JPH04293544A - Catalyst composition - Google Patents

Catalyst composition

Info

Publication number
JPH04293544A
JPH04293544A JP3056632A JP5663291A JPH04293544A JP H04293544 A JPH04293544 A JP H04293544A JP 3056632 A JP3056632 A JP 3056632A JP 5663291 A JP5663291 A JP 5663291A JP H04293544 A JPH04293544 A JP H04293544A
Authority
JP
Japan
Prior art keywords
oxide
catalyst composition
catalyst
perovskite
site
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3056632A
Other languages
Japanese (ja)
Inventor
Kenji Tabata
研二 田畑
Ikuo Matsumoto
松本 郁夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3056632A priority Critical patent/JPH04293544A/en
Publication of JPH04293544A publication Critical patent/JPH04293544A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To provide a catalyst composition generating no lowering catalytic activity even in a reducible atmosphere at high temp. of 200 deg.C or higher and excellent in durability. CONSTITUTION:A catalyst composition consists of a perovskite type multicomponent oxide wherein iron is contained in a part of the B-site of a chemical formula ABO3, rare earth metal oxide, at least one oxide among zirconium oxide and aluminum oxide and at least one noble metal and has excellent durability shown by Fig 1.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は炭化水素(HC)、一酸
化炭素(CO)及び窒素酸化物(NOx)を酸化反応ま
たは還元反応により水、炭酸ガス及び窒素にする触媒組
成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst composition that converts hydrocarbons (HC), carbon monoxide (CO) and nitrogen oxides (NOx) into water, carbon dioxide and nitrogen through an oxidation or reduction reaction.

【0002】0002

【従来の技術】従来のこの種の触媒組成物としては、希
土類元素の酸化物とペロブスカイト型複合酸化物とパラ
ジウムからなるもの(特開昭58−156349号公報
)や、ペロブスカイト型複合酸化物と酸素ストレージ性
希土類酸化物からなる触媒体の表面上に、パラジウムま
たは他の貴金属を触媒成分として担持したもの(特開昭
59−162948号公報)があった。
[Prior Art] Conventional catalyst compositions of this type include those consisting of rare earth element oxides, perovskite-type composite oxides, and palladium (Japanese Patent Application Laid-open No. 156349/1983), and those consisting of perovskite-type composite oxides and palladium. There is a catalyst in which palladium or other noble metal is supported as a catalyst component on the surface of a catalyst made of an oxygen storage rare earth oxide (Japanese Patent Application Laid-Open No. 162948/1983).

【0003】0003

【発明が解決しようとする課題】しかしながら上記従来
の触媒組成物は、200℃以上の高温で還元雰囲気中で
長時間使用すると、パラジウムなどの貴金属が粒成長を
起したり、ペロブスカイト型複合酸化物中に拡散したり
して触媒活性が次第に低下する等、耐久性が劣るという
問題があった。
[Problems to be Solved by the Invention] However, when the above-mentioned conventional catalyst composition is used for a long time in a reducing atmosphere at a high temperature of 200°C or higher, noble metals such as palladium may cause grain growth or perovskite-type composite oxides may occur. There was a problem that the durability was poor, such as the catalytic activity gradually decreasing due to diffusion inside the catalyst.

【0004】本発明は上記問題を解決し、耐久性の優れ
た触媒組成物の提供を目的とする。
The object of the present invention is to solve the above problems and provide a catalyst composition with excellent durability.

【0005】[0005]

【課題を解決するための手段】本発明は上記目的を達成
するため、化学式ABO3 のBサイトの一部に鉄を含
有するペロブスカイト型複合酸化物と希土類酸化物から
なり、酸化ジルコニウムと酸化アルミニウムのうちの1
種以上の酸化物と、貴金属のうちの1種以上からなる。
[Means for Solving the Problems] In order to achieve the above object, the present invention consists of a perovskite-type composite oxide containing iron in a part of the B site of the chemical formula ABO3 and a rare earth oxide, and is composed of a rare earth oxide and a perovskite-type composite oxide containing iron in a part of the B site of the chemical formula ABO3. one of them
It consists of one or more oxides and one or more noble metals.

【0006】[0006]

【作用】本発明は上記構成によって、200℃以上の高
温で還元性雰囲気中においても貴金属粒成長やペロブス
カイト複合酸化物中への拡散が抑制される。
[Function] With the above structure, the present invention suppresses noble metal grain growth and diffusion into the perovskite composite oxide even in a reducing atmosphere at a high temperature of 200° C. or higher.

【0007】[0007]

【実施例】以下本発明の実施例を説明する。[Examples] Examples of the present invention will be described below.

