JPS6299213A - Drive power distribution control device for four wheel drive vehicle - Google Patents

Drive power distribution control device for four wheel drive vehicle

Info

Publication number
JPS6299213A
JPS6299213A JP24090685A JP24090685A JPS6299213A JP S6299213 A JPS6299213 A JP S6299213A JP 24090685 A JP24090685 A JP 24090685A JP 24090685 A JP24090685 A JP 24090685A JP S6299213 A JPS6299213 A JP S6299213A
Authority
JP
Japan
Prior art keywords
yaw angle
vehicle
ideal
angular velocity
rear wheels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24090685A
Other languages
Japanese (ja)
Inventor
Shigemi Kanbayashi
神林 茂実
Makoto Shibuya
真 渋谷
Masayuki Uchida
雅之 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP24090685A priority Critical patent/JPS6299213A/en
Publication of JPS6299213A publication Critical patent/JPS6299213A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to corner a vehicle at the driver's will, by computing an ideal yaw angle in accordance with the speed and steering angle of the vehicle so that the distribution of drive power for front and rear wheels is controlled to allow an actual yaw angle rate to coincide with an ideal yaw angle rate. CONSTITUTION:When sensors 15, 16 deliver a vehicle speed and a steering angle to a computing circuit 19 which therefore computes an ideal yaw angle rate phis that is delivered to a processing circuit 21, Meanwhile, a sensor 17 delivers a yaw angle to a detecting circuit 20 which computes an actual yaw angle rate phi that is delivered to the processing circuit 21. The processing circuit 21 compares both yaw angle rates phis, phi with each other and to delivers a signal to hydraulic control valves 13, 14 such that the difference between both yaw angle rates becomes zero. Thereby, the hydraulic pressures of front and rear clutches 4, 7 are controlled to increase and decrease the drive forces of front and rear wheels 6, 9, and therefore, an FR-like drive force distribution is obtained to correct a shift between both yaw angle rates. With this arrangement, it is possible to enhance the running ability and safety of the four wheel drive vehicle.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、4輪駆動車において前後輪の駆動力配分を制
御する駆動力配分制t2Il装置に関し、詳しくは、旋
回時に車両のヨー角速度に基づいて駆動力配分を制御す
るものに関する。
The present invention relates to a driving force distribution control t2Il device that controls the driving force distribution between the front and rear wheels of a four-wheel drive vehicle, and more particularly to one that controls the driving force distribution based on the yaw angular velocity of the vehicle when turning.

【従来の技術】[Conventional technology]

従来、4輪駆動車において前後輪の駆動力配分を制御す
るものに関しては、例えば特開昭56−43031g公
報に示すように、前後輪の一方を変速別に対して直接動
力伝)ヱし、その他方は油圧クラッチを介して動力伝達
する。そして、油圧クラッチの油圧を自動変速機のライ
ン圧を用いて制御することが提案されている。
Conventionally, in a four-wheel drive vehicle, as shown in Japanese Unexamined Patent Application Publication No. 56-43031g, there have been methods to control the distribution of driving force between the front and rear wheels of a four-wheel drive vehicle. The other transmits power via a hydraulic clutch. It has also been proposed to control the oil pressure of a hydraulic clutch using line pressure of an automatic transmission.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

ところで、上記先行技術の構成のものにあっては、油圧
クラッチの係合による前後輪の直結が前提で、低負荷時
に油圧クラッチをスリップ可能に油圧低下させて旋回時
のタイトヨーナブレーキング現象を回避するものである
。従って、直結4WDが「「気味に駆動力配分されるに
づぎず、積極的にFF的又は「R的に駆動力配分して操
縦性を改善する迄には至っていない。 ここで、車両自体の機構は完全とは言えず、特に旋回時
に水たまり、アイスパッチ等の外乱があったり、又は過
度の加減速等の操作ミスがあると、ドライバの意志に反
して希望の車両運動軌跡を逸脱しようとする。 この場合に、前後輪の駆動力配分を変えて「[又は「R
的にすると、上記車両運動軌跡のずれを車両自身に修正
させることができる。 本発明は、このような点に鑑みてなされたもので、ドラ
イバの意志に反した車両の運動を前後輪の駆動力配分を
変えることで、積極的に車両自体で修正させ、ドライバ
の意志通りのヨーナリングを可能にした4輪駆動車の駆
動力配分制御I装置を提供することを目的としている。
By the way, in the configuration of the above-mentioned prior art, the front and rear wheels are directly connected by engagement of a hydraulic clutch, and the hydraulic pressure is lowered so that the hydraulic clutch can slip at low loads to prevent tight yawner braking phenomenon when turning. It is something to avoid. Therefore, although the direct-coupled 4WD distributes the driving force in a slightly biased manner, it has not reached the point where it actively distributes the driving force in a front-wheel drive or R-like manner to improve maneuverability. The mechanism is not perfect, and if there is a disturbance such as a puddle or ice patch during a turn, or if there is an operational error such as excessive acceleration or deceleration, the mechanism may try to deviate from the desired trajectory of the vehicle against the driver's will. In this case, change the drive force distribution between the front and rear wheels to
By doing so, the vehicle itself can correct the deviation in the vehicle motion trajectory. The present invention has been made in view of these points, and by changing the drive force distribution between the front and rear wheels, the vehicle itself actively corrects the movement of the vehicle that is contrary to the driver's will, thereby achieving the vehicle movement that is contrary to the driver's will. The object of the present invention is to provide a driving force distribution control device for a four-wheel drive vehicle that enables yawning.

