JPH04292859A - Manufacture of anode plate for lead battery - Google Patents

Manufacture of anode plate for lead battery

Info

Publication number
JPH04292859A
JPH04292859A JP3055260A JP5526091A JPH04292859A JP H04292859 A JPH04292859 A JP H04292859A JP 3055260 A JP3055260 A JP 3055260A JP 5526091 A JP5526091 A JP 5526091A JP H04292859 A JPH04292859 A JP H04292859A
Authority
JP
Japan
Prior art keywords
lead
anode plate
unformed
heat treatment
oxide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3055260A
Other languages
Japanese (ja)
Inventor
Shoji Shimizu
祥司 清水
Imakichi Hirasawa
今吉 平沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP3055260A priority Critical patent/JPH04292859A/en
Publication of JPH04292859A publication Critical patent/JPH04292859A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve formation efficiency by applying heat treatment at a specific temperature, to an unformed anode plate under presence of oxygen, and generating lead oxidation, whole lead valence is within a specific range. CONSTITUTION:An unformed lead battery anode plate, in which lead paste with a specific composition is applied to a grid body made of lead or lead alloy, is subjected to heat treatment at 300 deg.C to 400 deg.C under presence of oxygen, and then a lead higher-order oxide layer such as Pb3O4, etc., whose lead valence range (X) is within 2<X<4, is provided. Accordingly, the formation efficiency tight adhesiveness of active materials, and maintenance free characteristics are thus improved, without shorting duration of a life time, by changing the higher-order oxide layer to PbO2 in sulfide electrolyte, and forming, over all a plate, a network having electric conductivity on grain surfaces in the case when formation is carried out thereafter.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、鉛電池用陽極板に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anode plate for a lead-acid battery.

【0002】0002

【従来の技術】鉛電池の未化成極板は、一般に鉛あるい
は鉛合金から成る格子体に鉛ペースト(鉛粉を希硫酸で
練ったもの)を塗布した後、熟成、乾燥工程を経て製造
される。また、鉛ペースト中にカーボン繊維などの導電
性物質を添加し、ペースト中に電子電導性を持たせるこ
とにより、陽極の化成効率を向上させる方法が、特開昭
38−14425号公報に提案されている。また添加す
る物質として、Pb3O4のようにそのもの自体は電子
電導性を持たないが、極板を硫酸電解液中に浸漬させた
とき硫酸との反応によって、電子電導性を有するPbO
2を生成するものもある。活物質原料となる鉛粉を加熱
して、鉛粉の一部をPb3O4に変える技術が特開昭6
3−318071号公報に提案されている。しかし、こ
れらの方法で製造した極板は、未化成活物質強度が低下
するという欠点があり、このため寿命性能が無添加のも
のと比べ劣る。
[Prior Art] Unformed electrode plates for lead batteries are generally manufactured by applying lead paste (lead powder kneaded with dilute sulfuric acid) to a grid made of lead or lead alloy, and then undergoing an aging and drying process. Ru. Furthermore, Japanese Patent Application Laid-Open No. 14425/1989 proposed a method of improving the anode formation efficiency by adding conductive substances such as carbon fibers to lead paste to impart electronic conductivity to the paste. ing. In addition, as a substance to be added, Pb3O4 itself does not have electronic conductivity, but when the electrode plate is immersed in a sulfuric acid electrolyte, it reacts with sulfuric acid and becomes electronically conductive.
Some produce 2. Japanese Patent Application Laid-Open No. 1983-1987 developed a technology to heat lead powder, which is a raw material for active materials, and convert some of the lead powder into Pb3O4.
This method is proposed in Japanese Patent No. 3-318071. However, the electrode plates manufactured by these methods have the disadvantage that the strength of the unformed active material is lowered, and therefore, the life performance is inferior to those without additives.

【0003】0003

【発明が解決しようとする課題】カーボンまたはPb3
O4などの導電性物質を添加し製造されたPbO2は、
粒子間の結合力が弱く、充放電の際に活物質が体積変化
を繰り返すことにより、極板から粒子が脱落し、容量の
低下を招き寿命性能が低下する。
[Problem to be solved by the invention] Carbon or Pb3
PbO2 produced by adding conductive substances such as O4 is
The bonding force between particles is weak, and the active material undergoes repeated volume changes during charging and discharging, causing particles to fall off from the electrode plate, leading to a decrease in capacity and lifetime performance.

