JPS623086B2 - - Google Patents

Info

Publication number
JPS623086B2
JPS623086B2 JP52146405A JP14640577A JPS623086B2 JP S623086 B2 JPS623086 B2 JP S623086B2 JP 52146405 A JP52146405 A JP 52146405A JP 14640577 A JP14640577 A JP 14640577A JP S623086 B2 JPS623086 B2 JP S623086B2
Authority
JP
Japan
Prior art keywords
activated carbon
pore volume
activation
granules
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52146405A
Other languages
Japanese (ja)
Other versions
JPS5478395A (en
Inventor
Atsuo Tago
Akira Ikeda
Yoshio Kanemasa
Shiro Furukawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP14640577A priority Critical patent/JPS5478395A/en
Publication of JPS5478395A publication Critical patent/JPS5478395A/en
Publication of JPS623086B2 publication Critical patent/JPS623086B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は活性炭の製造方法に関するものであ
り、詳しくはトランジシヨナル域の一部又は全領
域の細孔容積を選択的に増大させることにより細
孔分布の調節された活性炭を工業的有利に製造す
る方法に関するものである。 活性炭は多孔質構造の発達した炭素材料であ
り、従来より吸着剤あるいは触媒担体として化学
工業、食品工業、水処理等あらゆる分野において
広く使用されているが、これらの吸着性能あるい
は担体性能は活性炭の比表面積、細孔容積、細孔
分布等の特性が、それぞれの用途に合致している
か否かによつて大きく左右される。例えば、活性
炭を廃水処理に使用する場合、廃水の種類によつ
ても異なるが、従来の活性炭では比較的大分子量
の化合物が除去されないという欠点があつた。 本発明者等はこのような欠点の解消策につき
種々検討を行つた結果、活性炭のミクロ域(直径
50Å以下)の細孔容積を変えることなくトランジ
シヨナル域(直径50〜1000Å)の一部又は全領域
の細孔容積を増大させた活性炭を使用するのが最
も有利であることを見出した。 一方、活性炭の前記した特性は、原料の種類、
炭化の雰囲気、賦活の程度等により必然的に決ま
るので、特定の特性のみを任意に調節することは
極めて困難なことである。例えば、細孔容積は、
賦活度を上げることによつて増大させることがで
きるが、賦活度を上げても全領域の細孔容積が増
大するのみで、トランジシヨナル域の細孔容積の
みを選択的に増大させることはできない。 そこで、本発明者等は活性炭の他の特性を変え
ることなく、トランジシヨナル域の一部又は全領
域の細孔容積のみを選択的に増大させる方法につ
き更に検討を重ねた結果、炭素質材料に特定量の
金属を添加した後ガス賦活を行うことによりほぼ
満足すべき結果が得られることを見出し、この知
見に基づき本発明を完成した。 すなわち、本発明は炭素質材料をガス賦活法に
より賦活して活性炭を製造するに当り、賦活工程
より前の工程において、炭素質材料に対し金属と
して0.001〜1重量%の金属鉄、ニツケル、ある
いはニツケルの金属塩の1種又は2種以上を添加
することを特徴とする活性炭の製造方法に存す
る。 本発明を詳細に説明するに、本発明に用いられ
る炭素質材料としては、木材、のこくず、ヤシ
殼、パルプ廃液等の植物系の原料、フエノール樹
脂、フラン樹脂、尿素樹脂、ポリ塩化ビニル樹
脂、ポリカーボネート等のプラスチツク系の原
料、あるいは亜炭、褐炭、瀝青炭、無煙炭等の石
炭、石油残渣、石油コークス、石油ピツチ等の鉱
物系の原料を、周知の方法に従つて、1000℃程度
以下の温度で炭化した粉状又は0.3〜6mm程度の
粒状のものが、それぞれの用途に応じて適宜用い
られる。 これらの炭素質材料に添加する金属としては、
鉄、コバルト、ニツケル等の遷移金属等の、硫酸
塩、硝酸塩等の無機酸塩、錯酸塩、蓚酸塩等の有
機酸塩等の種々の形態で、あるいはこれらの2種
又は2種以上の混合物として用いられる。 なお、特許第79834号明細書には添加金属とし
て塩化亜鉛を用いることが記載されているが、塩
化亜鉛を添加金属として用いると、製造装置の腐
食あるいは製造工程から発生する廃ガス、廃水等
の処理が難しいこと、更には製品活性炭の使用時
に溶出する亜鉛が被処理物に悪影響を及ぼす等の
問題があるので好ましくない。 金属塩の添加は、賦活工程より前の工程であれ
ば何れの工程でもよく、例えば炭化の前後、ある
いは造粒又は粉砕の前後等任意の場所が選定され
る。 金属塩の添加方法としては、金属の溶液若しく
は懸濁液を炭素質材料若しくはその原料にスプレ
ーする方法、または該溶液若しくは懸濁液に炭素
質材料若しくはその原料を浸漬する方法、あるい
は金属塩の微粉末を炭素質材料若しくはその原料
に混合する方法等が挙げられるが、何れの方法に
おいても添加された金属塩が均一に分散されるよ
う実施することが肝要である。 金属塩の添加量は、金属塩の種類によつても異
なるが、添加量を増す程トランジシヨナル域の細
孔容積を増大させることができる。しかし、添加
量をあまり多くするとミクロ域の細孔容積が減少
し、表面積及び製品硬度が低下してくる。また、
添加量があまり少ないと所期の効果が得られない
ので、通常、炭素質材料に対し金属単体として
0.001〜1重量%、好ましくは0.001〜0.5重量%の
範囲内で実施される。 金属塩を含浸又は添加された炭素質材料は、要
すれば乾燥された後、ロータリーキルン等の回転
炉又は堅型炉等を用いて、600〜1200℃程度の温
度で水蒸気、二酸化炭素、空気、燃焼ガス等と接
触させることにより賦活して活性炭とされる。 以上詳述したように、本発明は炭素質材料に特
定量の金属塩を添加した後ガス賦活するという簡
単な操作によつて、活性炭のトランジシヨナル域
の一部又は全領域の細孔容積を選択的に増大さ
せ、細孔分布が調節できるので特に廃水処理用の
活性炭の製造方法として有用である。 特に、本発明の活性炭を精製糖の脱色工程ある
いはL−グルタミン酸ナトリウム溶液の脱色工程
等に使用する場合にはトランジヨナル域の細孔容
積の大きい活性炭であるほど、その脱色性能が高
い。例えば、発酵液から分離され、カンシヨ糖
密、メラノイジン系色素あるいはカラメル等の混
合物からなる色素等の不純物を含有するL−グル
タミン酸を水酸化ナトリウムで中和して得られた
L−グルタミン酸ナトリウム溶液の場合、トラン
ジヨナル域の細孔容積の大きい活性炭ほど、溶液
中に含有される分子量の大きい前記の色素が吸着
除去されることとなり、その脱色性能が優れたも
のとなる。 以下、本発明を実施例によつて更に詳細に説明
するが、本発明はその要旨をこえない限り以下の
実施例に限定されるものではない。 実施例 1 先ず、粒径範囲0.84〜2.38mm、平均粒径1.4mmに
破砕した米国炭顆粒100部に10%硝酸コバルト水
溶液31部をスプレーした。(この顆粒を分析した
ところ金属として0.9重量%の硝酸コバルトが付
着していた。) 次いでこの顆粒を外熱式ロータリーキルンを用
いて650℃まで昇温し、その温度で30分間保持し
て炭化を行つた。 この炭化炭60gを70mmφ、300mmLのロータリ
ーキルンに仕込み、窒素ガス1.5N/分、
H2O1.2N/分の加熱ガスの流通下950℃で賦活
収率40%となる迄水蒸気賦活を行つた。 得られた活性炭の充填密度、平均粒径、硬さ、
沃素吸着量(IA)、粒法糖密脱色指数(G−
ML)、ミクロ域(直径50Å以下)及びトランジ
シヨナル域(直径50〜1000Å)の細孔容積を測定
した。測定結果を第1表に示す。 なお、比較のために、実施例1で用いた米国炭
顆粒を、硝酸コバルト水溶液のスプレーをしない
以外は実施例1と全く同様に処理して得られた活
性炭の物性を第1表に対照として併記する。 実施例 2 10%硝酸コバルト水溶液のスプレー量を3.1部
にする(顆粒の硝酸コバルト分析値は金属として
0.08重量%であつた。)以外は実施例1と全く同
様の操作により活性炭を得た。得られた活性炭の
物性を測定し、その結果を第1表に示す。 実施例 3 10%硝酸コバルト水溶液をスプレーする代りに
1%硝酸コバルト水溶液3.1部をスプレーする以
外は実施例1と全く同様の操作により活性炭を得
た。得られた活性炭の物性を測定し、その結果を
第1表に示す。 実施例 4 実施例1で用いた米国炭顆粒を、そのまま実施
例1と同じ条件で炭化処理した。 この炭化炭100部に10%Fe2(SO43水溶液3.6
部をスプレーした(炭化炭のFe2(SO43分析値
は金属鉄として0.1重量%であつた。)後、実施例
1と同じ条件で賦活処理した。得られた活性炭の
物性を測定し、その結果を第1表に示す。 実施例 5 実施例5で用いた炭化炭を10%酢酸ニツケル水
溶液中に1時間浸漬した後100℃で乾燥した(炭
化炭の酢酸ニツケル分析値は金属ニツケルとして
0.1重量%であつた)。この乾燥炭化炭を実施例1
と同じ条件で賦活処理した。得られた活性炭の物
性を測定し、その結果を第1表に示す。 実施例 6 米国炭顆粒100部に20wt%Fe2(SO43水溶液10
部をスプレーした(顆粒のFe2(SO43分析値は
金属鉄として0.5重量%であつた)以外は実施例
1と同様に行なつた。 得られた活性炭の物性を測定し、その結果を第
1表に示す。 比較例 米国炭顆粒100部に20wt%Fe2(SO43水溶液37
部をスプレーした(顆粒のFe2(SO43分析値は
金属鉄として1.5重量%であつた。)以外は実施例
1と同様に行なつた。得られた活性炭の物性を測
定し、その結果を第1表に示す。
The present invention relates to a method for producing activated carbon, and more specifically, an industrially advantageous method for producing activated carbon with controlled pore distribution by selectively increasing the pore volume in a part or all of the transitional region. It is related to. Activated carbon is a carbon material with a developed porous structure, and has been widely used as an adsorbent or catalyst carrier in various fields such as chemical industry, food industry, water treatment, etc. However, the adsorption performance or carrier performance of activated carbon It largely depends on whether the characteristics such as specific surface area, pore volume, pore distribution, etc. match each application. For example, when activated carbon is used for wastewater treatment, conventional activated carbon has the disadvantage that relatively large molecular weight compounds cannot be removed, although this varies depending on the type of wastewater. The inventors of the present invention have conducted various studies on ways to solve these drawbacks, and as a result, we have found that the micro-region (diameter) of activated carbon
It has been found that it is most advantageous to use activated carbons that have an increased pore volume in part or all of the transitional zone (50-1000 Å in diameter) without changing the pore volume in the pore volume (less than 50 Å). On the other hand, the above-mentioned characteristics of activated carbon depend on the type of raw material,
Since it is inevitably determined by the carbonization atmosphere, the degree of activation, etc., it is extremely difficult to arbitrarily adjust only specific characteristics. For example, the pore volume is
It can be increased by increasing the activation degree, but even if the activation degree is increased, the pore volume in the entire region only increases, and it is not possible to selectively increase only the pore volume in the transitional region. Therefore, the present inventors have further investigated a method of selectively increasing only the pore volume in a part or all of the transitional region without changing other properties of activated carbon. It was discovered that almost satisfactory results could be obtained by performing gas activation after adding a certain amount of metal, and based on this knowledge, the present invention was completed. That is, in the present invention, when manufacturing activated carbon by activating a carbonaceous material by a gas activation method, in a step before the activation step, 0.001 to 1% by weight of metallic iron, nickel, or The present invention resides in a method for producing activated carbon, characterized in that one or more kinds of nickel metal salts are added. To explain the present invention in detail, carbonaceous materials used in the present invention include wood, sawdust, coconut shell, plant-based raw materials such as pulp waste liquid, phenolic resin, furan resin, urea resin, and polyvinyl chloride. Plastic raw materials such as resins and polycarbonates, coal such as lignite, lignite, bituminous coal, and anthracite, mineral raw materials such as petroleum residue, petroleum coke, and petroleum pitch are heated at temperatures below about 1000°C according to well-known methods. Powder or granules of about 0.3 to 6 mm that are carbonized at high temperatures are used as appropriate depending on the purpose. The metals added to these carbonaceous materials include:
Transition metals such as iron, cobalt, and nickel in various forms such as inorganic acid salts such as sulfates and nitrates, complex salts, and organic acid salts such as oxalates, or two or more of these. Used as a mixture. Note that the specification of Patent No. 79834 describes the use of zinc chloride as an additive metal, but if zinc chloride is used as an additive metal, it may cause corrosion of manufacturing equipment or waste gas, waste water, etc. generated from the manufacturing process. This is not preferred because it is difficult to process and furthermore, the zinc eluted during use of the product activated carbon has a negative effect on the objects to be treated. The metal salt may be added at any step before the activation step, for example, before or after carbonization, or before or after granulation or pulverization. The metal salt can be added by spraying a metal solution or suspension onto the carbonaceous material or its raw material, immersing the carbonaceous material or its raw material in the solution or suspension, or adding the metal salt to the carbonaceous material or its raw material. Examples include a method of mixing fine powder with a carbonaceous material or its raw material, but in any method, it is important to carry out the method so that the added metal salt is uniformly dispersed. Although the amount of metal salt added varies depending on the type of metal salt, the pore volume of the transitional region can be increased as the amount added is increased. However, if the amount added is too large, the pore volume in the micro region decreases, resulting in a decrease in surface area and product hardness. Also,
If the amount added is too small, the desired effect cannot be obtained, so it is usually added to carbonaceous materials as a single metal.
It is carried out within the range of 0.001 to 1% by weight, preferably 0.001 to 0.5% by weight. The carbonaceous material impregnated with or added with a metal salt is dried if necessary, and then heated with water vapor, carbon dioxide, air, It is activated to become activated carbon by contacting it with combustion gas, etc. As detailed above, the present invention selects the pore volume of part or all of the transitional region of activated carbon by a simple operation of adding a specific amount of metal salt to a carbonaceous material and then activating gas. Since the pore size can be increased and the pore distribution can be controlled, it is particularly useful as a method for producing activated carbon for wastewater treatment. In particular, when the activated carbon of the present invention is used in the decolorization process of refined sugar or the decolorization process of sodium L-glutamate solution, the activated carbon with a larger pore volume in the transitional region has higher decolorization performance. For example, a sodium L-glutamate solution obtained by neutralizing with sodium hydroxide L-glutamic acid separated from the fermentation liquid and containing impurities such as pigments such as molasses, melanoidin pigments, or a mixture of caramel, etc. In this case, the larger the pore volume of the activated carbon in the transitional region, the more the above-mentioned dye having a larger molecular weight contained in the solution is adsorbed and removed, resulting in better decolorizing performance. Hereinafter, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist thereof. Example 1 First, 31 parts of a 10% cobalt nitrate aqueous solution was sprayed onto 100 parts of US coal granules crushed into particles with a particle size range of 0.84 to 2.38 mm and an average particle size of 1.4 mm. (Analysis of these granules revealed that 0.9% by weight of cobalt nitrate was attached as a metal.) Next, the granules were heated to 650°C using an externally heated rotary kiln and held at that temperature for 30 minutes to cause carbonization. I went. 60g of this carbonized coal was charged into a 70mmφ, 300mmL rotary kiln, and nitrogen gas was heated at 1.5N/min.
Steam activation was carried out at 950° C. under a flow of heated gas of 1.2 N/min of H 2 O until the activation yield reached 40%. Packing density, average particle size, hardness, and
Iodine adsorption amount (IA), grain method molasses decolorization index (G-
ML), micro-region (diameter 50 Å or less), and transitional region (diameter 50-1000 Å) were measured. The measurement results are shown in Table 1. For comparison, Table 1 shows the physical properties of activated carbon obtained by treating the American charcoal granules used in Example 1 in exactly the same manner as in Example 1, except that the aqueous cobalt nitrate solution was not sprayed. Also listed. Example 2 The amount of sprayed 10% cobalt nitrate aqueous solution was set to 3.1 parts (the cobalt nitrate analysis value of the granules was
It was 0.08% by weight. ) Activated carbon was obtained by the same operation as in Example 1 except for the following. The physical properties of the obtained activated carbon were measured and the results are shown in Table 1. Example 3 Activated carbon was obtained in exactly the same manner as in Example 1, except that 3.1 parts of a 1% cobalt nitrate aqueous solution was sprayed instead of spraying the 10% cobalt nitrate aqueous solution. The physical properties of the obtained activated carbon were measured and the results are shown in Table 1. Example 4 The American coal granules used in Example 1 were carbonized under the same conditions as in Example 1. 10% Fe 2 (SO 4 ) 3 aqueous solution 3.6 to 100 parts of this carbonized coal
(The Fe 2 (SO 4 ) 3 analysis value of the carbonized coal was 0.1% by weight as metallic iron.), and then activated under the same conditions as in Example 1. The physical properties of the obtained activated carbon were measured and the results are shown in Table 1. Example 5 The carbonized carbon used in Example 5 was immersed in a 10% nickel acetate aqueous solution for 1 hour and then dried at 100°C.
(0.1% by weight). This dry carbonized charcoal was used in Example 1.
Activation treatment was performed under the same conditions. The physical properties of the obtained activated carbon were measured and the results are shown in Table 1. Example 6 20 wt% Fe 2 (SO 4 ) 3 aqueous solution 10 parts to 100 parts of US coal granules
The same procedure as in Example 1 was carried out, except that the Fe 2 (SO 4 ) 3 analysis value of the granules was 0.5% by weight as metallic iron. The physical properties of the obtained activated carbon were measured and the results are shown in Table 1. Comparative example 20wt% Fe 2 (SO 4 ) 3 aqueous solution 37 to 100 parts of US coal granules
The same procedure as in Example 1 was carried out, except that the Fe 2 (SO 4 ) 3 analysis value of the granules was 1.5% by weight as metallic iron. The physical properties of the obtained activated carbon were measured and the results are shown in Table 1.

【表】【table】

【表】 参考例 本発明の活性炭を用いてL−グルタミン酸ナト
リウム溶液の脱色性能について検討を行なつた。 活性炭は実施例1と同様にして50〜300Åの細
孔容積を第2表に示した値に調製したものを用い
た。
[Table] Reference Example The decolorizing performance of a sodium L-glutamate solution was investigated using the activated carbon of the present invention. The activated carbon used was one prepared in the same manner as in Example 1 to have a pore volume of 50 to 300 Å as shown in Table 2.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 炭素質材料をガス賦活法により賦活して活性
炭を製造するに当り、賦活工程より前の工程にお
いて炭素質材料に対し金属として0.001〜1重量
%の鉄、コバルト又はニツケルの金属塩の1種又
は2種以上を添加することを特徴とする活性炭の
製造方法。
1. When manufacturing activated carbon by activating a carbonaceous material by a gas activation method, one type of metal salt of iron, cobalt, or nickel is added in a step before the activation step to the carbonaceous material in an amount of 0.001 to 1% by weight as a metal. Or a method for producing activated carbon, characterized by adding two or more kinds.
JP14640577A 1977-12-06 1977-12-06 Production of activated carbon Granted JPS5478395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14640577A JPS5478395A (en) 1977-12-06 1977-12-06 Production of activated carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14640577A JPS5478395A (en) 1977-12-06 1977-12-06 Production of activated carbon

Publications (2)

Publication Number Publication Date
JPS5478395A JPS5478395A (en) 1979-06-22
JPS623086B2 true JPS623086B2 (en) 1987-01-23

Family

ID=15406947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14640577A Granted JPS5478395A (en) 1977-12-06 1977-12-06 Production of activated carbon

Country Status (1)

Country Link
JP (1) JPS5478395A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5814363B2 (en) * 1978-02-03 1983-03-18 武田薬品工業株式会社 Activated carbon processing method
JPS61295217A (en) * 1985-06-22 1986-12-26 Unitika Ltd Fibrous active carbon
JPH06104562B2 (en) * 1985-07-24 1994-12-21 大阪瓦斯株式会社 Activated carbon fiber manufacturing method
EP0643014B1 (en) * 1993-09-14 1998-08-12 Kuraray Chemical Co., Ltd. Deodorant comprising metal oxide-carrying activated carbon
JP5700651B2 (en) * 2010-04-21 2015-04-15 株式会社神戸製鋼所 Treatment agent and treatment method for contaminated water containing heavy metals

Also Published As

Publication number Publication date
JPS5478395A (en) 1979-06-22

Similar Documents

Publication Publication Date Title
Egbosiuba et al. Ultrasonic enhanced adsorption of methylene blue onto the optimized surface area of activated carbon: Adsorption isotherm, kinetics and thermodynamics
McDougall The physical nature and manufacture of activated carbon
JP5773647B2 (en) Chemical activated carbon and method for its preparation
US3864277A (en) Hard granular activated carbon and preparation from a carbonaceous material a binder and an inorganic activating agent
Jiao et al. Characterization of pine-sawdust pyrolytic char activated by phosphoric acid through microwave irradiation and adsorption property toward CDNB in batch mode
JPH0297414A (en) Production of active carbon having superior quality
AU585657B2 (en) Production of adsorbent carbon
JPH0692615A (en) Method for treating used ion exchanger
US6537947B1 (en) Activated carbons from low-density agricultural waste
JPH02167809A (en) Chemical activation type activated carbon, its production and its use
JP2003502263A (en) Method for producing shaped activated carbon
JPH0566886B2 (en)
JPS5945914A (en) Preparation of carbonaceous molecular sieve
Nandi et al. Adsorption of dyes from aqueous solution by coals, chars, and active carbons
US2317026A (en) Carbon black product and process of making the same
WO2005061099A1 (en) Adsorbents for removing heavy metals and methods for producing and using the same
JPS623086B2 (en)
JPS60238144A (en) Arsenic compound removing agent
US3955944A (en) Controlled selectivity activated carbon
JPH01246117A (en) Production of activated carbon
JPS6323125B2 (en)
US4203868A (en) Process for preparing carbon which adsorbs metal ions
Doke et al. Kinetics and equilibrium isotherm for adsorption of basic blue 9 dye onto activated charcoal prepared from Bhagar seed husk
JP2828268B2 (en) Activated carbon for advanced treatment of purified water
US3211673A (en) Manufacture of active char by solvent extraction of coal and activation of the residue