【0008】化学式がLa0.9 Ce0.1 Co0
.98Fe0.02のペロブスカイト型複合酸化物の粉
末100g、酸化セリウム(CeO2 )の粉末80g
、酸化ジルコニウム(ZrO2 )の粉末20g、アル
ミナゾル(硝酸酸性、固型分1/10)50g、硝酸パ
ラジウム0.9g及び水150gを混合攪拌してスラリ
ーを調製した。
The chemical formula is La0.9 Ce0.1 Co0
.. 100g of 98Fe0.02 perovskite complex oxide powder, 80g of cerium oxide (CeO2) powder
A slurry was prepared by mixing and stirring 20 g of zirconium oxide (ZrO2) powder, 50 g of alumina sol (nitric acid acidity, solid content 1/10), 0.9 g of palladium nitrate, and 150 g of water.

【0009】上記スラリー中に断面が格子状の400セ
ル/(インチ)2のコーディエライト(2Mg0.5S
iO2 ・2Al2O3 )製のハニカム担体を浸漬し
、引き上げたのち気流により余分なスラリーを吹き払っ
た。
In the slurry, 400 cells/(inch)2 of cordierite (2Mg0.5S) with a grid-like cross section are added.
A honeycomb carrier made of (iO2 .2Al2O3) was immersed, pulled up, and then the excess slurry was blown away by air flow.

【0010】その後、担体を200℃で1時間乾燥し、
650℃で1時間焼成して本実施例の触媒組成物を担持
した触媒体を作製した。
[0010] Thereafter, the carrier was dried at 200°C for 1 hour,
A catalyst body supporting the catalyst composition of this example was prepared by firing at 650° C. for 1 hour.

【0011】焼成後の触媒体の構成は、触媒組成物24
重量%、担体76重量%であり、触媒組成物中のペロブ
スカイト型複合酸化物は48.6重量%、酸化セリウム
は38.9重量%、酸化ジルコニウムは9.9重量%、
酸化アルミニウムは2.4重量%、パラジウムは0.2
重量%であった。
[0011] The structure of the catalyst body after calcination is as follows: catalyst composition 24
% by weight, the carrier is 76% by weight, the perovskite type composite oxide in the catalyst composition is 48.6% by weight, cerium oxide is 38.9% by weight, zirconium oxide is 9.9% by weight,
Aluminum oxide is 2.4% by weight, palladium is 0.2%
% by weight.

【0012】比較例として鉄を含有しないLa0.9 
Ce0.1CoO3 なるペロブスカイト型複合酸化物
と酸化セリウムと酸化ジルコニウムと酸化アルミニウム
とパラジウムからなる触媒組成物を担持した触媒体を作
製した。
[0012] As a comparative example, La0.9 does not contain iron.
A catalyst body was prepared in which a catalyst composition comprising a perovskite-type composite oxide of Ce0.1CoO3, cerium oxide, zirconium oxide, aluminum oxide, and palladium was supported.

【0013】上記で作製した2種類の触媒体について触
媒性能の初期特性と耐久性を比較した。
[0013] The two types of catalyst bodies produced above were compared in terms of initial characteristics of catalyst performance and durability.

【0014】試験条件は次の通りであり、試験結果を表
1に示す。 触媒性能試験条件 (1)ガス組成(容量基準):NO1%、CO1%、ヘ
リウム98%で構成される反応ガスを用いた。 (2)空間速度:12500/Hr (3)測定方法:固定床流通式により反応を行ない、ガ
スクロマトグラフィーによりNOのN2 への転換率を
求めた。反応温度は300℃である。
The test conditions were as follows, and the test results are shown in Table 1. Catalyst performance test conditions (1) Gas composition (volume basis): A reaction gas consisting of 1% NO, 1% CO, and 98% helium was used. (2) Space velocity: 12500/Hr (3) Measuring method: The reaction was carried out using a fixed bed flow system, and the conversion rate of NO to N2 was determined by gas chromatography. The reaction temperature is 300°C.

【0015】測定結果を表1に示す。The measurement results are shown in Table 1.

【0016】[0016]

【表1】[Table 1]

【0017】同表より、本実施例の触媒組成物を用いた
触媒体の耐久性は、比較例より優れていることが明らか
である。
From the same table, it is clear that the durability of the catalyst body using the catalyst composition of this example is superior to that of the comparative example.

【0018】次に上記2種類の触媒体について触媒性能
の経時変化を測定すると図1に示す結果が得られた。
Next, the changes in catalytic performance over time of the above two types of catalyst bodies were measured, and the results shown in FIG. 1 were obtained.

【0019】同図より、本実施例の触媒組成物を用いた
触媒体は優れた耐久性を示した。この時の試験条件は次
の通りである。
From the figure, the catalyst body using the catalyst composition of this example showed excellent durability. The test conditions at this time were as follows.

【0020】触媒体を900℃に保持した電気炉中に入
れて空気雰囲気中で処理して活性の変化を調べた。 (1)ガス組成(容量基準):NO1%、CO1%、ヘ
リウム98% (2)空間速度:12500/Hr (3)測定方法:固定床流通式により反応を行ない、ガ
スクロマトグラフィーによりNOの窒素への転換率を求
めた。反応温度は300℃である。
[0020] The catalyst body was placed in an electric furnace maintained at 900°C and treated in an air atmosphere to examine changes in activity. (1) Gas composition (volume basis): NO 1%, CO 1%, helium 98% (2) Space velocity: 12500/Hr (3) Measurement method: Reaction was carried out using a fixed bed flow system, and NO nitrogen was measured by gas chromatography. The conversion rate was calculated. The reaction temperature is 300°C.

【0021】なお、実施例では貴金属はパラジウムを用
いた場合について説明したが、パラジウムの他に一部又
は全部を白金、ロジウムを用いても同様の効果が得られ
た。
[0021] In the examples, the case where palladium was used as the noble metal was explained, but similar effects could be obtained by using platinum or rhodium in part or in whole in addition to palladium.

【0022】[0022]

【発明の効果】以上説明したように本発明の触媒組成物
は、化学式ABO3のBサイトの一部に鉄を含有するペ
ロブスカイト型複合酸化物と希土類酸化物からなり、酸
化ジルコニウムと酸化アルミニウムのうちの1種以上の
酸化物と、貴金属のうちの1種以上からなるため、初期
活性が向上するとともに、200℃以上の高温で、かつ
還元性雰囲気中においても貴金属の粒成長やペロブスカ
イト複合酸化物中への拡散を抑制するので、耐久性の優
れたものとなる。
Effects of the Invention As explained above, the catalyst composition of the present invention is composed of a perovskite-type composite oxide containing iron in a part of the B site of the chemical formula ABO3 and a rare earth oxide, and one or more noble metals, the initial activity is improved, and even at high temperatures of 200°C or higher and in a reducing atmosphere, noble metal grain growth and perovskite composite oxides are prevented. Since it suppresses diffusion inside, it has excellent durability.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例と比較例の触媒性能の耐久性
の比較図
[Figure 1] Comparison diagram of durability of catalyst performance between an example of the present invention and a comparative example

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】化学式ABO3 のBサイトの一部に鉄を
含有するペロブスカイト型複合酸化物と希土類酸化物か
らなり、酸化ジルコニウムと酸化アルミニウムのうちの
1種以上の酸化物と、貴金属のうちの1種以上からなる
触媒組成物。
Claim 1: A perovskite-type composite oxide containing iron in a part of the B site of the chemical formula ABO3, and a rare earth oxide, comprising an oxide of one or more of zirconium oxide and aluminum oxide, and an oxide of one or more of noble metals. A catalyst composition consisting of one or more types.
【請求項2】鉄はBサイトの0.1重量%〜5重量%の
請求項1記載の触媒組成物。
2. The catalyst composition according to claim 1, wherein the iron content is 0.1% to 5% by weight of the B site.
JP3056632A 1991-03-20 1991-03-20 Catalyst composition Pending JPH04293544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3056632A JPH04293544A (en) 1991-03-20 1991-03-20 Catalyst composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3056632A JPH04293544A (en) 1991-03-20 1991-03-20 Catalyst composition

Publications (1)

Publication Number Publication Date
JPH04293544A true JPH04293544A (en) 1992-10-19

Family

ID=13032691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3056632A Pending JPH04293544A (en) 1991-03-20 1991-03-20 Catalyst composition

Country Status (1)

Country Link
JP (1) JPH04293544A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010201334A (en) * 2009-03-03 2010-09-16 Nissan Motor Co Ltd Oxidation catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010201334A (en) * 2009-03-03 2010-09-16 Nissan Motor Co Ltd Oxidation catalyst

Similar Documents

Publication Publication Date Title
JPH03186346A (en) Catalyst for purifying exhaust gas and catalyst structure
JP3216858B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3264697B2 (en) Exhaust gas purification catalyst and purification system using the same
JP3335755B2 (en) Exhaust gas purification catalyst
JPH04293544A (en) Catalyst composition
JPH10249199A (en) Catalyst for purifying exhaust gas
JPH0538443A (en) Catalyst composition
JPS6178439A (en) Catalyst for purifying exhaust gas
JPH04371229A (en) Catalyst composition
JPH11244695A (en) Oxidation catalyst
JP2002361090A (en) Catalyst for cleaning exhaust gas
JP3622211B2 (en) Methane oxidation method
JPH0538435A (en) Catalyst composition
JPH04293545A (en) Catalyst composition
JPH0538451A (en) Catalyst composition
JPH04367731A (en) Catalyst composition
JPH0538442A (en) Catalyst composition
JPH04367728A (en) Catalyst composition
JPH04367725A (en) Catalyst composition
JPH04367733A (en) Catalyst composition
JPH04367734A (en) Catalyst composition
JP3739226B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3826476B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH04367732A (en) Catalyst composition
JPH04367735A (en) Catalyst composition