【0004】本発明は、陽極板の粒子間の結合力を損な
う事無く、化成効率の向上を図るものである。
The present invention aims to improve the chemical conversion efficiency without impairing the bonding force between the particles of the anode plate.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、未化成陽極板を作製したのち、これを
酸素存在下で熱処理し、未化成陽極活物質を構成する鉛
酸化物の粒子表面に価数Xが2<X<4となるような鉛
の高次の酸化物層を設けることとした。
[Means for Solving the Problems] In order to solve the above problems, in the present invention, after producing an unformed anode plate, this is heat-treated in the presence of oxygen to remove lead oxide constituting the unformed anode active material. A high-order oxide layer of lead such that the valence X satisfies 2<X<4 was provided on the surface of the particles.

【0006】[0006]

【作用】一般に未化成の陽極活物質の組成は、R−Pb
Oと3PbO・PbSO4・H2Oである。本発明は、
陽極板を製造したのち熱処理することにより、R−Pb
O粒子表面にPb3O4などの鉛の高次酸化物層を設け
る。その後化成する際、硫酸電解液中で上記の高次酸化
物層がPbO2に変化するため、粒子表面に電子伝導性
を持つネットワークが極板全体に形成され、化成効率が
向上する。
[Operation] Generally, the composition of unformed anode active material is R-Pb
O and 3PbO・PbSO4・H2O. The present invention
By heat-treating after manufacturing the anode plate, R-Pb
A higher order oxide layer of lead such as Pb3O4 is provided on the surface of the O particles. During subsequent chemical formation, the above-mentioned higher-order oxide layer changes to PbO2 in the sulfuric acid electrolyte, so that a network with electron conductivity is formed on the particle surface over the entire electrode plate, improving the chemical formation efficiency.

【0007】[0007]

【実施例】Sbを2.9wt%含有する鉛合金を用いて
、10×10×1.5mmの格子を製造し本実験に用い
た。充填する鉛ペーストは、ボールミル法により製造さ
れた酸化度75wt%の鉛粉を硫酸比重1.26の練り
液を用いて練合し、ペースト物性としては硫酸鉛量16
wt%、水分量12wt%ととした。上記条件で製造し
た格子に鉛ペーストを充填し未化成極板を50℃、RH
98%の恒温恒湿槽中で18時間熟成および100℃で
8時間乾燥したのち、試験用の陽極板を製造した。極板
の熱処理の条件は、温度350℃で0〜6時間とした。 また、鉛粉をあらかじめ350℃で0〜6時間熱処理し
たものを原料に用いて、上記条件で処理し陽極板を作製
し、比較データとした。評価方法として、活物質の定量
分析と化成実験を行った。鉛電池用陽極板を熱処理し、
活物質組成をX線回折法によって定性分析した結果、R
−PbO,3PbO・PbSO4・H2Oの他にPb3
O4が生成されていることが確認された。鉛粉を熱処理
したものも同様の結果が得られた。焼成時間とPb3O
4の定量分析した結果を図1に示すように、時間の経過
と共に未化成活物質中に含まれるPb3O4の含有量が
増加し、両者とも焼成時間に対してほぼ同等の含有量に
なっている。化成効率の測定に用いた実験セル(5)を
図2に示す。上記条件で熱処理した未化成極板(1)を
作用極、Pb−Ca合金(2)を対極、Pb電極(3)
を参照極とし、硫酸比重1.06(4)中で定電位電解
し、出力される電流の応答を見た。定電位電解の条件(
図3参照)として、未化成電極(1)を硫酸中に15分
間浸漬し、Pb電極(3)に対し+2.30Vの電位を
かけ、アノード電解した。化成の評価方法として出力さ
れる電流に対しては大きく、時間軸に対して短いものを
化成効率がよいものとし実験を行った。Pb3O4の含
有量と化成効率(ピーク電流)の関係を図4に示す。P
b3O4の含有量に対して、両者とも化成効率が向上し
ていることが確認された。また、Pb3O4含有量に対
する化成効率を比較してみると、鉛粉を熱処理したもの
は、35%以上でないと効果がなく、極板を熱処理した
ものは、5%を越えると効果が得られることが分かった
。化成効率の違いを考察してみると、両者ともPb3O
4の生成は、粒子表面から進行していると考えられ、鉛
粉を熱処理したものは、表面層に生成したPb3O4の
層が、練合中に破壊されてしまいR−PbOの粒子とP
b3O4の粒子の混合物となり、硫酸とPb3O4が反
応してPbO2の粒子が生成しても導電性のネットワー
クとしては弱い。それに対し、極板を熱処理したものは
、表面層に生成したPb3O4は、活物質中で互いに接
触しあっていて、硫酸と反応しPbO2層を形成し、瞬
時に導電性のネットワークを形成するため、鉛粉を熱処
理したものと比べ化成効率が高くなったものと考えられ
る。両者を寿命面から考えると、一般にPb3O4の含
有量が多いほど活物質強度は弱くなる傾向があるため、
極板を熱処理したもののほうが効果が大きい。陽極未化
成極板の断面観察を行い、格子界面の状態と格子の組織
を評価した結果を図5〜図8に示す。熱処理前の未化成
極板の格子(6)と活物質(7)の界面を観察すると格
子内部の粒界に沿って酸化層(8)が形成している(図
5)。また、熱処理後の未化成極板は、格子(9)表面
に均一に酸化層(10)が形成されていて、格子(9)
と活物質(11)との密着性が向上している(図7)。 熱処理前の格子(12)の組織を観察すると、Pb−S
b合金の特徴であるデンドライト組織が均一細かく分散
している(図6)。しかし、熱処理後の格子(14)は
、融点より高い温度で熱処理しているため溶解し析出し
ており、それに伴い格子内部にSbの多いPb−Sb合
金(16)の大部分が偏析し、格子表面には露出してい
る部分が少なくなっている(図8)。
[Example] Using a lead alloy containing 2.9 wt% of Sb, a grid of 10 x 10 x 1.5 mm was manufactured and used in this experiment. The lead paste to be filled is made by kneading lead powder with an oxidation degree of 75 wt% produced by a ball mill method using a mixing solution with a sulfuric acid specific gravity of 1.26, and the physical properties of the paste are as follows: lead sulfate content is 16%.
wt%, and water content was 12 wt%. The grid manufactured under the above conditions was filled with lead paste and the unformed electrode plate was heated at 50℃ and RH.
After aging in a 98% constant temperature and humidity chamber for 18 hours and drying at 100° C. for 8 hours, an anode plate for testing was manufactured. The conditions for heat treatment of the electrode plate were a temperature of 350° C. for 0 to 6 hours. In addition, lead powder that had been heat-treated in advance at 350° C. for 0 to 6 hours was used as a raw material and processed under the above conditions to produce an anode plate, which was used as comparative data. As evaluation methods, quantitative analysis of active materials and chemical formation experiments were performed. Heat-treating the anode plate for lead batteries,
As a result of qualitative analysis of the active material composition by X-ray diffraction method, R
-PbO, 3PbO・PbSO4・H2O as well as Pb3
It was confirmed that O4 was generated. Similar results were obtained with heat-treated lead powder. Firing time and Pb3O
As shown in Figure 1, the results of the quantitative analysis of No. 4 show that the content of Pb3O4 in the unformed active material increases with the passage of time, and the content in both cases remains almost the same with respect to the firing time. . FIG. 2 shows the experimental cell (5) used to measure the chemical conversion efficiency. The unformed electrode plate (1) heat-treated under the above conditions is the working electrode, the Pb-Ca alloy (2) is the counter electrode, and the Pb electrode (3)
was used as a reference electrode, constant potential electrolysis was performed in sulfuric acid with a specific gravity of 1.06 (4), and the response of the output current was observed. Conditions for constant potential electrolysis (
(See FIG. 3), the unformed electrode (1) was immersed in sulfuric acid for 15 minutes, and a potential of +2.30 V was applied to the Pb electrode (3) for anodic electrolysis. As a method for evaluating chemical formation, an experiment was conducted on the assumption that the output current was large and the output current was short with respect to the time axis, as the chemical formation efficiency was high. FIG. 4 shows the relationship between the content of Pb3O4 and the chemical conversion efficiency (peak current). P
It was confirmed that the chemical conversion efficiency of both samples was improved with respect to the content of b3O4. In addition, when comparing the chemical conversion efficiency with respect to the Pb3O4 content, it is found that heat-treated lead powder has no effect unless it is 35% or more, and heat-treated electrode plates are effective when it exceeds 5%. I understand. Considering the difference in chemical formation efficiency, both Pb3O
The formation of 4 is thought to proceed from the particle surface, and when lead powder is heat-treated, the Pb3O4 layer formed on the surface layer is destroyed during kneading, resulting in R-PbO particles and P
It becomes a mixture of b3O4 particles, and even if sulfuric acid and Pb3O4 react to produce PbO2 particles, the conductive network is weak. On the other hand, in the heat-treated electrode plate, the Pb3O4 generated on the surface layer is in contact with each other in the active material, reacts with sulfuric acid, forms a PbO2 layer, and instantly forms a conductive network. It is thought that the chemical conversion efficiency was higher than that of heat-treated lead powder. Considering both from the lifespan, generally speaking, the higher the Pb3O4 content, the weaker the strength of the active material.
Heat-treated electrode plates are more effective. The results of cross-sectional observation of the unformed anode plate and evaluation of the state of the lattice interface and the structure of the lattice are shown in FIGS. 5 to 8. When observing the interface between the lattice (6) and the active material (7) of the unformed electrode plate before heat treatment, an oxide layer (8) is formed along the grain boundaries inside the lattice (FIG. 5). In addition, the unformed electrode plate after heat treatment has an oxide layer (10) uniformly formed on the surface of the lattice (9).
The adhesion between the active material (11) and the active material (11) is improved (FIG. 7). Observing the structure of the lattice (12) before heat treatment reveals that Pb-S
The dendrite structure, which is a characteristic of alloy b, is uniformly and finely dispersed (Figure 6). However, the lattice (14) after heat treatment is melted and precipitated because it is heat treated at a temperature higher than the melting point, and as a result, most of the Pb-Sb alloy (16) with a large amount of Sb segregates inside the lattice. The exposed portion of the lattice surface is reduced (Figure 8).

【0008】また、上記極板を充放電実験したところ熱
処理後のものは、30%程度減液量が少ないことが解っ
た。上記結果より、小なるSb含有量のPb−Sb合金
格子を使った電池やPb−Ca合金格子を使った電池と
同等の自己放電が少なく、補水不要のメンテナンスフリ
ー性を示すことが解った。
[0008] Further, when the above-mentioned electrode plate was subjected to a charging/discharging experiment, it was found that the amount of liquid loss after heat treatment was about 30% smaller. From the above results, it was found that the battery had less self-discharge and was maintenance-free without the need for water replenishment, equivalent to a battery using a Pb-Sb alloy lattice with a small Sb content or a battery using a Pb-Ca alloy lattice.

【0009】[0009]

【発明の効果】以上述べたことは、陽極板を熱処理する
ことにより得られる効果で、寿命性能を損なうことなし
に化成効率・活物質の密着性・メンテナンスフリー性の
向上を計ることができ、工業的に価値が甚だ大である。
[Effects of the Invention] The above-mentioned effects are obtained by heat-treating the anode plate, and it is possible to improve chemical conversion efficiency, adhesion of active materials, and maintenance-free properties without impairing life performance. It has enormous industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明による熱処理時間と未化成活物質中のP
b3O4の比率との関係を表した図である。
[Figure 1] Heat treatment time and P in unformed active material according to the present invention
It is a figure showing the relationship with the ratio of b3O4.

【図2】本発明による化成効率を測定するために用いた
セルの構造図である。
FIG. 2 is a structural diagram of a cell used to measure chemical conversion efficiency according to the present invention.

【図3】本発明による定電位電解したときの電位ステッ
プ(a)と出力される電流を時間軸でグラフ化したもの
(b)の図である。
FIG. 3 is a graph (b) of potential steps (a) and output current on a time axis during constant potential electrolysis according to the present invention.

【図4】本発明によるPb3O4の含有量とピーク電流
との関係図である。
FIG. 4 is a diagram showing the relationship between Pb3O4 content and peak current according to the present invention.

【図5】本発明による熱処理前の陽極板の断面組織の顕
微鏡写真の模式図である。
FIG. 5 is a schematic diagram of a micrograph of a cross-sectional structure of an anode plate before heat treatment according to the present invention.

【図6】本発明による熱処理前の陽極板の断面組織の顕
微鏡写真の模式図である。
FIG. 6 is a schematic diagram of a micrograph of a cross-sectional structure of an anode plate before heat treatment according to the present invention.

【図7】本発明による熱処理後の陽極板の断面組織の顕
微鏡写真の模式図である。
FIG. 7 is a schematic diagram of a micrograph of a cross-sectional structure of an anode plate after heat treatment according to the present invention.

【図8】本発明による熱処理後の陽極板の断面組織の顕
微鏡写真の模式図である。
FIG. 8 is a schematic diagram of a micrograph of a cross-sectional structure of an anode plate after heat treatment according to the present invention.

【符号の説明】[Explanation of symbols]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】鉛あるいは鉛合金から成る格子体に所定の
組成の鉛ペーストを塗布して成る未化成の鉛電池陽極板
を、酸素存在下で且つ300〜400℃の温度で熱処理
し、鉛の価数Xが2<X<4の範囲にある鉛酸化物を生
成させる事を特徴とする鉛電池用陽極板の製造方法。
Claim 1: An unformed lead battery anode plate made of a grid made of lead or a lead alloy coated with lead paste of a predetermined composition is heat-treated at a temperature of 300 to 400°C in the presence of oxygen to remove lead. 1. A method for producing an anode plate for a lead battery, the method comprising producing lead oxide whose valence X is in the range of 2<X<4.
JP3055260A 1991-03-20 1991-03-20 Manufacture of anode plate for lead battery Pending JPH04292859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3055260A JPH04292859A (en) 1991-03-20 1991-03-20 Manufacture of anode plate for lead battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3055260A JPH04292859A (en) 1991-03-20 1991-03-20 Manufacture of anode plate for lead battery

Publications (1)

Publication Number Publication Date
JPH04292859A true JPH04292859A (en) 1992-10-16

Family

ID=12993627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3055260A Pending JPH04292859A (en) 1991-03-20 1991-03-20 Manufacture of anode plate for lead battery

Country Status (1)

Country Link
JP (1) JPH04292859A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102535750A (en) * 2012-02-14 2012-07-04 长安大学 Cylindrical construction part provided with holed stiffening ribs and filled with steel fiber reinforced concrete
WO2018088309A1 (en) * 2016-11-08 2018-05-17 日立化成株式会社 Production method for lead storage battery active material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102535750A (en) * 2012-02-14 2012-07-04 长安大学 Cylindrical construction part provided with holed stiffening ribs and filled with steel fiber reinforced concrete
WO2018088309A1 (en) * 2016-11-08 2018-05-17 日立化成株式会社 Production method for lead storage battery active material
KR20190077486A (en) * 2016-11-08 2019-07-03 히타치가세이가부시끼가이샤 Method for manufacturing active material for lead-acid battery

Similar Documents

Publication Publication Date Title
JP6112225B2 (en) Control valve type lead acid battery
CN112436147A (en) High-temperature paste mixing process for lead paste of lead-acid storage battery
CN111540906A (en) Preparation method of surface coating for storage battery grid and storage battery positive grid for deep circulation
JPH04292859A (en) Manufacture of anode plate for lead battery
JP4984430B2 (en) Method for producing paste active material for negative electrode
KR100782986B1 (en) Pulse formation of a cell
Lam et al. Aspects of lead/acid battery manufacture and performance
JPH11126604A (en) Sealed lead-acid battery and manufacture thereof
CN111435730B (en) Method for forming interface layer of lead-carbon composite material on lead-based substrate
JPH10214628A (en) Lead acid-battery and its manufacture
Mayavan et al. Effect of using sonicated sulphuric acid as an electrolyte in a lead acid battery
JP3427402B2 (en) Method for manufacturing electrode plate for lead-acid battery
KR100217786B1 (en) Manufacturing method of lead storage battery
JPH01302661A (en) Lead acid battery and its manufacture
JP2949767B2 (en) Lead battery manufacturing method
JPH08236106A (en) Manufacture of paste for lead-acid battery positive plate
JP2833148B2 (en) Lead battery manufacturing method
Hampson et al. The effect of additives on the charge and discharge behaviour of the negative plate of the lead-acid battery
JPH04264360A (en) Positive plate for lead acid battery
US20210091374A1 (en) NAPLES AND Pb-Sb-Sn YELLOWS - COMPOSITION AND METHODS OF USE
JPH11273666A (en) Positive electrode plate for lead-acid battery and manufacture thereof
JPH10134810A (en) Manufacture of lead-acid battery
CN116114084A (en) Method of manufacturing lead acid battery assembly
JP2612978B2 (en) Method for manufacturing electrode plate for lead-acid battery
JPH05325950A (en) Manufacture of lead-acid battery of negative electrode absorbing sealed type