため、車輪グリップ時には精度の高
い第1の車速の変化量ΔVminを用いて疑似車速Vr
を算出し、車輪スリップ時には対地車速に近いGセンサ
の積分値により求められる第2の車速の変化量ΔVGを
用いて疑似車速Vrを算出すれば、疑似車速Vrを高精
度で連続して求めることが可能になる。
In FIG. 1, a slip control unit 30
The control system will be explained. First, to explain the control principle, the first vehicle speed Vmin can be detected by the minimum wheel speed ωmin of the four-wheel drive wheel speed ω, and the second vehicle speed VG can be detected by simultaneously integrating the integral value of the G sensor.
can be found. Therefore, when the wheels are gripped, these first and second vehicle speeds Vmin and VG change substantially in unison, and when the wheels slip during acceleration and deceleration, the first vehicle speed V
The behavior is that only min fluctuates greatly. Therefore, the first
The grip and slip of the wheels can be determined by comparing and determining the vehicle speed and the changes in the second vehicle speed ΔVmin and ΔVG. Therefore, when the wheels are gripped, the highly accurate first vehicle speed change amount ΔVmin is used to set the pseudo vehicle speed Vr.
By calculating the pseudo vehicle speed Vr using the second vehicle speed change amount ΔVG obtained from the integral value of the G sensor close to the ground vehicle speed at the time of wheel slip, the pseudo vehicle speed Vr can be continuously obtained with high accuracy. becomes possible.

【0011】上記制御原理に基づき、スリップ制御ユニ
ット30は車輪速センサ15a〜15dの信号が入力す
る4輪車輪速検出部31、Gセンサ16の信号が入力す
る車体加減速度検出部32、及び舵角センサ18の信号
が入力する舵角検出部33を有して、各車輪速ω、加減
速度G及び舵角φをそれぞれ検出する。この車輪速ωは
最高車輪速判定部34に入力して最高車輪速ωmaxが
選択され、最高車輪速ωmaxは更にスリップ率算出部
35に入力して最も大きいスリップ率Sの算出に用いら
れる。上記車輪速ωは第1の車速算出部36に入力し、
最低車輪速ωminに基づいて第1の車速Vminを求
め、この第1の車速Vminは変化量算出部37に入力
し単位時間当たりの第1の車速の変化量ΔVminを算
出する。加減速度Gも変化量算出部38に入力し、上記
時間で加減速度Gを積分することで単位時間当たりの第
2の車速の変化量ΔVGを算出するのであり、これらの
変化量ΔVmin,ΔVGが疑似車速算出部39に入力
する。疑似車速算出部39は両変化量の差の絶対値と設
定値Kにより、 |ΔVG−ΔVmin|<K の場合は車輪グリップを判断して、疑似車速Vrを、V
r=Vr+ΔVmin により算出する。また、 |ΔVG−ΔVmin|≧K の場合は車輪スリップを判断して、疑似車速Vrを、V
r=Vr+ΔVG により算出する。
Based on the above control principle, the slip control unit 30 includes a four-wheel wheel speed detection section 31 to which the signals from the wheel speed sensors 15a to 15d are input, a vehicle acceleration/deceleration detection section 32 to which the signal from the G sensor 16 is input, and a steering wheel speed detection section 32 to which the signals from the G sensor 16 are input. It has a steering angle detection section 33 into which the signal from the angle sensor 18 is input, and detects each wheel speed ω, acceleration/deceleration G, and steering angle φ. This wheel speed ω is input to the maximum wheel speed determination unit 34 to select the maximum wheel speed ωmax, and the maximum wheel speed ωmax is further input to the slip ratio calculation unit 35 and used to calculate the largest slip ratio S. The wheel speed ω is input to the first vehicle speed calculation unit 36,
A first vehicle speed Vmin is determined based on the minimum wheel speed ωmin, and this first vehicle speed Vmin is input to a change amount calculating section 37 to calculate a first vehicle speed change amount ΔVmin per unit time. The acceleration/deceleration G is also input to the change amount calculation unit 38, and by integrating the acceleration/deceleration G over the above time, the second vehicle speed change amount ΔVG per unit time is calculated, and these change amounts ΔVmin, ΔVG are It is input to the pseudo vehicle speed calculation section 39. The pseudo vehicle speed calculation unit 39 determines the wheel grip based on the absolute value of the difference between the two amounts of change and the set value K. If |ΔVG−ΔVmin|<K, the pseudo vehicle speed calculation unit 39 determines the pseudo vehicle speed Vr, V
Calculated by r=Vr+ΔVmin. In addition, if |ΔVG−ΔVmin|≧K, wheel slip is determined and the pseudo vehicle speed Vr is set to V
Calculated by r=Vr+ΔVG.

【0012】上記疑似車速Vrはスリップ率算出部35
に入力し、これを車輪速ωに換算した値と最高車輪速ω
maxとの減算によりスリップ率Sを算出する。また、
疑似車速Vrと舵角φは目標スリップ率設定部40に入
力し、目標スリップ率Sdを例えば疑似車速Vrと舵角
φに対していずれも減少関数で設定する。そして、これ
らのスリップ率S,目標スリップ率Sdは制御信号出力
部41に入力して、両スリップ率の差ΔSに応じたトラ
クション制御信号を決定してエンジン制御ユニット20
に出力するようになっている。
The above-mentioned pseudo vehicle speed Vr is calculated by the slip rate calculating section 35.
and the value converted to wheel speed ω and the maximum wheel speed ω
The slip rate S is calculated by subtracting it from max. Also,
The pseudo vehicle speed Vr and the steering angle φ are input to the target slip ratio setting section 40, and the target slip ratio Sd is set, for example, by a decreasing function for both the pseudo vehicle speed Vr and the steering angle φ. These slip ratios S and target slip ratio Sd are input to the control signal output section 41 to determine a traction control signal according to the difference ΔS between the two slip ratios, and output the traction control signal to the engine control unit 20.
It is designed to output to .

【0013】次に、この実施例の作用について説明する
。先ず、エンジン運転時に変速機3を走行レンジにシフ
トすると、変速動力がトランスファ装置4に入力して配
分され、左右の前輪8L,8Rと後輪13L,13Rと
に伝達して4輪駆動走行する。そして、この4輪駆動走
行時において路面のμが比較的大きく、エンジン出力も
必要以上に大きくない条件では、仮に4輪のうちの1輪
または前後輪8L,8Rまたは13L,13Rがスリッ
プしても、デフロックやトルク配分制御によりスリップ
が防止される。そのため、大部分の車輪は常に路面にグ
リップして4輪駆動車の性能を発揮しながら走行するこ
とになり、このとき最低車輪速ωminによる第1の車
速Vminと、加減速度Gを積分した第2の車速VGは
等しくなって、図3のグリップの範囲のように略一致し
て変化する。一方、極度に路面μが低下したり、エンジ
ン出力が増大すると、最終的に4輪のグリップ力が減少
して4輪スリップを生じることになり、この場合は図3
のように第1の車速Vminのみが急激に上昇した状態
になる。このとき、車輪速センサ15a〜15d、Gセ
ンサ16、舵角センサ18の信号がスリップ制御ユニッ
ト30に入力して処理される。即ち、最低車輪速ωmi
nによる第1の車速Vminの単位時間当たりの変化量
ΔVminと、加減速度を積分した第2の車速VGの単
位時間当たりの変化量ΔVGとが算出され、これらの変
化量ΔVmin,ΔVGの差に基づいて疑似車速Vrが
算出される。そこで、上述の車輪グリップ時のように変
化量の差が小さい場合は精度の高い第1の車速Vmin
の変化量ΔVminを用いて疑似車速Vrが算出され、
その変化量の差が設定値K以上になると車輪スリップが
判断され、対地車速に近い第2の車速VGの変化量ΔV
Gを用いて疑似車速Vrが算出される。こうして、走行
中に車輪のグリップ、スリップの条件でそれぞれ最低車
輪速ωmin、加減速度Gに基づく変化量ΔVmin,
ΔVGを選択使用して、常に疑似車速Vrが高精度で連
続して算出されることになる。
Next, the operation of this embodiment will be explained. First, when the transmission 3 is shifted to the driving range while the engine is running, the shifting power is input to the transfer device 4 and distributed, and is transmitted to the left and right front wheels 8L, 8R and the rear wheels 13L, 13R for four-wheel drive driving. . When driving in four-wheel drive, under conditions where the road surface μ is relatively large and the engine output is not unnecessarily large, it is possible that one of the four wheels or the front and rear wheels 8L, 8R or 13L, 13R slips. However, slippage is prevented by differential lock and torque distribution control. Therefore, most of the wheels always grip the road surface and drive while exhibiting the performance of a four-wheel drive vehicle. At this time, the first vehicle speed Vmin based on the minimum wheel speed ωmin and the first vehicle speed The vehicle speeds VG of 2 are equal and change substantially in unison as shown in the grip range of FIG. On the other hand, if the road surface μ decreases extremely or the engine output increases, the grip force of the four wheels will eventually decrease and four-wheel slip will occur.
Only the first vehicle speed Vmin suddenly increases as shown in FIG. At this time, signals from the wheel speed sensors 15a to 15d, the G sensor 16, and the steering angle sensor 18 are input to the slip control unit 30 and processed. That is, the minimum wheel speed ωmi
The amount of change ΔVmin per unit time of the first vehicle speed Vmin due to n and the amount of change ΔVG per unit time of the second vehicle speed VG obtained by integrating acceleration/deceleration are calculated, and the difference between these amounts of change ΔVmin and ΔVG is calculated. Based on this, a pseudo vehicle speed Vr is calculated. Therefore, when the difference in the amount of change is small as in the case of wheel grip mentioned above, the first vehicle speed Vmin with high accuracy
Pseudo vehicle speed Vr is calculated using the amount of change ΔVmin,
When the difference in the amount of change exceeds the set value K, wheel slip is determined, and the amount of change ΔV in the second vehicle speed VG, which is close to the ground vehicle speed, is determined.
Pseudo vehicle speed Vr is calculated using G. In this way, the minimum wheel speed ωmin, the amount of change ΔVmin based on acceleration/deceleration G, and the amount of change ΔVmin,
By selectively using ΔVG, the pseudo vehicle speed Vr is always calculated continuously with high accuracy.

【0014】上述のように算出された疑似車速Vrは舵
角φと共に目標スリップ率Sdの設定要素に用いられ、
疑似車速Vrと最高車輪速ωmaxによりスリップ率S
が算出される。そこで、例えば直進の発進時のように疑
似車速Vr、舵角φの小さい状態で車輪スリップを生じ
ると、目標スリップ率Sdがスリップ−駆動力特性で駆
動力が最大のところで目標スリップ率が約20%の大き
い値に設定され、これと演算で求められたスリップ率S
との差ΔSによるトラクション制御信号がエンジン制御
ユニット20に出力し、エンジン出力を強制的に低下す
るように制御される。これにより、車輪側の駆動力が低
減して4輪スリップを防止し、最適なスリップ率を確保
するようにトラクション制御される。
The pseudo vehicle speed Vr calculated as described above is used together with the steering angle φ as a setting element for the target slip ratio Sd.
The slip rate S is determined by the pseudo vehicle speed Vr and the maximum wheel speed ωmax.
is calculated. Therefore, if wheel slip occurs when the pseudo vehicle speed Vr and steering angle φ are small, such as when starting straight ahead, the target slip rate Sd will be approximately 20% when the driving force is maximum due to the slip-drive force characteristic. % is set to a large value, and the slip rate S calculated by this and calculation is
A traction control signal based on the difference ΔS is output to the engine control unit 20, and the engine output is controlled to be forcibly reduced. This reduces the driving force on the wheel side, prevents four-wheel slip, and performs traction control to ensure an optimal slip ratio.

【0015】なお、疑似車速Vrの算出に両変化量ΔV
min,ΔVGの差の絶対値を用いているため、ブレー
キ時の4輪ロックによる車輪スリップの場合にもそれを
判断して、加減速度Gの変化量ΔVGに基づいて疑似車
速Vrを算出できる。従って、この場合の疑似車速Vr
で、アンチブレーキ制御を的確に行うことが可能になる
[0015] In addition, in calculating the pseudo vehicle speed Vr, both changes ΔV
Since the absolute value of the difference between min and ΔVG is used, it is possible to determine whether there is wheel slip due to four-wheel locking during braking and calculate the pseudo vehicle speed Vr based on the amount of change ΔVG in acceleration/deceleration G. Therefore, in this case, the pseudo vehicle speed Vr
This makes it possible to perform anti-brake control accurately.

【0016】図4において、本発明の第2の実施例につ
いて説明する。この実施例は、Gセンサ16の出力値が
誤差を含む場合に、疑似車速Vrの値が車輪グリップ時
において実際の車速に対応した第1の車速Vminに対
して所定の偏差を有して平行に設定され、収束しないこ
とがあり、これを回避するものである。そこで、最低車
輪速ωminによる第1の車速Vmin、疑似車速Vr
、第1と第2の車速の変化量ΔVmin,ΔVGが入力
する収束補正部45を有する。そして、ΔVmin>0
,ΔVG>0の車速上昇時に、Vmin>Vrの場合に
限り、|ΔVG−Vmin|<Kの車輪グリップ時に、
所定の補正量+aを決定して、疑似車速算出部39に出
力する。また、ΔVmin<0,ΔVG<0の車速減少
時に、Vmin<Vrの場合に限り、|ΔVG−Vmi
n|<Kの車輪グリップ時に、所定の補正量−aを決定
して、同様に疑似車速算出部39に出力する。そして、
疑似車速算出部39は疑似車速Vrに対して上記補正量
±aを加減算して補正するようになっている。
Referring to FIG. 4, a second embodiment of the present invention will be described. In this embodiment, when the output value of the G sensor 16 includes an error, the value of the pseudo vehicle speed Vr is parallel to the first vehicle speed Vmin corresponding to the actual vehicle speed with a predetermined deviation when the wheels are gripped. This is to avoid this problem, which may not converge when set to . Therefore, the first vehicle speed Vmin based on the minimum wheel speed ωmin, the pseudo vehicle speed Vr
, a convergence correction unit 45 to which changes ΔVmin and ΔVG in the first and second vehicle speeds are input. And ΔVmin>0
, When the vehicle speed increases with ΔVG>0, only when Vmin>Vr, and when the wheel grip has |ΔVG−Vmin|<K,
A predetermined correction amount +a is determined and output to the pseudo vehicle speed calculation section 39. Also, when the vehicle speed decreases with ΔVmin<0, ΔVG<0, only when Vmin<Vr, |ΔVG−Vmi
When the wheel grip is n|<K, a predetermined correction amount -a is determined and similarly output to the pseudo vehicle speed calculation section 39. and,
The pseudo vehicle speed calculation unit 39 is configured to correct the pseudo vehicle speed Vr by adding or subtracting the correction amount ±a.

【0017】この実施例により、例えば加速の場合に図
5のように、車輪グリップ時に第1の車速Vminに対
して疑似車速VrがGセンサ16の誤差により小さい場
合は、補正量+aにより疑似車速Vrが時間の経過と共
に増大補正されて、両車速Vmin,Vrが収束するこ
とになる。また、疑似車速Vrの方が第1の車速Vmi
nより大きい場合は、減速の車輪グリップ時に疑似車速
Vrが減少補正されて同様に収束する。
According to this embodiment, when the pseudo vehicle speed Vr is smaller than the first vehicle speed Vmin during wheel grip, as shown in FIG. 5 in the case of acceleration, due to the error of the G sensor 16, the pseudo vehicle speed Vr is corrected to increase over time, and both vehicle speeds Vmin and Vr converge. Furthermore, the pseudo vehicle speed Vr is higher than the first vehicle speed Vmi.
If it is larger than n, the pseudo vehicle speed Vr is corrected to decrease during wheel grip during deceleration and similarly converges.

【0018】図6において、本発明の第3の実施例につ
いて説明する。この実施例は、疑似車速Vrの初期化対
策であり、最低車輪速ωmin、加減速度Gが入力する
零調整部46を有する。そして、車両の停車の条件とし
て、最低車輪速ωminが零の状態が所定時間経過、最
低車輪速ωminが零であり且つ加減速度Gも略零、最
低車輪速ωminが零であり且つGセンサ16のDC成
分を除く低周波域の出力が略零、の3つの条件を設定し
、このいずれかの条件が成立した場合には疑似車速算出
部39において疑似車速Vrを強制的に零にするように
なっている。
Referring to FIG. 6, a third embodiment of the present invention will be described. This embodiment is a measure for initializing the pseudo vehicle speed Vr, and includes a zero adjustment section 46 into which the minimum wheel speed ωmin and acceleration/deceleration G are input. The conditions for stopping the vehicle are that the minimum wheel speed ωmin is zero for a predetermined period of time, the minimum wheel speed ωmin is zero, the acceleration/deceleration G is also approximately zero, the minimum wheel speed ωmin is zero, and the G sensor 16 The following three conditions are set: the output in the low frequency range excluding the DC component is approximately zero, and when any of these conditions is met, the pseudo vehicle speed calculation unit 39 is forced to set the pseudo vehicle speed Vr to zero. It has become.

【0019】この実施例により、加減速度Gの積分の積
算で疑似車速Vrの値に誤差を生じる場合に、停車毎に
その疑似車速Vrが零調整されることになり、このため
特に発進時のトラクション制御を高精度で行うことが可
能になる。
According to this embodiment, if an error occurs in the value of the pseudo vehicle speed Vr due to the integration of the integral of the acceleration/deceleration G, the pseudo vehicle speed Vr is adjusted to zero every time the vehicle stops. It becomes possible to perform traction control with high precision.

【0020】図7において、本発明の第4の実施例につ
いて説明する。この実施例は、Gセンサ16の零調整対
策である。即ち、Gセンサ16の誤差はそれ自体の取付
け、経年変化により生じるが、これ以外に乗車人数、サ
スペンションの変位、傾斜等による車体の傾きによって
も各車両の個体差毎に誤差を生じる。このような誤差を
含んで加減速度Gを検出し、且つ疑似車速Vrを算出す
ると、必然的に疑似車速Vrの値の精度が低下する。従
って、これらの誤差に対処するには、停車時のGセンサ
16の零点により加減速度Gの検出値を調整すれば良い
。そこで、Gセンサ16の出力信号、最低車輪速ωmi
n、ギヤ位置センサ23のP位置信号、ドアスイッチ2
4の信号が入力する零調整部47を有する。そしてP位
置信号が入力、最低車輪速ωminが零の状態が所定時
間経過、最低車輪速ωminが零であり且つGセンサ1
6の出力も略零、最低車輪速ωminが零であり且つG
センサ16のDC成分を除く低周波域の出力が略零、ド
アの閉信号が入力、のいずれかの条件が成立する場合に
、このときのGセンサ16の出力の零点値Goを車体加
減速度検出部32に出力する。車体加減速度検出部32
は、或る時点でのGセンサ16の値Gtと零点値Goに
より加減速度Gを以下のように算出する。 G=Gt−Go
Referring to FIG. 7, a fourth embodiment of the present invention will be described. This embodiment is a measure against zero adjustment of the G sensor 16. That is, errors in the G sensor 16 occur due to its installation and aging, but also due to the number of passengers, displacement of the suspension, inclination of the vehicle body due to inclination, etc., and errors occur due to individual differences in each vehicle. If the acceleration/deceleration G is detected and the pseudo vehicle speed Vr is calculated with such an error included, the accuracy of the value of the pseudo vehicle speed Vr will inevitably decrease. Therefore, in order to deal with these errors, the detected value of the acceleration/deceleration G may be adjusted based on the zero point of the G sensor 16 when the vehicle is stopped. Therefore, the output signal of the G sensor 16, the minimum wheel speed ωmi
n, P position signal of gear position sensor 23, door switch 2
It has a zero adjustment section 47 into which the signal No. 4 is input. Then, the P position signal is input, the minimum wheel speed ωmin is zero for a predetermined period of time, the minimum wheel speed ωmin is zero, and the G sensor 1
6's output is also approximately zero, the minimum wheel speed ωmin is zero, and G
When either of the following conditions is satisfied: the output of the sensor 16 in the low frequency range excluding the DC component is approximately zero, and the door close signal is input, the zero point value Go of the output of the G sensor 16 at this time is determined as the vehicle body acceleration/deceleration. It is output to the detection unit 32. Vehicle body acceleration/deceleration detection section 32
calculates the acceleration/deceleration G from the value Gt of the G sensor 16 at a certain point in time and the zero point value Go as follows. G=Gt-Go

【0021】この実施例により、停車時毎にGセンサ1
6自体の誤差や乗車人数等による車体の傾きの誤差に応
じたGセンサ16の零点値Goが決定される。そして、
走行中にGセンサ16の信号Gtで加減速度Gを求める
場合に、常に上記零点値Go分だけ減算されることにな
り、これにより車体加減速度Gが正確に検出され、疑似
車速Vrの算出精度を向上することが可能になる。
According to this embodiment, the G sensor 1 is activated every time the vehicle is stopped.
The zero point value Go of the G sensor 16 is determined in accordance with the error of the G sensor 6 itself, the error of the tilt of the vehicle body due to the number of passengers, etc. and,
When calculating the acceleration/deceleration G using the signal Gt of the G sensor 16 while driving, the above zero point value Go is always subtracted, so that the vehicle acceleration/deceleration G is accurately detected and the accuracy of calculating the pseudo vehicle speed Vr is improved. It becomes possible to improve.

【0022】以上、本発明の実施例について説明したが
、これのみに限定されない。
Although the embodiments of the present invention have been described above, the present invention is not limited thereto.

【0023】[0023]

【発明の効果】以上説明したように、本発明によれば、
4輪駆動車の疑似車速の算出において、最低車輪速によ
る第1の車速とGセンサの加減速度を積分した第2の車
速の両変化量を比較し、車輪のグリップとスリップを判
断して精度の高い変化量を選択使用して疑似車速を算出
するので、加減速の走行時に連続して疑似車速を高精度
で算出することができる。このため、スリップ時のトラ
クション制御やアンチブレーキ制御を正確に行うことが
でき、更に車輪のグリップとスリップを判断して疑似車
速を算出するので、制御性、応答性等が向上する。第2
の実施例では、車輪グリップ時に疑似車速が第1の車速
に収束するように補正されるので、正確性等が向上する
。第3の実施例では、停車時に疑似車速が零調整され、
第4の実施例では、Gセンサが零調整されるので、Gセ
ンサの出力、加減速度を積分して積算する際の誤差等に
対して、適確に補正でき、疑似車速の算出の精度を更に
向上できる。
[Effects of the Invention] As explained above, according to the present invention,
In calculating the pseudo vehicle speed of a four-wheel drive vehicle, accuracy is determined by comparing the amount of change in both the first vehicle speed based on the lowest wheel speed and the second vehicle speed obtained by integrating the acceleration/deceleration of the G sensor, and determining the grip and slip of the wheels. Since the pseudo vehicle speed is calculated by selecting and using a large amount of change, it is possible to continuously calculate the pseudo vehicle speed with high accuracy during acceleration and deceleration driving. Therefore, traction control and anti-brake control during slipping can be performed accurately, and since the pseudo vehicle speed is calculated by determining the grip and slip of the wheels, controllability, responsiveness, etc. are improved. Second
In this embodiment, since the pseudo vehicle speed is corrected so as to converge to the first vehicle speed when the wheels are gripped, accuracy and the like are improved. In the third embodiment, the pseudo vehicle speed is adjusted to zero when stopped,
In the fourth embodiment, since the G sensor is zero-adjusted, errors in integrating and accumulating the G sensor output and acceleration/deceleration can be accurately corrected, and the accuracy of calculating the pseudo vehicle speed can be improved. It can be further improved.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明に係る4輪駆動車の疑似車速算出方法の
実施例を示すブロック図である。
FIG. 1 is a block diagram showing an embodiment of a pseudo vehicle speed calculation method for a four-wheel drive vehicle according to the present invention.

【図2】本発明が適応される4輪駆動車の駆動系、トラ
クション制御系を示す構成図である。
FIG. 2 is a configuration diagram showing a drive system and traction control system of a four-wheel drive vehicle to which the present invention is applied.

【図3】加速走行時の第1と第2の車速、疑似車速の変
化状態を示す図である。
FIG. 3 is a diagram showing how the first and second vehicle speeds and pseudo vehicle speeds change during accelerated driving.

【図4】本発明の第2の実施例の要部のブロック図であ
る。
FIG. 4 is a block diagram of main parts of a second embodiment of the present invention.

【図5】加速走行時の疑似車速の収束状態を示す図であ
る。
FIG. 5 is a diagram showing a convergence state of pseudo vehicle speed during acceleration driving.

【図6】本発明の第3の実施例の要部のブロック図であ
る。
FIG. 6 is a block diagram of main parts of a third embodiment of the present invention.

【図7】本発明の第4の実施例の要部のブロック図であ
る。
FIG. 7 is a block diagram of main parts of a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

15a〜15d  車輪速センサ 16  Gセンサ 30  スリップ制御ユニット 36  第1の車速算出部 37,38  変化量算出部 39  疑似車速算出部 15a-15d Wheel speed sensor 16 G sensor 30 Slip control unit 36 First vehicle speed calculation unit 37, 38 Change amount calculation section 39 Pseudo vehicle speed calculation unit

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】  各車輪の車輪速を検出する車輪速セン
サ、車体の加減速度を検出するGセンサを備え、最低車
輪速による第1の車速の単位時間当たりの変化量と、車
体の加減速度を積分して積算することで求める第2の車
速の単位時間当たりの変化量とを算出し、両変化量の差
が小さい場合は第1の車速の変化量を用いて疑似車速を
算出し、大きい場合は第2の車速の変化量を用いて疑似
車速を連続的に算出することを特徴とする4輪駆動車の
疑似車速算出方法。
Claim 1: A wheel speed sensor that detects the wheel speed of each wheel and a G sensor that detects the acceleration/deceleration of the vehicle body, the amount of change per unit time in the first vehicle speed due to the lowest wheel speed, and the acceleration/deceleration of the vehicle body. and the amount of change per unit time in the second vehicle speed, which is obtained by integrating and accumulating the amount of change in the second vehicle speed, and if the difference between the two amounts of change is small, calculate the pseudo vehicle speed using the amount of change in the first vehicle speed, A method for calculating a pseudo vehicle speed of a four-wheel drive vehicle, characterized in that if the amount of change in the second vehicle speed is large, the pseudo vehicle speed is continuously calculated using the amount of change in the second vehicle speed.
【請求項2】  上記疑似車速は、第1と第2の車速の
変化量の差の絶対値と設定値を比較して算出することを
特徴とする請求項1記載の4輪駆動車の疑似車速算出方
法。
2. The pseudo vehicle speed of a four-wheel drive vehicle according to claim 1, wherein the pseudo vehicle speed is calculated by comparing an absolute value of a difference in the amount of change between the first and second vehicle speeds with a set value. Vehicle speed calculation method.
【請求項3】  上記疑似車速は、実際のスリップ率、
目標スリップ率の算出に用い、これらのスリップ率によ
り決定されるトラクション制御信号を出力することを特
徴とする請求項1記載の4輪駆動車の疑似車速算出方法
Claim 3: The pseudo vehicle speed is based on the actual slip rate,
2. The pseudo vehicle speed calculation method for a four-wheel drive vehicle according to claim 1, further comprising outputting a traction control signal that is used to calculate target slip ratios and is determined by these slip ratios.
【請求項4】  上記第1の車速に対して疑似車速が車
輪グリップ時においてズレる場合に、疑似車速を収束す
るように補正することを特徴とする請求項1記載の4輪
駆動車の疑似車速算出方法。
4. The pseudo vehicle speed of the four-wheel drive vehicle according to claim 1, wherein when the pseudo vehicle speed deviates from the first vehicle speed during wheel grip, the pseudo vehicle speed is corrected so as to converge. Calculation method.
【請求項5】  上記疑似車速は停車時にその判断条件
で強制的に零に設定することを特徴とする請求項1記載
の4輪駆動車の疑似車速算出方法。
5. The method for calculating a pseudo vehicle speed of a four-wheel drive vehicle according to claim 1, wherein the pseudo vehicle speed is forcibly set to zero under the determination conditions when the vehicle is stopped.
【請求項6】  上記Gセンサの停車時の零点により、
走行中のGセンサの出力値による加減速度の値を補正す
ることを特徴とする請求項1記載の4輪駆動車の疑似車
速算出方法。
6. According to the zero point of the G sensor when the vehicle is stopped,
2. The pseudo vehicle speed calculation method for a four-wheel drive vehicle according to claim 1, wherein the acceleration/deceleration value is corrected based on the output value of a G sensor while the vehicle is running.
JP08353091A 1991-03-22 1991-03-22 Simulated vehicle speed calculation method for four-wheel drive vehicles Expired - Fee Related JP3410112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08353091A JP3410112B2 (en) 1991-03-22 1991-03-22 Simulated vehicle speed calculation method for four-wheel drive vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08353091A JP3410112B2 (en) 1991-03-22 1991-03-22 Simulated vehicle speed calculation method for four-wheel drive vehicles

Publications (2)

Publication Number Publication Date
JPH04293651A true JPH04293651A (en) 1992-10-19
JP3410112B2 JP3410112B2 (en) 2003-05-26

Family

ID=13805049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08353091A Expired - Fee Related JP3410112B2 (en) 1991-03-22 1991-03-22 Simulated vehicle speed calculation method for four-wheel drive vehicles

Country Status (1)

