JPH04292409A - Production of activated carbon using waste tire as raw material - Google Patents

Production of activated carbon using waste tire as raw material

Info

Publication number
JPH04292409A
JPH04292409A JP3080889A JP8088991A JPH04292409A JP H04292409 A JPH04292409 A JP H04292409A JP 3080889 A JP3080889 A JP 3080889A JP 8088991 A JP8088991 A JP 8088991A JP H04292409 A JPH04292409 A JP H04292409A
Authority
JP
Japan
Prior art keywords
activated carbon
alkali metal
metal salt
waste tire
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3080889A
Other languages
Japanese (ja)
Inventor
Minoru Morimoto
稔 森本
Hiroshi Yoshida
博 吉田
Sakae Sanpei
三瓶 栄
Tetsuo Yamada
哲夫 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kankyo Research KK
Original Assignee
Kankyo Research KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kankyo Research KK filed Critical Kankyo Research KK
Priority to JP3080889A priority Critical patent/JPH04292409A/en
Publication of JPH04292409A publication Critical patent/JPH04292409A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Coke Industry (AREA)

Abstract

PURPOSE:To provide a process for producing activated carbon from waste tire at a low cost with a simple process in high thermal efficiency and to enable the effective reutilization of waste tire and the utilization of a liquid by-product of the process as a fuel. CONSTITUTION:Waste tire is crushed to granules of about 1-3mm diameter. The granules are mixed with equal weight of powdery or liquid alkali metal salt such as sodium hydroxide and heated at 600-700 deg.C for 60-30min in a calcination oven in the presence of nitrogen gas. The carbonized product produced by the process is washed with distilled water to remove the alkali metal salt and dried. An activated carbon having a surface area of 450m<2>/g and a methylene blue absorption of 150ml/g can be produced by using the crushed granule and the alkali metal salt at a mixing ratio of 1:1.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、例えば脱臭剤、溶液の
精製剤等のように気体或いは蒸気の吸着剤として用いら
れる活性炭の製造方法に関し、特に廃タイヤを原料とす
る活性炭の製造方法に関する。
[Field of Industrial Application] The present invention relates to a method for producing activated carbon used as a gas or vapor adsorbent, such as a deodorizing agent, a solution purifying agent, etc., and particularly relates to a method for producing activated carbon using waste tires as a raw material. .

【0002】0002

【従来の技術】現在、自動車の普及に伴って使用済み廃
棄タイヤ、即ち廃タイヤの発生量は急増している。この
廃タイヤの再利用方法には例えば再生タイヤ、ゴム製加
工品、燃料、輸出用タイヤ、熱分解油の回収等がある。 しかし、廃タイヤを活性炭の原料として積極的に用いる
技術は知られていず、僅かに燃料とした燃やした後の燃
カスに吸着能力があることが知られている程度である。
2. Description of the Related Art Currently, with the spread of automobiles, the amount of used waste tires, that is, waste tires, is rapidly increasing. Examples of methods for recycling waste tires include recovery of recycled tires, processed rubber products, fuel, tires for export, and pyrolysis oil. However, there is no known technology to proactively use waste tires as a raw material for activated carbon, and it is only known that the residue after burning as a fuel has adsorption ability.

【0003】0003

【発明が解決しようとする課題】ところで、炭素質材料
例えば木材、果実殻(ヤシ殻)、石炭を用いた活性炭の
製造方法としては、従来ガス賦活法と薬品賦活法が知ら
れている。ガス賦活法は上述した炭素質材料を整粒し、
400〜600℃で加熱した後、得られた炭化物と水蒸
気又は二酸化炭素とを800〜1000℃で反応させる
方法であり、薬品賦活法は炭素質材料に塩化亜鉛溶液を
含浸させ、不活性ガスの存在下で焼成炉中で500〜7
00℃に加熱して炭化した後、塩酸を用いて亜鉛を回収
し、脱灰、アルカリによる中和、水洗、乾燥を行う方法
である。
By the way, gas activation methods and chemical activation methods are conventionally known as methods for producing activated carbon using carbonaceous materials such as wood, fruit shells (coconut shells), and coal. The gas activation method involves sizing the carbonaceous material mentioned above,
After heating at 400 to 600°C, the obtained carbide is reacted with water vapor or carbon dioxide at 800 to 1000°C. In the chemical activation method, carbonaceous material is impregnated with zinc chloride solution and heated in an inert gas atmosphere. 500-7 in the calcining furnace in the presence of
After carbonizing by heating to 00°C, zinc is recovered using hydrochloric acid, followed by deashing, neutralization with alkali, washing with water, and drying.

【0004】そこで、上述した公知の活性炭製造法を用
いて廃タイヤから活性炭を製造することが考えられるが
、次のような問題点がある。まず、ガス賦活法にあって
は、炭素質材料の適用範囲が限定されていること、製造
工程が複雑なこと、800〜1000℃の高温で賦活す
るため熱効率が低いこと及び活性炭収率が低いこと等で
ある。
[0004] Therefore, it has been considered to produce activated carbon from waste tires using the above-mentioned known activated carbon production method, but there are the following problems. First, in the gas activation method, the range of application of carbonaceous materials is limited, the manufacturing process is complicated, the thermal efficiency is low because activation is performed at a high temperature of 800 to 1000°C, and the activated carbon yield is low. This is the case.

【0005】一方、薬品賦活法にあっては、薬品の価格
が高いこと、従って薬品回収工程が必要なこと等が問題
となる。かくして、廃タイヤの再利用という観点からは
低コストで製造できることが重要であるが、ガス賦活法
及び薬品賦活法のいずれも廃タイヤを用いた活性炭の製
造方法には適当でない。
On the other hand, the chemical activation method has problems such as the high cost of the chemicals and the necessity of a chemical recovery process. Thus, from the viewpoint of recycling waste tires, it is important to be able to produce activated carbon at low cost, but neither the gas activation method nor the chemical activation method is suitable for producing activated carbon using waste tires.

【0006】本発明は上述した従来技術の問題点に鑑み
て発明者等が鋭意研究した結果なされたもので、製造工
程が簡単で、製造コストも低くしかも所望の吸着能を有
する活性炭を製造することができる廃タイヤを原料とす
る活性炭の製造方法を提供するものである。
The present invention was made as a result of intensive research by the inventors in view of the above-mentioned problems of the prior art, and it is possible to produce activated carbon with a simple manufacturing process, low manufacturing cost, and a desired adsorption capacity. The present invention provides a method for producing activated carbon using waste tires as a raw material.

【0007】[0007]

【課題を解決するための手段】上述した課題を解決する
ために構成された本発明の手段は、廃タイヤを所定の粒
度以下の粉砕粒に形成する粉砕工程と、得られた粉砕粒
にアルカリ金属塩を所定量混合して付着させる混合工程
と、該混合工程により得られたアルカリ金属塩付着粉砕
粒を焼成炉内において不活性ガスの存在下で600〜7
00℃の温度で所定時間加熱することにより炭化物を生
成する加熱工程と、得られた炭化物を洗浄してアルカリ
金属塩を除去し、乾燥する洗浄、乾燥工程とからなる。
[Means for Solving the Problems] The means of the present invention configured to solve the above-mentioned problems includes a pulverization step of forming waste tires into pulverized particles having a predetermined particle size or less, and an alkali-based method for applying alkali to the obtained pulverized particles. A mixing step in which a predetermined amount of metal salt is mixed and adhered, and the alkali metal salt-adhered pulverized particles obtained in the mixing step are heated to 600 to 700 g in the presence of an inert gas in a firing furnace.
The method consists of a heating step in which a carbide is generated by heating at a temperature of 00° C. for a predetermined period of time, and a washing and drying step in which the obtained carbide is washed to remove an alkali metal salt and dried.

【0008】そして、粉砕粒に対して等重量以上のアル
カリ金属塩を混合するとよい。
[0008] It is preferable to mix an alkali metal salt in an amount equal to or more than the weight of the pulverized grains.

【0009】[0009]

【発明の具体的説明】本発明で用いられる廃タイヤの粒
度は、採用される賦活条件により異なりうるが、好まし
くは粒径1mm以下がよい。粉砕粒に対するアルカリ金
属塩の混合量は等重量若しくはそれ以上であることが好
ましい。アルカリ金属塩の混合方法としてはアルカリ金
属塩濃度溶液を用いた含浸法が一般的である。更には、
加熱工程では粉砕粒を600〜700℃に加熱するが、
アルカリ金属塩の融点は310℃から370℃の範囲内
であるから、固体又は粉体のアルカリ金属塩を混合し加
熱工程で融解させて粉砕粒の表面に付着させるようにす
ることもできる。
DETAILED DESCRIPTION OF THE INVENTION The particle size of the waste tire used in the present invention may vary depending on the activation conditions employed, but is preferably 1 mm or less. It is preferable that the amount of the alkali metal salt mixed with the pulverized grains is equal to or more than the same weight. A common method for mixing alkali metal salts is an impregnation method using a concentrated alkali metal salt solution. Furthermore,
In the heating process, the crushed grains are heated to 600-700°C,
Since the melting point of the alkali metal salt is within the range of 310° C. to 370° C., a solid or powdered alkali metal salt may be mixed and melted in a heating step so as to adhere to the surface of the pulverized particles.

【0010】次に、アルカリ金属塩付着粉砕粒の加熱温
度は、600〜700℃の範囲が好ましい。600℃よ
り低温度であるとアルカリ金属塩の賦活作用が小さく、
活性炭の性能が劣るためである。一方、加熱温度を70
0℃より高温度にすると、アルカリ金属塩が炭素を侵食
し、活性炭収率が著しく低下する結果になる。
Next, the heating temperature of the alkali metal salt-adhered pulverized particles is preferably in the range of 600 to 700°C. If the temperature is lower than 600°C, the activation effect of the alkali metal salt will be small;
This is because the performance of activated carbon is inferior. Meanwhile, increase the heating temperature to 70
If the temperature is higher than 0° C., the alkali metal salt will attack the carbon, resulting in a significant decrease in the activated carbon yield.

【0011】反応方式は固定床、流動床、輸送床等の各
方式を用いることができるし、反応処理は連続式又はバ
ッチ式のいずれの方式も用いることができる。
[0011] As the reaction method, various methods such as fixed bed, fluidized bed, and transport bed methods can be used, and for the reaction treatment, either continuous method or batch method can be used.

【0012】更に加熱時間は例えば加熱温度が650℃
のときには約60分間、700℃のときには約20分間
が適当である。
[0012] Furthermore, the heating time is such that the heating temperature is 650°C.
Appropriate time is approximately 60 minutes when the temperature is 700°C, and approximately 20 minutes when the temperature is 700°C.

【0013】加熱した結果得られた炭化物はアルカリ金
属塩を除去するために蒸留水等を用いて洗浄するが、こ
の際水洗量、洗浄時間を調整し或は酸類を添加した洗浄
水を用いることによって、活性炭の用途に応じてそのP
Hを調整するとよい。また、洗浄後の活性炭の乾燥は自
然乾燥、乾燥機を用いる強制乾燥のいずれの方法でもよ
い。
[0013] The carbide obtained as a result of heating is washed with distilled water or the like to remove alkali metal salts, but at this time, the amount of water and washing time may be adjusted, or washing water to which acids have been added may be used. Depending on the use of activated carbon, its P
It is better to adjust H. The activated carbon after washing may be dried by either natural drying or forced drying using a dryer.

【0014】なお、本発明方法における加熱工程では、
液状生成物(タール)及びガスを得ることができる。液
状生成物は原料の粉砕粒に対して平均40%抽出される
。その成分は炭素=83〜85%、水素=9〜11%、
硫黄=0,2〜0,5%で所謂A重油に近い成分からな
っており、燃料としても十分使用可能である。
[0014] In the heating step in the method of the present invention,
Liquid products (tar) and gas can be obtained. The liquid product is extracted by an average of 40% based on the ground grains of the raw material. Its components are carbon = 83-85%, hydrogen = 9-11%,
It contains 0.2 to 0.5% sulfur and has a composition similar to that of so-called A heavy oil, so it can be fully used as a fuel.

【0015】一方、加熱工程で得られるガスは収率が2
〜4%であり、その主成分はメタン、エタンである。
On the other hand, the gas obtained in the heating process has a yield of 2
~4%, and its main components are methane and ethane.

【0016】[0016]

【発明の効果】本発明方法によれば、次のような効果を
奏することができる。■廃棄方法が問題になっており、
しかも廃棄すること自体に費用が掛っている廃タイヤを
有効に再利用できる。■ガス賦活法と比較して加熱温度
が低くてよいから、熱効率にすぐれている。また、薬品
賦活法と比較した場合、アルカリ金属塩は塩化亜鉛より
も低廉であるから、製造コストを低くできるし、薬品回
収工程も不要であって複雑な製造工程を必要としない。 ■原料に対して35〜40%の高い収率を得ることがで
きる。■液状生成物を燃料として利用できる。
[Effects of the Invention] According to the method of the present invention, the following effects can be achieved. ■Disposal methods have become an issue,
Moreover, waste tires, which are expensive to dispose of, can be effectively reused. ■Compared to the gas activation method, the heating temperature is lower, so it has excellent thermal efficiency. Furthermore, when compared with the chemical activation method, since alkali metal salts are cheaper than zinc chloride, manufacturing costs can be lowered, and a chemical recovery process is not required, so a complicated manufacturing process is not required. (2) A high yield of 35-40% can be obtained based on the raw material. ■Liquid product can be used as fuel.

【0017】[0017]

【実施例】以下、本発明の実施例について詳述する。[Examples] Examples of the present invention will be described in detail below.

【0018】なお、本実施例ではアルカリ金属塩のうち
水酸化ナトリウムを用いたが、例えば水酸化カリウムを
用いてもよい。まず、タイヤ粉砕機を用いて廃タイヤを
20〜50mm程度の粉砕片に破砕し、この際磁石を用
いてビートワイヤを分離する。ビートワイヤを磁選した
粉砕片は更に粒度1〜3mm程度の粉砕粒に粉砕する。
Although sodium hydroxide among the alkali metal salts was used in this example, potassium hydroxide, for example, may also be used. First, a waste tire is crushed into crushed pieces of about 20 to 50 mm using a tire crusher, and at this time, the beat wires are separated using a magnet. The crushed pieces obtained by magnetically separating the beat wire are further crushed into crushed particles having a particle size of about 1 to 3 mm.

【0019】次に、粉砕粒50gをテフロンビーカに入
れ、これに等重量の水酸化ナトリウム溶液50gを添加
して混合し、粉砕粒の表面に水酸化ナトリウムを付着さ
せた後、110℃で乾燥させる。
Next, 50 g of the pulverized grains were placed in a Teflon beaker, and 50 g of an equal weight of sodium hydroxide solution was added thereto and mixed to adhere the sodium hydroxide to the surface of the pulverized grains, and then dried at 110°C. let

【0020】次に、水酸化ナトリウム付着粉砕粒10g
をステンレスボードに精秤したものを、直径50mm、
長さ600mmの水平反応管の中央部に置き、該反応管
内に窒素を100ml/minの流量で流しながら、毎
分10℃の昇温速度で室温から650℃まで昇温させた
後、この温度で1時間加熱し、その後室温にまで冷却す
る。
Next, 10 g of crushed granules with sodium hydroxide attached
Weighed accurately on a stainless steel board, with a diameter of 50 mm,
It was placed in the center of a horizontal reaction tube with a length of 600 mm, and while nitrogen was flowing into the reaction tube at a flow rate of 100 ml/min, the temperature was raised from room temperature to 650 °C at a rate of 10 °C per minute. Heat for 1 hour, then cool to room temperature.

【0021】上述の如くして得られた炭化物を温蒸留水
5lで洗浄して水酸化ナトリウムを除去し、105℃で
乾燥することにより活性炭を製造できた。
The carbonized product obtained as described above was washed with 5 liters of warm distilled water to remove sodium hydroxide and dried at 105° C. to produce activated carbon.

【0022】表1に生成物の組成について、水酸化ナト
リウムの添加量を異にする他の試料(イ)、(ロ)、(
ハ)と比較して示す。この表から粉砕粒と水酸化ナトリ
ウムの混合比が1:1のとき、炭化物の収率は41,7
3%となって最も高いことが分かる。
Table 1 shows other samples (a), (b), and (b) with different amounts of sodium hydroxide added regarding the composition of the product.
A comparison is shown with c). From this table, when the mixing ratio of crushed grains and sodium hydroxide is 1:1, the yield of carbide is 41.7
It can be seen that it is the highest at 3%.

【0023】[0023]

【表1】[Table 1]

【0024】次に、図1に本実施例による活性炭の比表
面積及びメチレンブルー吸着能を比較例試料(イ)、(
ロ)、(ハ)と共に示す。なお、活性炭の表面積は−7
8℃における二酸化炭素をBET吸着等温式により求め
た。またメチレンブルー吸着能はJIS  K1470
により測定した。図1から明らかな様に、粉砕粒に対す
る水酸化ナトリウムの混合量が1:1のとき、活性炭の
表面積は450m2 /g、メチレンブルー吸着能は1
50ml/g(JIS  K1470による)になって
おり、比較例試料(イ)、(ロ)、(ハ)と比較して倍
以上の値を得ることができる。
Next, FIG. 1 shows the specific surface area and methylene blue adsorption capacity of the activated carbon according to this example for comparison samples (A) and (A).
(B) and (C) are shown together. Note that the surface area of activated carbon is -7
Carbon dioxide at 8°C was determined using the BET adsorption isotherm. Also, methylene blue adsorption capacity is JIS K1470.
It was measured by As is clear from Figure 1, when the mixing ratio of sodium hydroxide to crushed particles is 1:1, the surface area of activated carbon is 450 m2 /g, and the methylene blue adsorption capacity is 1.
50 ml/g (according to JIS K1470), which is more than double the value of comparative samples (a), (b), and (c).

【0025】また、図2に活性炭、液体生成物及びガス
の収率を水酸化ナトリウムの添加濃度毎に示す。同図か
ら分かるように、粉砕粒に対する水酸化ナトリウムの混
合量が1:1のとき、活性炭及びガスは最も高い収率に
なる。
Furthermore, FIG. 2 shows the yields of activated carbon, liquid product, and gas for each concentration of sodium hydroxide added. As can be seen from the figure, when the mixing ratio of sodium hydroxide to the pulverized particles is 1:1, the yield of activated carbon and gas is highest.

【0026】更に、活性炭の製造過程で得られる液体生
成物の元素分析、平均分子量を表2に示す。
Furthermore, Table 2 shows the elemental analysis and average molecular weight of the liquid product obtained in the process of producing activated carbon.

【0027】[0027]

【表2】[Table 2]

【0028】表2によれば、液体生成物の組成は水酸化
ナトリウムの混合量に殆ど影響されず、炭素85%、水
素:11%で、平均分子量:3,300である。また、
ガスクロマトグラフィーの分析によると、液体生成物中
には少量のトルエン及び0−キシレンが含まれている。 この液体生成物の発熱量は11,000Kcal/kg
である。
According to Table 2, the composition of the liquid product is almost unaffected by the amount of sodium hydroxide mixed, and is 85% carbon, 11% hydrogen, and has an average molecular weight of 3,300. Also,
According to gas chromatography analysis, the liquid product contains small amounts of toluene and 0-xylene. The calorific value of this liquid product is 11,000 Kcal/kg
It is.

【0029】次に、活性炭製造過程で生成されるガスの
成分を表3に示す。
Next, Table 3 shows the components of the gas produced during the activated carbon manufacturing process.

【0030】[0030]

【表3】[Table 3]

【0031】表3から明らかなように、生成ガスはメタ
ン及びエタンを主成分とし、水酸化ナトリウム混合量の
増加に伴ってこれらの成分も増大している。
As is clear from Table 3, the main components of the produced gas are methane and ethane, and these components increase as the amount of sodium hydroxide mixed increases.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】実施例方法により製造した活性炭の比表面積及
びメチレンブルー吸着能を比較例と共に示す線図である
FIG. 1 is a diagram showing the specific surface area and methylene blue adsorption capacity of activated carbon produced by the method of the example together with a comparative example.

【図2】実施例方法による活性炭、液体生成物及びガス
の収率を比較例と共に示す線図である。
FIG. 2 is a diagram showing the yields of activated carbon, liquid product, and gas according to the example method along with comparative examples.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  廃タイヤを所定の粒度以下の粉砕粒に
形成する粉砕工程と、得られた粉砕粒にアルカリ金属塩
を所定量混合して付着させる混合工程と、該混合工程に
より得られたアルカリ金属塩付着粉砕粒を焼成炉内にお
いて不活性ガスの存在下で600〜700℃の温度で所
定時間加熱することにより炭化物を生成する加熱工程と
、得られた炭化物を洗浄してアルカリ金属塩を除去し、
乾燥する洗浄、乾燥工程とから構成してなる廃タイヤを
原料とする活性炭の製造方法。
Claim 1: A pulverizing step of forming a waste tire into pulverized particles having a predetermined particle size or less, a mixing step of mixing and adhering a predetermined amount of an alkali metal salt to the obtained pulverized particles, and a step of adhering a predetermined amount of an alkali metal salt to the obtained pulverized particles; A heating step in which the pulverized grains with alkali metal salts attached are heated in a firing furnace at a temperature of 600 to 700°C for a predetermined period of time in the presence of an inert gas to form a carbide, and the resulting carbide is washed to form an alkali metal salt. remove the
A method for producing activated carbon using waste tires as a raw material, which comprises a drying process and a drying process.
【請求項2】  前記粉砕粒に対して等重量のアルカリ
金属塩を混合してなる請求項1記載の廃タイヤを原料と
する活性炭の製造方法。
2. The method for producing activated carbon using waste tires as a raw material according to claim 1, wherein an equal weight of an alkali metal salt is mixed with the pulverized particles.
JP3080889A 1991-03-19 1991-03-19 Production of activated carbon using waste tire as raw material Pending JPH04292409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3080889A JPH04292409A (en) 1991-03-19 1991-03-19 Production of activated carbon using waste tire as raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3080889A JPH04292409A (en) 1991-03-19 1991-03-19 Production of activated carbon using waste tire as raw material

Publications (1)

Publication Number Publication Date
JPH04292409A true JPH04292409A (en) 1992-10-16

Family

ID=13730922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3080889A Pending JPH04292409A (en) 1991-03-19 1991-03-19 Production of activated carbon using waste tire as raw material

Country Status (1)

Country Link
JP (1) JPH04292409A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0621331A1 (en) * 1993-04-23 1994-10-26 Reinhard Nagel Process for coking scraptire granules particularly for the production of a filtering material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4979397A (en) * 1972-12-06 1974-07-31
JPS4981297A (en) * 1972-12-12 1974-08-06
JPS52111897A (en) * 1976-03-18 1977-09-19 Yokohama Rubber Co Ltd:The Production of adsorbent from vulcanized rubber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4979397A (en) * 1972-12-06 1974-07-31
JPS4981297A (en) * 1972-12-12 1974-08-06
JPS52111897A (en) * 1976-03-18 1977-09-19 Yokohama Rubber Co Ltd:The Production of adsorbent from vulcanized rubber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0621331A1 (en) * 1993-04-23 1994-10-26 Reinhard Nagel Process for coking scraptire granules particularly for the production of a filtering material

Similar Documents

Publication Publication Date Title
JPH0297414A (en) Production of active carbon having superior quality
CA1116156A (en) Granular activated carbon manufacture from brown coal treated with concentrated inorganic acid without pitch
US3630959A (en) Carbonization of bituminous coals
US2624698A (en) Method of producing a purified coke
US5883040A (en) Activated carbon produced from agricultural residues
RU2527221C1 (en) Method of producing activated charcoal from plant wastes
CN101816928A (en) Method for preparing coke-powder-based carbon adsorbing material by using waste coke powder
JPH04292409A (en) Production of activated carbon using waste tire as raw material
WO2022148452A1 (en) Petroleum coke treatment apparatus, process, and treatment system
CN112359243B (en) Method for preparing indium tin alloy by reducing ITO waste target by starch
JPH01242409A (en) Production of activated carbon
JPH0645449B2 (en) Method for producing silicon tetrachloride
US4482460A (en) Process for removing carbon black from aqueous suspensions
CN1194235A (en) Amorphous particulate active carbon made from antiracite and its producing method
JPH01211547A (en) Purification of acyl halide
JP2000281325A (en) Production of activated carbon and treatment of water
JPH01249617A (en) Burned chaff ash composition and its production
KR100308584B1 (en) A manufacturing method of coal powder using waste cokes or substitute for coal powder A substitute for
CN113549471B (en) Application of sunflower straw in catalyzing steam gasification of medium-low rank coal
US3996340A (en) Method of producing aluminum fluoride
PL183820B1 (en) Method of obtaining manganese sulphide
JPS623086B2 (en)
SU1414777A1 (en) Method of producing granulated activated carbon
CN117776177A (en) Preparation method of high-decoloring-performance activated carbon
RU2004491C1 (en) Method for cleaning detonation diamonds