【問題点を解決するための手段】[Means to solve the problem]

上記目的を達成するため、本発明は、車速と舵角のセン
サの信号により理想ヨー角速度を演算し、ヨー角センサ
による実ヨー角速度が上記理想ヨー角速度と一致するよ
うに前後輪の駆動力配分を制御するように構成されてい
る。
In order to achieve the above object, the present invention calculates an ideal yaw angular velocity based on vehicle speed and steering angle sensor signals, and distributes driving force between the front and rear wheels so that the actual yaw angular velocity measured by the yaw angle sensor matches the ideal yaw angular velocity. is configured to control.

【作  用】[For production]

上記構成に基づき、旋回時に外乱等により理想ヨー角速
度と異ったヨー角速度で車両が運動しようとすると、前
後輪の駆動力配分が変化してヨー角速度のずれを補正す
るようになる。こうして、本発明によれば旋回時に常時
車速と舵角による理想ヨー角速度でドライバの意志通り
のヨーナリングを行うことが可能となる。
Based on the above configuration, when the vehicle attempts to move at a yaw angular velocity different from the ideal yaw angular velocity due to disturbance or the like during a turn, the driving force distribution between the front and rear wheels changes to correct the deviation in the yaw angular velocity. In this way, according to the present invention, when turning, it is possible to always perform yawning as intended by the driver at the ideal yaw angular velocity based on the vehicle speed and steering angle.

【実 施 例】【Example】

以下、本発明の実施例を図面に基づいて説明する。 第1図において、全体の構成の概略について説明すると
、エンジン1が変速@2を介してトランスファVt置3
に伝動構成され、トランスファ装置3から油圧式の前輪
クラッチ4、フロントデフ装置5を介して前輪6に、ま
た同時に油圧式の後輪クラッチ1、リヤデフ装置8を介
して後輪9に伝動構成されている。そして、オイルポン
プ10からの油圧回路11.12が各クラッチ4.7に
連通し、油圧回路11.12中に油圧制御弁13.14
を設置ノでおり、各クラッチ4.1のクラッチ油圧によ
り前後輪6.9の駆動力配分を定めるようになっている
。 一方、電気制御系として車速センサ15、舵角センサ1
6及びジャイロ等を用いたヨー角センサ17を有する。 車速センサ15と舵角センサ16の信号は制御ユニット
18の演算回路19に入力し、車速と舵角の値から理想
的なヨー角速度を算出する。 ■jら、第2図に示すように車両の重心Gの重最糟、前
後輪6.9の間の距離21重心Gから前後輪迄の距11
11f、Ar、yI後輪のヨーナリングパワーKf 、
 )(r 、舵角δ、車速Vとすると、理想ヨー角速度
φSは次式で求まる。 φs=[1/(1−(g+/21)x (Af Kr −Ar Kr ) X V2  /Kf  Kr  フ ] ×(V/A )X
δ また、ヨー角センサ17からの信号は検出回路20に入
力して実ヨー角速度φを検出し、これらの両ヨー角速度
φS、φを処理回路21で比較して差が零になるように
油圧制御弁13.14に電気信号を出力する構成になっ
ている。 次いで、このように構成された駆動力配分制御装置の作
用を第3図(2)ないしくC)を参照して説明する。 先ず、通常走行時は制御ユニット18の処理回路21の
出力信号により油圧制御弁13.14のバルブ開度が等
しく設定され、これにより前後輪゛クラッチ4.7のク
ラッチ油圧も等しくて前後輪6.9の駆動力配分は1 
:1になっている。この状態で車両Cが第3図(へ)に
示す旋回路Aを旋回中に水たまり8があり、■)に示す
ようにヨー角センtす11で検出された実ヨー角速度φ
の値が舵角ど車速による理想ヨー角速度φSの値より小
さくなってアンダーステア傾向になると、処理回路21
の出力信号で油圧制御弁13.14のバルブ開度が変化
する。そして、前輪クラッチ4のクラッチ油圧は低下し
て前輪6の駆動力を減らし、後輪クラッチ7のクラッチ
油圧は逆に高くして後輪9の駆動力を増すのであり、こ
うして(C)に示すように[R的な駆動配分にしてヨー
角速度のずれを補正する。 一方、上記FR的走行によりΦ)に示すように実ヨー角
速度φの値が回復して逆に理想ヨー角速度φSの値より
大きくなりオー・バステア傾向になると、(C)に示す
ように上述と逆のFE的な駆動力配分になる。こうして
水たまり笠の外乱に対し前後輪6.9の駆動力配分が制
御されることで、ドライバの意志の理想ヨー角速度に沿
ってヨーナリング走行することになる。 以上、旋回時のヨー角速度との関係で制御する場合につ
いて述べたが、舵角との関係で旋回走行自体の円滑化を
図ることも可能である。 即ち、第1図に示すように舵角センサ16の信号で処理
回路21の出力信号を制御するようになっている。そし
て、第4図(2)ないしくC)に示すように、旋回の竹
竿では「R的に駆動力配分することにより回頭性を向上
し、後半では[[的に駆動力配分することにより安定性
を向上させる。これにより理想的な操安性を得ることが
できる。 このことから、上記舵角による操安性重視の制御をベー
スとし、これにヨー角速度1iIII御を加えて行えば
、旋回特性を一層向上することが可能となる。 【発明の効果] 以上述べてきたように、本発明によれば、旋回時に11
1速と舵角による理想ヨー角速度に沿って走行するよう
に前後輪の駆動力配分が制御されるので、外乱、運転ミ
ス等に対してドライバの意志通りのヨーナリングが可能
になり、旋回時の走行性、安全性が向上する。 舵角、I!速等の入力信号により駆動力配分を制御する
ので、制御の内容を充実拡大することが容易である。
Embodiments of the present invention will be described below based on the drawings. In FIG. 1, to explain the outline of the entire configuration, an engine 1 is transferred to a transfer Vt position 3 via a transmission @2.
Transmission is configured from the transfer device 3 to the front wheels 6 via a hydraulic front wheel clutch 4 and a front differential device 5, and simultaneously to the rear wheels 9 via a hydraulic rear wheel clutch 1 and a rear differential device 8. ing. A hydraulic circuit 11.12 from the oil pump 10 communicates with each clutch 4.7, and a hydraulic control valve 13.14 in the hydraulic circuit 11.12.
The driving force distribution between the front and rear wheels 6.9 is determined by the clutch oil pressure of each clutch 4.1. On the other hand, as an electric control system, a vehicle speed sensor 15 and a steering angle sensor 1
6 and a yaw angle sensor 17 using a gyro or the like. Signals from the vehicle speed sensor 15 and steering angle sensor 16 are input to an arithmetic circuit 19 of the control unit 18, and an ideal yaw angular velocity is calculated from the vehicle speed and steering angle values. As shown in Figure 2, the distance between the center of gravity G of the vehicle, the distance between the front and rear wheels 6.9 21 The distance from the center of gravity G to the front and rear wheels 11
11f, Ar, yI rear wheel yawning power Kf,
)(r, steering angle δ, and vehicle speed V, the ideal yaw angular speed φS is found by the following formula. φs=[1/(1−(g+/21)x (Af Kr −Ar Kr ) X V2 /Kf Kr ] ×(V/A)X
δ Also, the signal from the yaw angle sensor 17 is input to the detection circuit 20 to detect the actual yaw angular velocity φ, and the processing circuit 21 compares the two yaw angular velocities φS and φ, and adjusts the hydraulic pressure so that the difference becomes zero. It is configured to output electrical signals to control valves 13 and 14. Next, the operation of the driving force distribution control device configured as described above will be explained with reference to FIGS. 3(2) to 3(C). First, during normal driving, the valve opening degrees of the hydraulic control valves 13 and 14 are set to be equal based on the output signal of the processing circuit 21 of the control unit 18, so that the clutch hydraulic pressure of the front and rear wheel clutches 4.7 is also equal, and The driving force distribution of .9 is 1
:1. In this state, there is a puddle 8 while the vehicle C is turning on the turning path A shown in FIG.
When the value becomes smaller than the value of the ideal yaw angular velocity φS depending on the steering angle and vehicle speed, and there is a tendency for understeer, the processing circuit 21
The valve opening degrees of the hydraulic control valves 13 and 14 change according to the output signal. Then, the clutch oil pressure of the front wheel clutch 4 is lowered to reduce the driving force of the front wheels 6, and the clutch oil pressure of the rear wheel clutch 7 is increased to increase the driving force of the rear wheels 9, as shown in (C). [Correct the deviation in yaw angular velocity using R-like drive distribution. On the other hand, if the value of the actual yaw angular velocity φ recovers as shown in Φ) due to the above-mentioned FR driving and conversely becomes larger than the value of the ideal yaw angular velocity φS, resulting in a tendency towards over-busteer, as shown in (C), the above-mentioned situation will occur. This results in a reverse FE-like driving force distribution. By controlling the distribution of driving force between the front and rear wheels 6.9 in response to the disturbance caused by the puddle shade, the vehicle yaws in accordance with the ideal yaw angular velocity desired by the driver. The case where control is performed in relation to the yaw angular velocity during turning has been described above, but it is also possible to smooth the turning movement itself in relation to the steering angle. That is, as shown in FIG. 1, the output signal of the processing circuit 21 is controlled by the signal from the steering angle sensor 16. As shown in Figure 4 (2) to C), in the case of a swinging bamboo pole, the turning performance is improved by distributing the driving force in an R-like manner, and in the latter half, it is stabilized by distributing the driving force in an R-like manner. This makes it possible to obtain ideal steering performance.For this reason, if control is based on the steering angle based on the steering angle described above, and yaw angular velocity 1iIII control is added to this control, turning It becomes possible to further improve the characteristics. [Effects of the Invention] As described above, according to the present invention, when turning
Since the drive force distribution between the front and rear wheels is controlled so that the vehicle travels along the ideal yaw angular speed based on first gear and the steering angle, it is possible to yawner according to the driver's intention in response to disturbances, driving errors, etc. Improves driving performance and safety. Rudder angle, I! Since the driving force distribution is controlled by input signals such as speed, it is easy to enrich and expand the content of control.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の駆動力配分制御装置の実施例を示す全
体の構成図、第2図はヨー角速度の算出に用いる図、第
3図(2)ないしくC)はヨー角速度制御を示す図、第
4図(2)ないしくC)は旋回時の制御を示す図である
。 4・・・前輪クラッチ 7・・・後輪クラッチ 13、14・・・油圧制御弁 15・・・車速センサ 1G・・・舵角センサ 17・・・ヨー角センサ 18・・・制御ユニット
Fig. 1 is an overall configuration diagram showing an embodiment of the driving force distribution control device of the present invention, Fig. 2 is a diagram used for calculating yaw angular velocity, and Fig. 3 (2) to C) shows yaw angular velocity control. Figures 4(2) to 4(C) are diagrams showing control during turning. 4... Front wheel clutch 7... Rear wheel clutch 13, 14... Hydraulic pressure control valve 15... Vehicle speed sensor 1G... Rudder angle sensor 17... Yaw angle sensor 18... Control unit

Claims (1)

【特許請求の範囲】 車速と舵角のセンサの信号により理想ヨー角速度を演算
し、 ヨー角センサによる実ヨー角速度が上記理想ヨー角速度
と一致するように前後輪の駆動力配分を制御する4輪駆
動車の駆動力配分制御装置。
[Claims] A four-wheel vehicle that calculates an ideal yaw angular velocity based on vehicle speed and steering angle sensor signals, and controls driving force distribution between the front and rear wheels so that the actual yaw angular velocity measured by the yaw angle sensor matches the ideal yaw angular velocity. Drive force distribution control device for drive vehicles.
JP24090685A 1985-10-28 1985-10-28 Drive power distribution control device for four wheel drive vehicle Pending JPS6299213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24090685A JPS6299213A (en) 1985-10-28 1985-10-28 Drive power distribution control device for four wheel drive vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24090685A JPS6299213A (en) 1985-10-28 1985-10-28 Drive power distribution control device for four wheel drive vehicle

Publications (1)

Publication Number Publication Date
JPS6299213A true JPS6299213A (en) 1987-05-08

Family

ID=17066432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24090685A Pending JPS6299213A (en) 1985-10-28 1985-10-28 Drive power distribution control device for four wheel drive vehicle

Country Status (1)

Country Link
JP (1) JPS6299213A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0311098A2 (en) * 1987-10-08 1989-04-12 Nissan Motor Co., Ltd. Device for distributing drive power in the drive train of a four wheel drive vehicle
JPH01293229A (en) * 1988-05-23 1989-11-27 Mazda Motor Corp Torque distribution control device for four-wheel drive car
JPH01293230A (en) * 1988-05-23 1989-11-27 Mazda Motor Corp Torque distribution control device for four-wheel drive car
US5257189A (en) * 1990-08-07 1993-10-26 Toyota Jidosha Kabushiki Kaisha Speed stage shifting of automatic transmission of automobile in relation to yaw rate in steering
JPH0648525A (en) * 1992-06-30 1994-02-22 Sango Co Ltd Material supply device
JP2007085405A (en) * 2005-09-20 2007-04-05 Kobelco Cranes Co Ltd Travel stabilizing device for hydraulic drive type working vehicle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61229616A (en) * 1985-04-04 1986-10-13 Tochigi Fuji Ind Co Ltd Drive control device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61229616A (en) * 1985-04-04 1986-10-13 Tochigi Fuji Ind Co Ltd Drive control device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0311098A2 (en) * 1987-10-08 1989-04-12 Nissan Motor Co., Ltd. Device for distributing drive power in the drive train of a four wheel drive vehicle
US4941541A (en) * 1987-10-08 1990-07-17 Nissan Motor Co., Ltd. Device for distributing drive power in the drive train of a four wheel drive vehicle
JPH01293229A (en) * 1988-05-23 1989-11-27 Mazda Motor Corp Torque distribution control device for four-wheel drive car
JPH01293230A (en) * 1988-05-23 1989-11-27 Mazda Motor Corp Torque distribution control device for four-wheel drive car
US5257189A (en) * 1990-08-07 1993-10-26 Toyota Jidosha Kabushiki Kaisha Speed stage shifting of automatic transmission of automobile in relation to yaw rate in steering
JPH0648525A (en) * 1992-06-30 1994-02-22 Sango Co Ltd Material supply device
JP2007085405A (en) * 2005-09-20 2007-04-05 Kobelco Cranes Co Ltd Travel stabilizing device for hydraulic drive type working vehicle

Similar Documents

Publication Publication Date Title
JP2528485B2 (en) Drive force distribution controller for four-wheel drive vehicle
US8886410B2 (en) Methods of controlling four-wheel steered vehicles
JP2528484B2 (en) Drive force distribution controller for four-wheel drive vehicle
CN110654244A (en) System and method for decentralized driving of hub motor
JPH01212619A (en) Auxiliary steering for front/rear wheel driving force distribution control type vehicle
JP2000289637A (en) Steering gear for vehicle
EP0318688B1 (en) Limited-slip differential control system
JP2578975B2 (en) Vehicle dynamic characteristics control device
JPS6299213A (en) Drive power distribution control device for four wheel drive vehicle
JP3410112B2 (en) Simulated vehicle speed calculation method for four-wheel drive vehicles
JP2707574B2 (en) Vehicle turning control device
JPH111129A (en) Slip control device for four-wheel drive vehicle
JP2000344075A (en) Vehicle behavior control device
JPH05185859A (en) Control device of driving system clutch for vehicle
JP2943931B2 (en) Vehicle drive torque control device
JPH05278488A (en) Driving force distribution control device for four-wheel drive vehicle
JPH0764218B2 (en) Driving force distribution clutch engagement force control device
JPH0585386A (en) Four wheel steering device of vehicle
JPH03224860A (en) Target slip rate estimating device
JPH0672172A (en) Driving force distributing device for four-wheel drive vehicle with four-wheel steering system
JP3354677B2 (en) Vehicle rear wheel steering system
JP2679070B2 (en) Vehicle differential limiting control device
JPH0811544B2 (en) Vehicle steering system controller
JPH07108949A (en) Integrated control device for vehicle
JP2859697B2 (en) Torque distribution control device for four-wheel drive vehicle