JPH0429221B2 - - Google Patents

Info

Publication number
JPH0429221B2
JPH0429221B2 JP56151395A JP15139581A JPH0429221B2 JP H0429221 B2 JPH0429221 B2 JP H0429221B2 JP 56151395 A JP56151395 A JP 56151395A JP 15139581 A JP15139581 A JP 15139581A JP H0429221 B2 JPH0429221 B2 JP H0429221B2
Authority
JP
Japan
Prior art keywords
anode
etched
etching
gas
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56151395A
Other languages
Japanese (ja)
Other versions
JPS5853833A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP15139581A priority Critical patent/JPS5853833A/en
Publication of JPS5853833A publication Critical patent/JPS5853833A/en
Publication of JPH0429221B2 publication Critical patent/JPH0429221B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Description

【発明の詳細な説明】 本発明は陽極電極と、この陽極電極の直下に設
けられ、高周波電力が印加され被エツチング物が
載置される陰極から成る平行平板電極を備えた減
圧容器内にハロゲン化合物ガスを導入するプラズ
マエツチング方法に係り、特にゴミ発生の極度に
少ないプラズマエツチング方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to etching a halogen film in a vacuum container equipped with a parallel plate electrode consisting of an anode electrode and a cathode provided directly below the anode electrode to which a high frequency power is applied and on which an object to be etched is placed. The present invention relates to a plasma etching method that introduces a compound gas, and particularly to a plasma etching method that generates extremely little dust.

近年、集積回路の製造におけるエツチング工程
では、従来の化学薬品を用いたウエツトエツチン
グに代わり、CF4等の反応性ガスプラズマを用い
たプラズマエツチング法が盛んに用いられてい
る。この様なエツチング法によれば、従来のウエ
ツトエツチングに比べて、エツチング工程の簡略
化、パターン寸法精度の向上、無公害化等の点で
優れている。
In recent years, in the etching process in the manufacture of integrated circuits, plasma etching methods using reactive gas plasma such as CF 4 have been widely used in place of conventional wet etching using chemicals. This etching method is superior to conventional wet etching in terms of simplifying the etching process, improving pattern dimensional accuracy, and eliminating pollution.

中でも最近では、CF4、C2F6、あるいは、
CCl4、Cl2等の反応性ガスを用いた反応性イオン
エツチング(Reactive Ion Etching:RIE)と呼
ばれている方法が主流になつている。例えば、コ
ンタクトホールの形成には、CF4にH2を混入した
ガスにより、また、配線材料としてのアルミニウ
ムのエツチングには、CCl4、あるいはCCl4+Cl2
等のガスによりガスプラズマを生起させ、このプ
ラズマ中のイオン(正イオン)や中性活性種(原
子、分子)と被エツチング物との物理/化学的な
反応を利用したエツチングが実用段階に入つてい
るのが現状である。
Among them, recently, CF 4 , C 2 F 6 , or
A method called reactive ion etching (RIE) using reactive gases such as CCl 4 and Cl 2 has become mainstream. For example, to form a contact hole, a gas containing CF 4 mixed with H 2 is used, and to etch aluminum as a wiring material, CCl 4 or CCl 4 +Cl 2 is used.
Etching has entered the practical stage by generating gas plasma using gases such as, and utilizing physical/chemical reactions between ions (positive ions) or neutral active species (atoms, molecules) in this plasma and the object to be etched. This is the current situation.

このRIEの一般的態様は次の様に考えられてい
る。すなわち、互いに平行に配置された一方の電
極(以下陰極と称す)に、13.56MHz等の高周波
電力を印加することによりグロー放電を発生させ
ると、電子とイオンの易動度の差により、高周波
電力印加後、数サイクル後には、前記陰極面上に
は大きな負電位(以下、この電位を接地電位から
測定してVdcと称す)が発生し、定常状態とな
る。これに対して、陰極と対向する電極(以下陽
極と称す)面の電位は高々プラズマ電位(20〜
30eV)程度である。第1図は、互いに平行に配
置された陰極1および陽極2を有する平行平板型
プラズマエツチング装置を示すものである。以上
のことから明らかな様に、高周波電力11によつ
て生起したプラズマ中の正イオンは、Vdcによつ
て陰極面1に向つて加速され、被エツチング物3
に衝突してエツチングするため、例えば、反応性
ガスとして、CF4+H2の混合ガス、被エツチング
物として酸化シリコン膜(SiO2)の場合には、
従来、いわゆるプラズマエツチング等において見
られたアンダカツトは全く生じることはなく、垂
直なエツチング壁をもつたエツチングプロフアイ
ルを得ることができ、微細加工が達成されること
になる。しかしながら、従来のRIE装置において
は、被エツチング物3は、対向電極、すなわち陽
極2の直下に載置されており、従つて、気相中よ
り降り積もるゴミの影響を本質的に免れることは
できない。例えばSi上のSiO2をCF4+H2の混合
ガスのガスプラズマでエツチングすると気相中に
はCF2の様な不飽和モノマーが多量に生じてお
り、このモノマーは、プラズマから見てより電位
の低い陽極上で重合反応を起こし、重合膜13即
ち(CF2)nの様なポリテトラフルオロエチレン
系の高分子膜となつて堆積する。この重合膜は、
放電時間とともに、その厚みを増し、ついには内
部歪のためにクラツク、はがれを生じ、これが、
前記被エツチング物3上に降り積つてゴミの原因
となる。このゴミは歩留りの大幅な低下をもたら
すだけでなく、生産ライン等では頻繁な装置の洗
浄を必要とし、保守管理の面で重大な問題であ
る。
The general aspect of this RIE is considered as follows. In other words, when a glow discharge is generated by applying high frequency power such as 13.56 MHz to one electrode (hereinafter referred to as the cathode) arranged parallel to each other, the high frequency power increases due to the difference in mobility between electrons and ions. After several cycles after the application, a large negative potential (hereinafter referred to as V dc when measured from the ground potential) is generated on the cathode surface, and a steady state is reached. On the other hand, the potential of the electrode facing the cathode (hereinafter referred to as anode) is at most the plasma potential (20~
30eV). FIG. 1 shows a parallel plate type plasma etching apparatus having a cathode 1 and an anode 2 arranged parallel to each other. As is clear from the above, the positive ions in the plasma generated by the high frequency power 11 are accelerated by V dc toward the cathode surface 1, and the object to be etched 3
For example, when a mixed gas of CF 4 + H 2 is used as the reactive gas and a silicon oxide film (SiO 2 ) is used as the object to be etched,
Undercuts, which have conventionally been observed in so-called plasma etching, do not occur at all, and an etching profile with vertical etching walls can be obtained, thereby achieving microfabrication. However, in the conventional RIE apparatus, the object to be etched 3 is placed directly under the counter electrode, that is, the anode 2, and therefore cannot be essentially exempted from the influence of dust that accumulates from the gas phase. For example, when SiO 2 on Si is etched with a gas plasma of a mixed gas of CF 4 + H 2 , a large amount of unsaturated monomers such as CF 2 are generated in the gas phase, and this monomer has a higher potential as seen from the plasma. A polymerization reaction occurs on the anode having a low temperature, and a polymer film 13, ie, a polytetrafluoroethylene-based polymer film such as (CF 2 )n, is deposited. This polymer film is
As the discharge time increases, its thickness increases, and eventually cracks and peeling occur due to internal distortion.
It accumulates on the object 3 to be etched and causes dust. This dust not only causes a significant decrease in yield, but also requires frequent cleaning of equipment on production lines, which is a serious problem in terms of maintenance management.

本発明は、以上の点に鑑みてなされたもので重
合膜の陽極電極への堆積防止を課題としている。
本課題を解決するために、本発明ではこの陽極電
極の直下に設けられた陰極に載置された被エツチ
ング物をエツチングするに際し、陽極表面を加熱
する様にしている。
The present invention has been made in view of the above points, and an object of the present invention is to prevent the deposition of a polymer film on an anode electrode.
In order to solve this problem, the present invention heats the surface of the anode when etching the object placed on the cathode provided directly below the anode electrode.

以下、本発明の実施例を図面を参照しながら詳
細に説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第2図は、第1図の陽極2を、パイプ7を通し
たヒーターで加熱する様にした装置によつて、
CF4+H2ガスを導入して放電させた時の陽極表面
温度と、重合膜の陽極面上への堆積速度の関係を
示すものである。ガス圧は0.04Torr、流量比
QH2/QCF4=1.0(QCF4:20 SCCM QH2
20SCCM)、RF電力300Wである。同図より明ら
かな様に表面温度の上昇と共に重合膜がつき難く
なり、50℃で堆積は皆無となる。CF4+H2の代わ
りにCF4、C2F6、C3F8等のCとFを含むハロゲン
化合物ガス、或いはこれらのガスにH2を加えた
ガスやCHF3、CHF3+H2等のCとFとHを含む
ガスを用いても陽極の加熱と共に成長し難くなり
50℃以上にすることにより、顕著な改善が認めら
れた。上記結果は実際SiO2をエツチングした場
合でも同様であつた。
FIG. 2 shows an apparatus in which the anode 2 of FIG. 1 is heated with a heater passed through a pipe 7.
This figure shows the relationship between the anode surface temperature when CF 4 +H 2 gas is introduced and discharged, and the deposition rate of the polymer film on the anode surface. Gas pressure is 0.04Torr, flow rate ratio
QH 2 /Q CF4 = 1.0 (Q CF4 : 20 SCCM QH 2 :
20SCCM), RF power 300W. As is clear from the figure, as the surface temperature increases, it becomes difficult for the polymer film to adhere, and at 50°C, there is no deposition at all. Instead of CF 4 + H 2 , use a halogen compound gas containing C and F such as CF 4 , C 2 F 6 , C 3 F 8 , or a gas obtained by adding H 2 to these gases, or CHF 3 , CHF 3 + H 2 , etc. Even if a gas containing C, F, and H is used, growth becomes difficult as the anode is heated.
A significant improvement was observed by increasing the temperature to 50°C or higher. The above results were similar even when SiO 2 was actually etched.

この様に、陽極表面が加熱されていることによ
り重合膜の堆積が抑制され、その温度は50℃以上
である事が好ましいものである。
By heating the anode surface in this way, deposition of a polymer film is suppressed, and the temperature is preferably 50° C. or higher.

尚、従来、減圧容器からのステンレスなどの金
属汚染からデバイスを守るために、予めCF4ガス
を放電させ、陽極や容器壁に重合膜をコートする
事が知られていた。しかしながら陽極を加熱する
事によりコーテイングは取り除かれてしまう。従
つて金属汚染も防止する場合には、陽極や容器内
壁に炭素板を取り付けておけばよい。
In order to protect the device from metal contamination such as stainless steel from the vacuum container, it has been known to discharge CF 4 gas in advance and coat the anode and container wall with a polymeric film. However, heating the anode will remove the coating. Therefore, if metal contamination is also to be prevented, a carbon plate may be attached to the anode or the inner wall of the container.

第3図は、この様な考えのもとに行なつた実施
例である。即ち、互いに対向して設けられた一対
の電極17,19を有した平行平板型電極の内、
被エツチング物18載置の電極17と対向する電
極19表面には、例えば炭素板28が密着して配
置され、また、該陽極以外の接地電極には、例え
ば、ポリエステル膜がはりつけられており、減圧
容器26の上側には、熱線21埋込みのヒーター
22が密着して置れている。陽極表面の温度は、
電流源20の電流値により制御される。以上説明
した装置構成により、反応容器内において金属露
出部は全くなくなり、従つて、金属汚染は完全に
防止されるとともに、炭素板28への重合膜の堆
積も皆無となり、ゴミの発生はほとんどないこと
が確認された。第2図の結果は、この様に炭素板
28を設けても全んど変化しなかつた。その場合
陽極表面温度は炭素板28表面温度を示す。
FIG. 3 shows an embodiment based on this idea. That is, among parallel plate electrodes having a pair of electrodes 17 and 19 facing each other,
For example, a carbon plate 28 is disposed in close contact with the surface of the electrode 19 facing the electrode 17 on which the object to be etched 18 is placed, and a polyester film, for example, is attached to the ground electrode other than the anode. A heater 22 in which a hot wire 21 is embedded is placed in close contact with the upper side of the reduced pressure container 26. The temperature of the anode surface is
It is controlled by the current value of the current source 20. With the device configuration described above, there are no exposed metal parts in the reaction vessel, and therefore, metal contamination is completely prevented, and there is also no deposition of polymeric film on the carbon plate 28, resulting in almost no dust generation. This was confirmed. The results shown in FIG. 2 did not change at all even if the carbon plate 28 was provided in this manner. In that case, the anode surface temperature indicates the carbon plate 28 surface temperature.

第4図は、この実施例で放電時間に対するエツ
チング後の良品率の経過を調べたもので、従来例
においては放電時間が100時間を越える場合には、
良品はほとんど取れない状態にあつたものが(破
線)、良品率の低下はほとんど見られないことが
わかる(実線)。第3図に示した実施例では、対
向電極19のみを加熱する場合を示したが、他の
すべての接地電極例えば容器26を同時に加熱し
た場合も同様の効果が得られることが確認され
た。
FIG. 4 shows the progress of the non-defective product rate after etching with respect to the discharge time in this example. In the conventional example, when the discharge time exceeds 100 hours,
It can be seen that there was a situation where it was almost impossible to obtain good products (broken line), but there was almost no decrease in the percentage of non-defective products (solid line). Although the example shown in FIG. 3 shows the case where only the counter electrode 19 is heated, it has been confirmed that the same effect can be obtained when all other ground electrodes, such as the container 26, are heated at the same time.

尚、本発明はSiO2の他、Si3N4やAl、poly−Si
等をエツチングする場合にも適用する事が出来
る。
In addition to SiO 2 , the present invention also applies to Si 3 N 4 , Al, poly-Si
It can also be applied when etching etc.

以上詳述した様に、本願発明のプラズマエツチ
ング方法によれば重合膜の電極への堆積を防止
し、ゴミ発生の極度に少なくできるため、製品の
歩留が向上し、また、生産ライン等で頻繁な装置
の洗浄が不要となり保守管理も容易となる。
As detailed above, according to the plasma etching method of the present invention, deposition of polymeric films on electrodes can be prevented and the generation of dust can be extremely reduced, resulting in improved product yields and improvements in production lines, etc. Frequent cleaning of the device is not required, making maintenance management easier.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の原理を説明するためのエツ
チング装置の断面図、第2図は陽極表面温度と重
合速度の関係を示す特性図、第3図は本発明の実
施例を説明するためのエツチング装置の断面図、
第4図は本発明の実施例の効果を説明するための
特性図である。図において、1,17……陰極、
2,19……陽極、3,18……被エツチング
物、4,26……減圧容器、5,16……ガス導
入口、6,7,25……水冷パイプ、8,9,2
3,24……ポリテトラフルオロエチレン、1
0,14……マツチング回路、11,15……高
周波電源、12,27……排気系、13……重合
膜、28……炭素板、29……ポリエスル膜、2
2……ヒートシンク、21……熱線、20……電
流源。
Fig. 1 is a cross-sectional view of an etching apparatus for explaining the principle of the present invention, Fig. 2 is a characteristic diagram showing the relationship between anode surface temperature and polymerization rate, and Fig. 3 is for explaining an embodiment of the present invention. A cross-sectional view of the etching device,
FIG. 4 is a characteristic diagram for explaining the effects of the embodiment of the present invention. In the figure, 1, 17... cathode,
2,19...Anode, 3,18...Object to be etched, 4,26...Reduced pressure container, 5,16...Gas inlet, 6,7,25...Water cooling pipe, 8,9,2
3,24...polytetrafluoroethylene, 1
0, 14... Matching circuit, 11, 15... High frequency power supply, 12, 27... Exhaust system, 13... Polymer film, 28... Carbon plate, 29... Polyester film, 2
2... heat sink, 21... hot wire, 20... current source.

Claims (1)

【特許請求の範囲】 1 陽極電極と、この陽極電極の直下に設けら
れ、高周波電力が印加され被エツチング物が載置
される陰極から成る平行平板電極を備えた減圧容
器内にハロゲン化合物ガスを導入すると共に、前
記陽極表面を加熱しながら前記被エツチング物を
エツチングすることを特徴とするプラズマエツチ
ング方法。 2 陽極表面は炭素板から成ることを特徴とする
前記特許請求の範囲第1項記載のプラズマエツチ
ング方法。 3 C及びFを含むガスが導入される事を特徴と
する前記特許請求の範囲第1項記載のプラズマエ
ツチング方法。
[Scope of Claims] 1. Halogen compound gas is introduced into a reduced pressure container equipped with a parallel plate electrode consisting of an anode electrode and a cathode provided directly below the anode electrode, on which a high-frequency power is applied and an object to be etched is placed. A plasma etching method characterized in that the object to be etched is etched while the surface of the anode is heated. 2. The plasma etching method according to claim 1, wherein the anode surface is made of a carbon plate. 3. The plasma etching method according to claim 1, wherein a gas containing C and F is introduced.
JP15139581A 1981-09-26 1981-09-26 Plasma etching device Granted JPS5853833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15139581A JPS5853833A (en) 1981-09-26 1981-09-26 Plasma etching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15139581A JPS5853833A (en) 1981-09-26 1981-09-26 Plasma etching device

Publications (2)

Publication Number Publication Date
JPS5853833A JPS5853833A (en) 1983-03-30
JPH0429221B2 true JPH0429221B2 (en) 1992-05-18

Family

ID=15517641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15139581A Granted JPS5853833A (en) 1981-09-26 1981-09-26 Plasma etching device

Country Status (1)

Country Link
JP (1) JPS5853833A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60140723A (en) * 1983-12-28 1985-07-25 Oki Electric Ind Co Ltd Dry etching apparatus
JPS60186411A (en) * 1984-03-06 1985-09-21 Anelva Corp Method of dry etching
JPS61171135A (en) * 1985-01-24 1986-08-01 Mitsubishi Electric Corp Plasma etching device
JPS63277751A (en) * 1987-05-11 1988-11-15 Rikagaku Kenkyusho Slightly gas emitting wall surface
JP2619395B2 (en) * 1987-07-10 1997-06-11 株式会社日立製作所 Plasma processing method
US5880036A (en) 1992-06-15 1999-03-09 Micron Technology, Inc. Method for enhancing oxide to nitride selectivity through the use of independent heat control
JP3553688B2 (en) * 1995-05-10 2004-08-11 アネルバ株式会社 Plasma processing apparatus and plasma processing method
US5656334A (en) * 1995-10-05 1997-08-12 Anelva Corporation Plasma treating method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5767173A (en) * 1980-10-09 1982-04-23 Mitsubishi Electric Corp Plasma etching device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5767173A (en) * 1980-10-09 1982-04-23 Mitsubishi Electric Corp Plasma etching device

Also Published As

Publication number Publication date
JPS5853833A (en) 1983-03-30

Similar Documents

Publication Publication Date Title
US4030967A (en) Gaseous plasma etching of aluminum and aluminum oxide
JP3243740B2 (en) Hot wall reactive ion etching with temperature control for process stability
US5643838A (en) Low temperature deposition of silicon oxides for device fabrication
JPH0653193A (en) Removal of carbon-based polymer residue by using ozone useful for cleaning of plasma reaction container
CN101015042A (en) Methods of removing photoresist on substrates
JPH0336300B2 (en)
KR20080069695A (en) Chamber components with polymer coatings and methods of manufacture
JPS63238288A (en) Dry etching method
JPH0429221B2 (en)
EP0020746A1 (en) Process and apparatus for cleaning wall deposits from a film deposition furnace tube.
CA1059882A (en) Gaseous plasma etching of aluminum and aluminum oxide
JP3667893B2 (en) Manufacturing method of semiconductor device
JP2650178B2 (en) Dry etching method and apparatus
JPH0456770A (en) Method for cleaning plasma cvd device
JP3086234B2 (en) Surface treatment method
JPH03769B2 (en)
JP3009209B2 (en) Surface protection method
JPH04316327A (en) Dry etching system and chamber cleaning method
JP2613803B2 (en) Copper thin film etching method
JPS6163030A (en) Plasma etching device
JPS6355939A (en) Dry etching device
WO1989003584A1 (en) Multi-electrode vacuum processing chamber
JPH09326384A (en) Plasma processing system
JP4958658B2 (en) Plasma processing method
JPH0241167B2 (en)