Country Link
JP (1) JP3410112B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1016748A (en) * 1996-07-05 1998-01-20 Nissan Motor Co Ltd Antiskid control device
US5765931A (en) * 1995-04-25 1998-06-16 Toyota Jidosha Kabushiki Kaisha Vehicle deceleration and vehicle speed presumption systems for motor vehicle, and antiskid brake system employing them
JP2001001881A (en) * 1999-06-17 2001-01-09 Aisin Seiki Co Ltd Brake hydraulic control device
EP2815939A1 (en) 2013-06-19 2014-12-24 Nissin Kogyo Co., Ltd. Vehicle brake hydraulic controller
EP2818370A2 (en) 2013-06-19 2014-12-31 Nissin Kogyo Co., Ltd. Vehicle brake hydraulic pressure control apparatus
CN104364135A (en) * 2012-06-11 2015-02-18 捷豹路虎有限公司 Vehicle control system and method to provide desired wheel slip
CN106314163A (en) * 2016-08-26 2017-01-11 北京长城华冠汽车科技股份有限公司 Braking control method and device of electric vehicle
US10871500B2 (en) 2017-12-05 2020-12-22 Hyundai Motor Company Vehicle and a control method thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5765931A (en) * 1995-04-25 1998-06-16 Toyota Jidosha Kabushiki Kaisha Vehicle deceleration and vehicle speed presumption systems for motor vehicle, and antiskid brake system employing them
JPH1016748A (en) * 1996-07-05 1998-01-20 Nissan Motor Co Ltd Antiskid control device
JP2001001881A (en) * 1999-06-17 2001-01-09 Aisin Seiki Co Ltd Brake hydraulic control device
JP4560850B2 (en) * 1999-06-17 2010-10-13 株式会社アドヴィックス Brake hydraulic pressure control device
JP2015521553A (en) * 2012-06-11 2015-07-30 ジャガー ランド ローバー リミテッドJaguar Land Rover Limited Vehicle control system and vehicle control method
JP2018058584A (en) * 2012-06-11 2018-04-12 ジャガー ランド ローバー リミテッドJaguar Land Rover Limited Vehicle control system and vehicle control method
US9475395B2 (en) 2012-06-11 2016-10-25 Jaguar Land Rover Limited Vehicle control system and method to provide desired wheel slip
CN104364135A (en) * 2012-06-11 2015-02-18 捷豹路虎有限公司 Vehicle control system and method to provide desired wheel slip
JP2015003563A (en) * 2013-06-19 2015-01-08 日信工業株式会社 Vehicular brake fluid pressure control system
US9168903B2 (en) 2013-06-19 2015-10-27 Nissin Kogyo Co., Ltd. Vehicle brake hydraulic controller
US9415692B2 (en) 2013-06-19 2016-08-16 Autoliv Nissin Brake Systems Japan Co., Ltd. Vehicle brake hydraulic pressure control apparatus
EP2818370A2 (en) 2013-06-19 2014-12-31 Nissin Kogyo Co., Ltd. Vehicle brake hydraulic pressure control apparatus
EP2815939A1 (en) 2013-06-19 2014-12-24 Nissin Kogyo Co., Ltd. Vehicle brake hydraulic controller
CN106314163A (en) * 2016-08-26 2017-01-11 北京长城华冠汽车科技股份有限公司 Braking control method and device of electric vehicle
US10871500B2 (en) 2017-12-05 2020-12-22 Hyundai Motor Company Vehicle and a control method thereof

Also Published As

Publication number Publication date
JP3410112B2 (en) 2003-05-26

Similar Documents

Publication Publication Date Title
US5333058A (en) Yaw motion control device
US6708088B2 (en) Vehicle behavior control apparatus
JP3617680B2 (en) 4-wheel drive traction control system
US5051908A (en) Driving wheel torque control device for vehicle
US8321110B2 (en) Detection of hill grade and feed-forward distribution of 4WD torque bias to improve traction on a low MU surfaces during climbing of such hill grade
US9248739B2 (en) Driving force distribution control apparatus for four-wheel drive vehicle and driving force distribution control method for four-wheel drive vehicle
JPH0763077A (en) Traction control unit of vehicle
US8332112B2 (en) Control device for controlling drive force that operates on vehicle
JPH0516690A (en) Torque controller for driving wheel of vehicle
JPH04293651A (en) Pseudo vehicle speed calculating method for four-wheel drive vehicle
US6865470B2 (en) Traction distribution control system for four-wheel drive vehicle
US8725377B2 (en) Control device for controlling drive force that operates on vehicle
JP3236391B2 (en) Calculation method of body speed of four-wheel drive vehicle
US8682556B2 (en) Control device for controlling drive force that operates on vehicle
JP3651327B2 (en) Driving force control device for four-wheel drive vehicle
JP2711740B2 (en) Target slip rate estimation device
JPS6299213A (en) Drive power distribution control device for four wheel drive vehicle
JP3352704B2 (en) Vehicle traction control device
JP2896383B2 (en) Vehicle driving force control device
JP2019137163A (en) Slip rate calculation device
JP2507608B2 (en) Driving force distribution control device
JP2923071B2 (en) Slope judgment method
JPH04293653A (en) Traction control device for vehicle
JP2679070B2 (en) Vehicle differential limiting control device
US8386143B2 (en) Control device for controlling drive force that operates on vehicle

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080320

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100320

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100320

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110320

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees