JPH04292860A - Metallic oxide, hydrogen battery - Google Patents

Metallic oxide, hydrogen battery

Info

Publication number
JPH04292860A
JPH04292860A JP3130705A JP13070591A JPH04292860A JP H04292860 A JPH04292860 A JP H04292860A JP 3130705 A JP3130705 A JP 3130705A JP 13070591 A JP13070591 A JP 13070591A JP H04292860 A JPH04292860 A JP H04292860A
Authority
JP
Japan
Prior art keywords
rare earth
battery
storage alloy
less
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3130705A
Other languages
Japanese (ja)
Other versions
JP3044495B2 (en
Inventor
Chizuru Shindo
新藤 千鶴
Mitsuo Hiruma
光生 晝間
Nobuaki Chiba
千葉 信昭
Ichiro Saruwatari
一郎 猿渡
Kazuhiro Takeno
和太 武野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP3130705A priority Critical patent/JP3044495B2/en
Publication of JPH04292860A publication Critical patent/JPH04292860A/en
Application granted granted Critical
Publication of JP3044495B2 publication Critical patent/JP3044495B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a battery with stable characteristics by constructing negative pole with rare earth hydrogen absorptive alloy powder with specific grain diameter. CONSTITUTION:In a battery equipped with a positive pole alkaline electrolyte, and a negative pole, having rare earth hydrogen absorptive alloy as a main ingredient, the negative pole is composed of rare earth hydrogen absorptivealloy powder, with average powder diameter of 35+ or -10mum including 13volume% or less, grains with diameter 10mum or less, and 1weight% or less powders which do not pass through a 200-mesh screen by a lazer diffraction method. By using hydrogen absorptive alloy powders of those sizes a battery with good conditions for a long period of time, can be obtained without uneven thickness of applied electrode, and too high fluidity of paste.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は金属酸化物を正極活物質
とし、水素を負極活物質とする金属酸化物・水素電池に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal oxide/hydrogen battery using a metal oxide as a positive electrode active material and hydrogen as a negative electrode active material.

【0002】0002

【従来の技術】現在、金属酸化物・水素電池において、
水素負極を水素吸蔵合金で構成した形式のものが注目を
集めている。その理由は、この電池系が元来、高エネル
ギー密度を有し、容積効率的に有利であり、しかも安全
作動が可能であって、特性的にも信頼度の点でも優れて
いるからである。
[Prior Art] Currently, in metal oxide/hydrogen batteries,
Types in which the hydrogen negative electrode is made of a hydrogen storage alloy are attracting attention. The reason for this is that this battery system inherently has a high energy density, is advantageous in terms of volumetric efficiency, is capable of safe operation, and is excellent in terms of characteristics and reliability. .

【0003】この形式の電池の水素負極に用いる水素吸
蔵合金としては、従来から、LaNi5が多用されてい
る。また、La,Ce,Pr,Nd,Smなどのランタ
ン系元素の混合物であるミッシュメタル(以下、Mmと
いう)とNiとの合金、すなわちMmNi5も広く用い
られている。LaNi5のような希土類成分としてLa
元素のみを含むような水素吸蔵合金は、たしかに電池負
極材料として優れているが、Laが高価であるために実
用的ではない。このため希土類成分としては、MmやM
mに簡単な処理を施して得られるような希土類元素の混
合物が用いられている。
[0003] LaNi5 has been widely used as a hydrogen storage alloy for the hydrogen negative electrode of this type of battery. Furthermore, an alloy of misch metal (hereinafter referred to as Mm), which is a mixture of lanthanum-based elements such as La, Ce, Pr, Nd, and Sm, and Ni, that is, MmNi5, is also widely used. La as a rare earth component such as LaNi5
Hydrogen storage alloys containing only elements are certainly excellent as battery negative electrode materials, but they are not practical because La is expensive. Therefore, rare earth components such as Mm and M
Mixtures of rare earth elements such as those obtained by subjecting m to simple processing are used.

【0004】また、LaNi5及びMmNi5に関して
は、Niの一部をAl,Mn,Fe,Co,Ti,Cu
,Zn,Zr,Cr,Bのような元素で置換した多元素
系のものも使用されている。負極材料として上記の水素
吸蔵合金は電極を製造する際、機械粉砕又は水素化粉砕
し粉末状としたものを使用している。
[0004] Regarding LaNi5 and MmNi5, a part of Ni is Al, Mn, Fe, Co, Ti, Cu.
, Zn, Zr, Cr, B, and other multi-element systems are also used. When producing the electrode, the above-mentioned hydrogen storage alloy is used as a negative electrode material in the form of a powder obtained by mechanically pulverizing or hydrogenally pulverizing.

【0005】[0005]

【発明が解決しようとする課題】水素吸蔵合金負極は、
前述の粉砕を行なった水素吸蔵合金粉末を高分子結着材
や導電材と混練してペーストとし、次いでこのペースト
を収容した塗布槽に集電体としての導電性芯体を浸漬後
垂直に引き上げ、スリットを通して余分なペーストを除
去し、乾燥後全体にプレスし、加圧成形処理することに
よって製造される。
[Problem to be solved by the invention] The hydrogen storage alloy negative electrode is
The above-described pulverized hydrogen storage alloy powder is kneaded with a polymer binder and a conductive material to form a paste, and then a conductive core as a current collector is immersed in a coating tank containing this paste and then pulled up vertically. It is manufactured by removing excess paste through a slit, pressing the whole after drying, and performing a pressure molding process.

【0006】しかしながら上述の方法で製造した場合、
ペースト組成、混練条件を一定にしても、合金ロットに
よりペーストの塗布状態にばらつきがあるという問題点
があった。すなわち、電極1枚当たりに含まれる合金量
が安定した水素吸蔵合金電極を得ることが困難であり、
これはサイクル寿命等の電池性能のばらつきにつながっ
てしまう。ペーストの塗布状態の差異は、ペーストの流
動性の違いが原因となっている。従って塗布状態のばら
つきは、ペーストの流動性が合金ロットによって異なる
ことが原因と考えられる。
However, when produced by the above method,
Even if the paste composition and kneading conditions are constant, there is a problem in that the state of application of the paste varies depending on the alloy lot. In other words, it is difficult to obtain a hydrogen storage alloy electrode in which the amount of alloy contained per electrode is stable;
This leads to variations in battery performance such as cycle life. Differences in paste application state are caused by differences in paste fluidity. Therefore, the variation in the coating state is considered to be due to the fact that the fluidity of the paste differs depending on the alloy lot.

【0007】本発明は従来の問題を解決するためになさ
れたもので、塗布状熊の安定した希土類系水素吸蔵合金
電極を含み、性能の安定した金属酸化物・水素電池を提
供しようとするものである。
The present invention was made in order to solve the conventional problems, and aims to provide a metal oxide/hydrogen battery with stable performance, which includes a stable rare earth-based hydrogen storage alloy electrode in the form of a coating. It is.

【0008】[0008]

【課題を解決するための手段】本発明者らは希土類系水
素吸蔵合金から成る負極を製造する際、ペースト塗布状
態が水素吸蔵合金粉末の平均粒径、粒度分布に関係があ
ることを見出し、これに着目して本発明に到達した。す
なわち、本発明は正極と、アルカリ電解液と、希土類系
水素吸蔵合金を主材料として成る負極とを備えた金属酸
化物・水素電池において、負極がレーザー回折法による
平均粒径35±10μmで、粒径10μm以下の粒子が
13体積%以下であり、200meshのフルイを通過
しない粒子が1重量%以下である希土類系水素吸蔵合金
粉末から構成されていることを特徴とする金属酸化物・
水素電池に関する。
[Means for Solving the Problems] The present inventors have found that when manufacturing a negative electrode made of a rare earth hydrogen storage alloy, the state of paste application is related to the average particle size and particle size distribution of the hydrogen storage alloy powder. The present invention was achieved by paying attention to this. That is, the present invention provides a metal oxide/hydrogen battery comprising a positive electrode, an alkaline electrolyte, and a negative electrode mainly made of a rare earth hydrogen storage alloy, in which the negative electrode has an average particle size of 35 ± 10 μm as measured by laser diffraction method, A metal oxide, characterized in that it is composed of rare earth hydrogen storage alloy powder, in which particles with a particle size of 10 μm or less account for 13% by volume or less, and particles that do not pass through a 200 mesh sieve account for 1% by weight or less.
Regarding hydrogen batteries.

【0009】希土類系水素吸蔵合金は、一般式LmAx
(式中、LmはLaを含む少なくとも一種の希土類元素
であり、AはNi,Co,Mn,Al,B,Cu,Zr
及びVよりなる群から選択される少なくとも一種の元素
であり、xは4.8〜5.2である)で示される組成の
ものが、水素吸蔵能力から好ましい。
The rare earth hydrogen storage alloy has the general formula LmAx
(In the formula, Lm is at least one rare earth element including La, and A is Ni, Co, Mn, Al, B, Cu, Zr
and V, and x is from 4.8 to 5.2) is preferred from the viewpoint of hydrogen storage ability.

【0010】上記希土類系水素吸蔵合金の粉末は、安定
した粒度が得られること、コストの点などから、衝撃式
の粉砕機によることが望ましい。例えばハンマーミル方
式などを挙げることができる。
[0010] The powder of the rare earth hydrogen storage alloy is desirably produced by an impact type pulverizer in view of obtaining stable particle size and cost. For example, a hammer mill method can be used.

【0011】水素吸蔵合金粉末のレーザー回折による平
均粒径を35±10μmで、粒径10μm以下の粒子を
13体積%以下とした理由は、平均粒径が45μmより
大きい合金粉末でペーストを製造した場合、流動性が低
く、導電性芯体に塗布した際に電極の厚さにムラができ
やすくなる。平均粒径が25μm未満であるか又は粒径
10μm以下の粒子が13体積%より大きい場合、流動
性が高すぎ、導電性芯体に塗布されたペーストが流れ落
ちるためである。以上の場合電極の塗布状態が不安定に
なり、電池容量やサイクル寿命を低下させてしまう。
[0011] The average particle size of the hydrogen-absorbing alloy powder determined by laser diffraction was 35 ± 10 μm, and the reason why the particles with a particle size of 10 μm or less were 13% by volume or less was because the paste was manufactured using an alloy powder with an average particle size larger than 45 μm. In this case, the fluidity is low and the thickness of the electrode tends to be uneven when applied to the conductive core. This is because if the average particle size is less than 25 μm or if the amount of particles with a particle size of 10 μm or less is greater than 13% by volume, the fluidity is too high and the paste applied to the conductive core will flow down. In the above case, the coating state of the electrode becomes unstable, resulting in a decrease in battery capacity and cycle life.

【0012】200meshのフルイを涌渦しない粒子
を1重量%以下とした理由は、200mesh以上の粒
子が微量に存在することにより、ペーストの流動性が増
してしまい、上記と同様な問題を引き起こすためである
。さらに好ましい比率としては0.5%以下である。
[0012] The reason why the amount of particles that are not swirled in a 200 mesh sieve is set to 1% by weight or less is because the presence of a small amount of particles larger than 200 mesh increases the fluidity of the paste, causing the same problem as above. It is. A more preferable ratio is 0.5% or less.

【0013】前記ペースト中に配合される高分子結着剤
としては、例えばポリアクリル酸ソーダ、ポリテトラフ
ルオロエチレン(PTFE)、カルボキシメチルセルロ
ース(CMC)等を挙げることができる。かかる高分子
結着剤の配合割合は、水素吸蔵合金粉末100重量部に
対して0.5〜5重量部の範囲であることが望ましい。
[0013] Examples of the polymer binder blended into the paste include sodium polyacrylate, polytetrafluoroethylene (PTFE), and carboxymethyl cellulose (CMC). The blending ratio of the polymer binder is preferably in the range of 0.5 to 5 parts by weight per 100 parts by weight of the hydrogen storage alloy powder.

【0014】前記ペースト中に配合される導電性粉末と
しては、例えばカーボンブラック、黒鉛等を挙げること
ができる。かかる導電性粉末の配合割合は、前記珠素吸
蔵合金粉末100重量部に対して0.1〜4.0重量部
であることが望ましい。
[0014] Examples of the conductive powder mixed in the paste include carbon black and graphite. The blending ratio of the conductive powder is preferably 0.1 to 4.0 parts by weight based on 100 parts by weight of the nium-ion storage alloy powder.

【0015】前記集電体である導電性芯体としては、た
とえばパンチドメタル、エキスパンドメタル、金網等の
二次元構造のもの等を挙げることができる。
[0015] Examples of the conductive core which is the current collector include those having a two-dimensional structure such as punched metal, expanded metal, and wire mesh.

【0016】前記正極として用いる非焼結式ニッケル酸
化物電極は、水酸化ニッケルの他に高分子結着剤などを
含有する組成のペーストを、たとえば焼結繊維基板、発
砲メタル、不織布めっき基板又はパンチドメタル基板な
どに充填する方法により作成される。この高分子結着剤
としては、前記水素吸蔵合金負極における高分子結着剤
と同様のものを挙げることができる。
The non-sintered nickel oxide electrode used as the positive electrode is made of a paste containing a polymer binder in addition to nickel hydroxide, for example, on a sintered fiber substrate, a foamed metal, a nonwoven plated substrate, or It is created by filling a punched metal substrate or the like. Examples of this polymer binder include those similar to the polymer binder in the hydrogen storage alloy negative electrode.

【0017】本発明により、水素吸蔵合金電極の塗布状
熊が均一となり、性能の安定した金属酸化物・水素電池
を提供することができる。
[0017] According to the present invention, a metal oxide/hydrogen battery having a uniform coating of a hydrogen storage alloy electrode and stable performance can be provided.

【0018】[0018]

【実施例】以下、本発明の金属酸化物・水素電池の実施
例を詳細に説明する。組成がLmNi4.2Co0.2
Mn0.3Al0.3で示される合金を機械粉砕後、レ
ーザー回折法、フルイ残分により粒度を測定し、表1に
示す種々の粒度のものを用意した。このうちNo.1〜
6は機械粉砕後200meshのフルイにて粒径の大き
い粒子を除いた。またNo.1,4,6,7は比較例で
ある。上述の組成式中、Lmは希土類元素であり、次の
重量%からなる。La:45.1%、Ce:4.6%、
Pr:12.1%、Nd:37.0%、その他の希土類
元素:1.2%。
[Examples] Examples of the metal oxide/hydrogen battery of the present invention will be described in detail below. Composition is LmNi4.2Co0.2
After mechanically pulverizing an alloy represented by Mn0.3Al0.3, the particle size was measured by laser diffraction method and sieve residue, and various particle sizes shown in Table 1 were prepared. Among these, No. 1~
No. 6 was mechanically pulverized and large particles were removed using a 200 mesh sieve. Also No. 1, 4, 6, and 7 are comparative examples. In the above compositional formula, Lm is a rare earth element and consists of the following weight percent. La: 45.1%, Ce: 4.6%,
Pr: 12.1%, Nd: 37.0%, other rare earth elements: 1.2%.

【0019】前記水素吸蔵合金粉末のそれぞれに結着剤
としてPTFE、ポリアクリル酸ソーダ乃びCMC、銅
電剤としてカーボンブラック並びに水を添加してペース
トを混合調製した。次いで、集電体としてのパンチドメ
タルをこのペーストが収容された塗布槽中に搬送し、該
塗布槽から垂直方向に引き上げた後、スリットを通して
余分なペーストを除去してパンチドメタル表面に塗布し
た。続いて乾燥後、ローラープレスにかけ裁断すること
により、各々100枚の水素吸蔵合金負極を作成した。
A paste was prepared by adding PTFE, sodium polyacrylate or CMC as a binder, and carbon black and water as a copper electrolyte to each of the hydrogen storage alloy powders. Next, the punched metal as a current collector is transported into a coating tank containing this paste, and after being lifted vertically from the coating tank, excess paste is removed through a slit and applied to the surface of the punched metal. did. Subsequently, after drying, 100 hydrogen storage alloy negative electrodes were each produced by cutting them using a roller press.

【0020】上述した各水素吸蔵合金負極の製造におけ
るペーストの塗布状熊として、電極重量及び厚さを調べ
た。それぞれの管理値は、10.0±0.5g、0.4
0±0.02mmであり、この範囲からはずれた枚数を
不良品として、同表1に併記した。なお厚さについては
、電極1枚について3ケ所測定し、1ケ所でも範囲をは
ずれているものは不良としてカウントした。表1中Aは
機械粉砕後200meshフルイを通過したもの、Bは
機械的粉砕のみである。
[0020] The weight and thickness of each of the above-mentioned hydrogen storage alloy negative electrodes were examined as the paste was applied in the manufacture of the negative electrode. The respective control values are 10.0±0.5g, 0.4
0±0.02 mm, and the number of sheets outside this range is considered to be defective and is also listed in Table 1. Regarding the thickness, each electrode was measured at three locations, and if even one location was out of range, it was counted as defective. In Table 1, A indicates the material passed through a 200 mesh sieve after mechanical pulverization, and B indicates only mechanical pulverization.

【0021】[0021]

【表1】[Table 1]

【0022】また、水酸化ニッケル及び酸化コバルトを
含有するペーストを調製した。このペーストをニッケル
焼結繊維基板に充填・乾燥・プレスし、裁断することに
より、非焼結式ニッケル正極を作製した。
A paste containing nickel hydroxide and cobalt oxide was also prepared. This paste was filled into a nickel sintered fiber substrate, dried, pressed, and cut to produce a non-sintered nickel positive electrode.

【0023】前記水素吸蔵合金電極及び非焼結式ニッケ
ル酸化物電極を、ポリアミド製の0.20mm厚の不織
布を介して巻回して電極群を作製した。この電極群を、
圧力検出器5を付けたアクリル樹脂製容器のAAサイズ
の空間に挿入し、この空間にKOH7規定、LiOHl
規定の電解液を注液して封口し、図1に示すような試験
セルを組立てた。すなわちこの試験セルは、前記アクリ
ル樹脂製のケース本体1とキャップ2とからなる電池ケ
ースを備える。前記ケース本体1の中心部には、AAサ
イズの電池の金属容器と同一の内径及び高さを有する空
間3が形成されており、この空間3内部には電極群4が
収納され、さらに電解液が収容されている。
[0023] The hydrogen storage alloy electrode and the non-sintered nickel oxide electrode were wound through a 0.20 mm thick polyamide nonwoven fabric to prepare an electrode group. This electrode group
Insert the pressure detector 5 into the AA size space of the acrylic resin container, and fill this space with KOH7 standard and LiOHl.
A specified electrolytic solution was poured into the cell, the cell was sealed, and a test cell as shown in FIG. 1 was assembled. That is, this test cell includes a battery case consisting of the case body 1 and the cap 2 made of the acrylic resin. A space 3 having the same inner diameter and height as the metal container of an AA size battery is formed in the center of the case body 1. An electrode group 4 is housed inside this space 3, and an electrolyte is accommodated.

【0024】前記ケース本体1上には前記キャップ2が
ゴムシート6及びOリング7を介してボルト8及びナッ
ト9により気密に固定されている。水素吸蔵合金負極か
らの負極リード10と非焼結式ニッケル正極からの正極
リード11は前記ゴムシート6と前記Oリング7との間
を通して導出されている。
The cap 2 is airtightly fixed onto the case body 1 with bolts 8 and nuts 9 via a rubber sheet 6 and an O-ring 7. A negative electrode lead 10 from the hydrogen storage alloy negative electrode and a positive electrode lead 11 from the non-sintered nickel positive electrode are led out through between the rubber sheet 6 and the O-ring 7.

【0025】これらの試験セルについて、それぞれ充放
電サイクル試験を行った。その結果を表2に示す。なお
、表2には、1C放電及び1C充電を繰り返して、電池
内圧が20kg/cm2に達したときのサイクル数を示
す。
A charge/discharge cycle test was conducted on each of these test cells. The results are shown in Table 2. Note that Table 2 shows the number of cycles when the battery internal pressure reached 20 kg/cm2 by repeating 1C discharge and 1C charge.

【0026】[0026]

【表2】[Table 2]

【0027】サイクル寿命は合金量だけに影響されるも
のではなく、合金量が同一でも合金成分の偏析等合金の
異常によっても変化してしまう。そこで条件を一定にす
るために、サイクル寿命と、水素化粉砕した時の合金粉
末の表面積とは相関するので、本実施例の合金は、水素
化粉砕した時の合金粉末の表面積が0.05〜0.20
m2/gとなるものを用いている。
The cycle life is not only affected by the amount of alloy, but also changes due to abnormalities in the alloy such as segregation of alloy components even if the amount of alloy is the same. Therefore, in order to keep the conditions constant, the cycle life and the surface area of the alloy powder when hydrogenated and crushed are correlated, so the alloy of this example has a surface area of 0.05 when the alloy powder is hydrogenated and crushed. ~0.20
m2/g is used.

【0028】[0028]

【発明の効果】表1,表2より明らかなように、レーザ
ー回折による平均粒径が35±10μm、粒径10μm
以下の粒子が13体積%以下であり、200meshの
フルイを通過しない粒子が1重量%以下の機械粉砕した
水素吸蔵合金を使用した負極は、塗布状態が均一であり
、性能の安定した金属酸化物・水素電池を提供できる。
Effect of the invention: As is clear from Tables 1 and 2, the average particle size by laser diffraction is 35±10 μm, and the particle size is 10 μm.
The negative electrode, which uses a mechanically crushed hydrogen storage alloy containing 13% by volume or less of the following particles and 1% by weight or less of particles that do not pass through a 200 mesh sieve, is a metal oxide with uniform coating and stable performance.・Can provide hydrogen batteries.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】  本発明の実施例で用いた試験セルの断面図
である。
FIG. 1 is a cross-sectional view of a test cell used in an example of the present invention.

【符号の説明】[Explanation of symbols]

1ケース本体 2キャップ 3空間 4電極群 5圧力検出器 10負極リード 1 case body 2 caps 3 spaces 4 electrode group 5 pressure detector 10 negative lead

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  正極とアルカリ電解液と希土類系水素
吸蔵合金を主材料とする負極とを備えた金属酸化物・水
素電池において、負極が、レーザー回折法による平均粒
径が35±10μmで、粒径が10μm以下の粒子が1
3体積%以下であり、かつ、200meshのフルイを
通過しない粒子が1重量%以下である希土類系水素吸蔵
合金粉末から構成されていることを特徴とする金属酸化
物・水素電池。
Claim 1: A metal oxide/hydrogen battery comprising a positive electrode, an alkaline electrolyte, and a negative electrode mainly made of a rare earth hydrogen storage alloy, wherein the negative electrode has an average particle size of 35 ± 10 μm as measured by laser diffraction, Particles with a particle size of 10 μm or less are 1
1. A metal oxide/hydrogen battery comprising a rare earth hydrogen storage alloy powder having a particle size of 3% by volume or less, and 1% by weight or less of particles that do not pass through a 200 mesh sieve.
【請求項2】  該希土類系水素吸蔵合金が、一般式L
mAx(式中、LmはLaを含む少なくとも一種の希土
類元素であり、AはNi,Co,Mn,Al,B,Cu
,Zr及びVよりなる群から選択される少なくとも一種
の元素であり、xは4.8〜5.2である)で示される
組成であることを特徴とする請求項1記載の金属酸化物
・水素電池。
[Claim 2] The rare earth hydrogen storage alloy has the general formula L
mAx (where Lm is at least one rare earth element including La, and A is Ni, Co, Mn, Al, B, Cu
, Zr, and V, and x is 4.8 to 5.2. Hydrogen battery.
【請求項3】  該希土類系水素吸蔵合金粉末が、衝撃
式の粉砕機で水素吸蔵合金インゴットを粉砕して得たも
のであることを特徴とする請求項1記載の金属酸化物・
水素電池。
3. The metal oxide according to claim 1, wherein the rare earth hydrogen storage alloy powder is obtained by crushing a hydrogen storage alloy ingot using an impact type crusher.
Hydrogen battery.
JP3130705A 1991-03-19 1991-03-19 Metal oxide / hydrogen battery Expired - Fee Related JP3044495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3130705A JP3044495B2 (en) 1991-03-19 1991-03-19 Metal oxide / hydrogen battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3130705A JP3044495B2 (en) 1991-03-19 1991-03-19 Metal oxide / hydrogen battery

Publications (2)

Publication Number Publication Date
JPH04292860A true JPH04292860A (en) 1992-10-16
JP3044495B2 JP3044495B2 (en) 2000-05-22

Family

ID=15040655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3130705A Expired - Fee Related JP3044495B2 (en) 1991-03-19 1991-03-19 Metal oxide / hydrogen battery

Country Status (1)

Country Link
JP (1) JP3044495B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6300010B1 (en) 1999-07-30 2001-10-09 Shin-Etsu Chemical Co, Inc. Hydrogen absorbing alloy powder for use in the negative electrodes of alkaline rechargeable batteries and process for producing the same
US6387148B1 (en) 1999-07-30 2002-05-14 Shin-Etsu Chemical Co., Ltd. Hydrogen absorbing alloy compact for use as the negative electrode of an alkaline rechargeable battery
EP1271677A1 (en) * 2001-06-21 2003-01-02 Matsushita Electric Industrial Co., Ltd. Hydrogen-absorption alloy electrode

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6300010B1 (en) 1999-07-30 2001-10-09 Shin-Etsu Chemical Co, Inc. Hydrogen absorbing alloy powder for use in the negative electrodes of alkaline rechargeable batteries and process for producing the same
US6387148B1 (en) 1999-07-30 2002-05-14 Shin-Etsu Chemical Co., Ltd. Hydrogen absorbing alloy compact for use as the negative electrode of an alkaline rechargeable battery
EP1271677A1 (en) * 2001-06-21 2003-01-02 Matsushita Electric Industrial Co., Ltd. Hydrogen-absorption alloy electrode
US7943255B2 (en) 2001-06-21 2011-05-17 Panasonic Corporation Hydrogen-absorption alloy electrode

Also Published As

Publication number Publication date
JP3044495B2 (en) 2000-05-22

Similar Documents

Publication Publication Date Title
US5965295A (en) Alkaline secondary battery, paste type positive electrode for alkaline secondary battery, method for manufacturing alkaline secondary battery
JP2002105564A (en) Hydrogen storage alloy, its production method and nickel-hydrogen secondary battery using the same
JP2002105563A (en) Hydrogen storage alloy and nickel-hydrogen secondary battery using the same
US6387148B1 (en) Hydrogen absorbing alloy compact for use as the negative electrode of an alkaline rechargeable battery
JPH04292860A (en) Metallic oxide, hydrogen battery
JP3184609B2 (en) Metal oxide / hydrogen battery and manufacturing method thereof
JP3514491B2 (en) Metal oxide / hydrogen secondary batteries
JPH11162459A (en) Nickel-hydrogen secondary battery
JP3369226B2 (en) Metal oxide / hydrogen secondary batteries
KR100398709B1 (en) Manufacturing method of hydrogen storage alloy electrode and hydrogen storage alloy electrode
JP3221917B2 (en) Metal oxide / hydrogen secondary batteries
JP2983071B2 (en) Metal oxide / hydrogen batteries
JP2962812B2 (en) Metal oxide / hydrogen batteries
JP3415927B2 (en) Metal oxide / hydrogen secondary batteries
JP3183680B2 (en) Metal oxide / hydrogen battery
JP3343417B2 (en) Metal oxide / hydrogen secondary battery
JP3464717B2 (en) Manufacturing method of metal oxide / hydrogen secondary battery
JP3146063B2 (en) Metal oxide / hydrogen secondary batteries
JP3560352B2 (en) Metal oxide / hydrogen secondary batteries
JP2000090921A (en) Alkaline secondary battery
JP3727360B2 (en) Method for producing metal oxide / hydrogen secondary battery
JP3116953B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3113892B2 (en) Method for producing hydrogen storage electrode
JPH08203512A (en) Manufacture of alkaline secondary battery
JPH05307952A (en) Metal oxide and hydrogen battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080317

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees