JPH04291751A - Cooling control of multichip module - Google Patents

Cooling control of multichip module

Info

Publication number
JPH04291751A
JPH04291751A JP3056303A JP5630391A JPH04291751A JP H04291751 A JPH04291751 A JP H04291751A JP 3056303 A JP3056303 A JP 3056303A JP 5630391 A JP5630391 A JP 5630391A JP H04291751 A JPH04291751 A JP H04291751A
Authority
JP
Japan
Prior art keywords
cooling
coil spring
chip module
semiconductor elements
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3056303A
Other languages
Japanese (ja)
Inventor
Yoshio Naganuma
永沼 義男
Kazunori Ouchi
大内 和紀
Atsushi Morihara
淳 森原
Yasushi Sato
康司 佐藤
Ryuichi Kaji
隆一 梶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3056303A priority Critical patent/JPH04291751A/en
Publication of JPH04291751A publication Critical patent/JPH04291751A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To collectively cool semiconductor devices such as multichip modules by controlling cooling capacity every semiconductor element. CONSTITUTION:A cooling structure where a cooling jacket 20 is connected via a thermal compound 9 to a multichip module with a semiconductor element 1 mounted on a module board 6: the cooling jacket has a pair of a cooling water inlet 7 and a cooling water outlet 8, and cooling water is distributed to respective nozzles 3 via a header 4. Its flow rate is controlled by changes in pitch of a coil spring 5 consisting of a thermosensitive material provided at the outlet of a nozzle 3. Semiconductors on the board can be cooled discretely so as to develop no ununiformity in temperature distribution, whereby thermal deformation of boards during action can be suppressed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、電子計算機などに用い
られる半導体素子の冷却装置に係り、特に、高密度半導
体パッケージであるマルチチップモジュールの冷却に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling device for semiconductor elements used in electronic computers and the like, and more particularly to cooling a multi-chip module that is a high-density semiconductor package.

【0002】0002

【従来の技術】電子計算機などに用いられる半導体素子
は、電子回路を高密度に集積するため動作時の発熱が大
きく、正常な動作を維持するにはこれら半導体素子を効
率良く冷却することが不可欠の課題となってきている。 特に、信号伝達の距離を短くし、高速に動作させるため
大規模集積回路(LSI)と呼ばれる高密度の半導体素
子を一枚の基板に多数装着したマルチチップモジュール
は、動作時の発熱が非常に大きい。このようなマルチチ
ップモジュールの冷却技術には、例えばニッケイエレク
トロニクス(NIKKEI ELECTRONICS)
(1885年6月17日発行)に記載されているような
水冷技術が知られている。この技術は基板上に装着した
半導体素子の発熱を、放熱スタッド及び熱伝導ブロック
を介して内部に冷却水が流れるコールドプレートと称す
る冷却ジャケットに熱伝導により伝えるものである。こ
こで用いる放熱スタッドは、基板のそりや各半導体素子
の装着時の寸法精度の不均一により生じる半導体素子表
面の高さ変位や傾きに対して常に良好な接触状態を保つ
ためのものである。このような変位を吸収する構造には
他にベローズや先端を球面にしたピストン等の冷却素子
を用いて半導体素子と接触させる例もある。さらに、こ
のような柔軟構造で吸収しきれない接触部分の微小な隙
間には熱伝導性コンパウンドを充填し、熱抵抗を小さく
することが行われている。しかし、このように半導体素
子と冷却ジャケットの間に冷却素子などの中間体を設け
た冷却構造では、半導体素子と冷却ジャケット間の伝熱
距離が長くなることや接触部分が多いことにより熱抵抗
が大きくなる。従って、例えば、特開平1−11514
7 号公報に例示されるような冷却ジャケットと半導体
素子を直接接触させることにより低熱抵抗化を図る方法
が提案されている。 このような冷却構造は、複数の半導体素子を一つの基板
上に多数配列し、高発熱の半導体装置の冷却に適する。 しかし、半導体毎に発熱が異なる場合は単に基板を一括
して冷却しただけでは、同一基板上の半導体間の温度に
差が生じ、性能が低下する。このため特開昭61−21
8146号公報では、半導体素子毎に半導体の温度検出
手段を設け、この温度を基に半導体毎の冷却量を制御す
る方法が提案されている。ここでは一例として、半導体
素子の温度を電子回路中のトランジスタの接合部の電圧
変化で検出し、冷却水流路に設けた流路制御弁の開度を
検出信号を基にパルスモータで制御して冷却能力を流路
毎に調整する方法を例示している。また、簡単な冷却能
力の制御法として図12に示すような形状記憶合金を使
ったものが例示されているが形状記憶合金で伝熱制御用
ギャップ16を駆動しているだけである。
[Background Art] Semiconductor devices used in electronic computers, etc., generate a large amount of heat during operation due to the high density integration of electronic circuits, and it is essential to efficiently cool these semiconductor devices to maintain normal operation. This has become an issue. In particular, multi-chip modules, which have a large number of high-density semiconductor elements called large-scale integrated circuits (LSI) mounted on a single board in order to shorten signal transmission distances and operate at high speed, generate a lot of heat during operation. big. Cooling technology for such multi-chip modules includes, for example, NIKKEI ELECTRONICS.
Water-cooling techniques are known, such as those described in (Published June 17, 1885). This technology transfers heat generated by a semiconductor element mounted on a substrate to a cooling jacket called a cold plate through which cooling water flows through heat radiation studs and heat conduction blocks. The heat dissipation stud used here is used to maintain good contact at all times against height displacement and inclination of the surface of the semiconductor element caused by warping of the substrate and non-uniform dimensional accuracy during mounting of each semiconductor element. Other examples of structures for absorbing such displacement include using cooling elements such as bellows or pistons with spherical tips, which are brought into contact with semiconductor elements. Furthermore, in order to reduce thermal resistance, a thermally conductive compound is filled into the minute gaps in the contact area that cannot be absorbed by such a flexible structure. However, in this cooling structure in which an intermediate body such as a cooling element is provided between the semiconductor element and the cooling jacket, the thermal resistance increases due to the longer heat transfer distance between the semiconductor element and the cooling jacket and the large number of contact points. growing. Therefore, for example, JP-A-1-11514
A method of reducing thermal resistance by bringing a cooling jacket into direct contact with a semiconductor element, as exemplified in Japanese Patent No. 7, has been proposed. Such a cooling structure has a plurality of semiconductor elements arranged on one substrate, and is suitable for cooling a semiconductor device that generates a lot of heat. However, if heat generation differs from semiconductor to semiconductor, simply cooling the substrate all at once will cause a difference in temperature between the semiconductors on the same substrate, resulting in a decrease in performance. For this reason, JP-A-61-21
Japanese Patent No. 8146 proposes a method in which a semiconductor temperature detection means is provided for each semiconductor element, and the cooling amount of each semiconductor is controlled based on this temperature. Here, as an example, the temperature of the semiconductor element is detected by the voltage change at the junction of the transistor in the electronic circuit, and the opening degree of the flow path control valve provided in the cooling water flow path is controlled by a pulse motor based on the detection signal. A method for adjusting cooling capacity for each flow path is illustrated. Furthermore, as a simple cooling capacity control method, a method using a shape memory alloy as shown in FIG. 12 is exemplified, but the shape memory alloy is simply used to drive the heat transfer control gap 16.

【0003】0003

【発明が解決しようとする課題】上記のようにマルチチ
ップモジュールで使用する半導体は高発熱であるため、
高い冷却性能が求められている。このため各半導体素子
毎に冷却媒体を供給して冷却する方法がとられる。この
場合、モジュールに一括して供給した冷却電体を半導体
の発熱に応じて分配供給する必要がある。これは各流路
毎に冷却媒体流量を制御することであり、従来例で示し
たように、一般に複雑な構造になる。すなわち、従来例
のように流路毎にステップモータで駆動する弁を制御す
ることは、10ないし20cm角の基板上に数十個の半
導体素子を取り付けたマルチチップモジュールの冷却構
造では実際上不可能である。このため、本発明では単純
な機構でマルチチップモジュールの冷却性能を半導体素
子毎に制御できるようにすることである。
[Problem to be solved by the invention] As mentioned above, the semiconductors used in multi-chip modules generate a high amount of heat.
High cooling performance is required. For this reason, a method is used to cool each semiconductor element by supplying a cooling medium to each semiconductor element. In this case, it is necessary to distribute and supply the cooling electric body that is supplied to the module in bulk according to the heat generation of the semiconductor. This involves controlling the flow rate of the cooling medium for each flow path, and as shown in the conventional example, the structure is generally complicated. In other words, controlling a valve driven by a step motor for each flow path as in the conventional example is practically impossible in the cooling structure of a multi-chip module in which several dozen semiconductor elements are mounted on a 10 to 20 cm square substrate. It is possible. Therefore, an object of the present invention is to enable the cooling performance of a multi-chip module to be controlled for each semiconductor element using a simple mechanism.

【0004】0004

【課題を解決するための手段】上記課題を解決するため
、本発明では、基板に装着した半導体素子に対応する位
置の冷却媒体流路にコイルばねを設ける。更に、このコ
イルばねは半導体素子の温度に応じてピッチを変化させ
る手段を講じる。その一つは半導体素子の温度変化に応
じて変形する可動素子、たとえばバイメタルや形状記憶
合金を利用してばねを押しつけコイルばねのピッチを変
化させるようにする。また、他の一つは、コイルばねそ
のものをバイメタルや形状記憶合金などの感温可動材料
で構成し、半導体素子の温度変化に応じて自分自身のば
ねピッチを変化させるように構成することである。
[Means for Solving the Problems] In order to solve the above problems, in the present invention, a coil spring is provided in a cooling medium flow path at a position corresponding to a semiconductor element mounted on a substrate. Furthermore, this coil spring takes measures to change the pitch depending on the temperature of the semiconductor element. One method uses a movable element, such as a bimetal or a shape memory alloy, that deforms in response to changes in the temperature of the semiconductor element to press the spring and change the pitch of the coil spring. Another method is to construct the coil spring itself from a temperature-sensitive movable material such as a bimetal or shape memory alloy, and to change its own spring pitch in response to changes in the temperature of the semiconductor element. .

【0005】[0005]

【作用】冷却媒体流路中に設置したコイルばねはコイル
のピッチ間のすき間が冷却媒体の通り道になる。このた
め、このピッチ間隔を変化させることは冷却媒体の流路
を拡大したり縮小することになる。この流路断面積の変
化により、そこを通る冷却媒体流量を変化させることが
できる。このコイルばねは各半導体素子の冷却部毎に配
置することができ、基板上に複数の半導体素子を配列し
たマルチチップモジュールの各半導体素子毎の冷却量を
制御することができる。このコイルばねのピッチ変化を
生じさせる可動素子は半導体素子の温度を感じてコイル
ばねを押し縮めたり伸ばしたりするように作用する。ま
た、コイルばねを感温性の材料で構成した場合、それ自
身が半導体素子の温度に感応してピッチを変えることが
できるため上述のように冷却を制御することができる。 さらに、センサと駆動素子が別に設けられる場合にも、
センサによって検出した温度を基に圧電素子などの駆動
素子を変形させ、その発生力を利用してコイルばねのピ
ッチを変化させるように作用させ、冷却媒体流量を同様
に制御することができる。この結果、モジュール内の各
半導体素子の温度を一定に保つようにできる。
[Operation] In the coil spring installed in the cooling medium flow path, the gap between the pitches of the coils becomes a passage for the cooling medium. Therefore, changing this pitch interval means expanding or contracting the flow path of the cooling medium. By changing the cross-sectional area of the flow path, the flow rate of the cooling medium passing therethrough can be changed. This coil spring can be arranged for each cooling section of each semiconductor element, and can control the amount of cooling for each semiconductor element of a multi-chip module in which a plurality of semiconductor elements are arranged on a substrate. The movable element that causes the pitch change of the coil spring senses the temperature of the semiconductor element and acts to compress or expand the coil spring. Further, when the coil spring is made of a temperature-sensitive material, the pitch can be changed in response to the temperature of the semiconductor element, so that cooling can be controlled as described above. Furthermore, even when the sensor and drive element are provided separately,
A drive element such as a piezoelectric element is deformed based on the temperature detected by the sensor, and the generated force is used to change the pitch of the coil spring, whereby the flow rate of the cooling medium can be similarly controlled. As a result, the temperature of each semiconductor element within the module can be kept constant.

【0006】[0006]

【実施例】以下、本発明を実施例で説明する。図1は、
本発明の代表的な一実施例を断面構造で示したマルチチ
ップモジュールの冷却構造である。モジュール基板6上
に複数の半導体素子1を装着している。本実施例では基
板上に五行五列に半導体素子を配列した場合の断面構造
を示す。ピン2はこれら半導体素子の給電や信号の伝達
に使用するものである。この半導体素子を冷却するため
、冷却ジャケット20がサーマルコンパウンド9を介し
て基板上の半導体素子に一括して接続されている。冷却
ジャケット20は冷却水入口7から冷却水がまとめて供
給されるが、供給された冷却水は冷却ジャケット内でヘ
ッダ4を介して各半導体素子を冷却するためのノズル3
に分配される。冷却水はこのノズルから各半導体素子毎
の伝熱面に噴流状に供給されるため高い冷却性能が得ら
れる。各ノズルから噴出し半導体素子からの熱を冷却し
た冷却水は冷却水出口8からまとめてモジュール外へ排
出される。この構成に加えて本発明では冷却ジャケット
内部のノズル出口部にコイルばね5を配置している。 これは、例えば、温度に感応して伸び縮みする形状記憶
合金を用いて製作したものを用いる。このコイルばねを
図のようにノズル毎に配置することができる。このため
ノズル3から供給した冷却水は半導体素子を噴流冷却し
図中の矢印のように流れる。その後、冷却水はコイルば
ねのピッチ間の隙間を通過し冷却水出口8に向かう。こ
の構造により、半導体素子の温度が上昇した場合は、こ
の熱がコイルばねに伝わりコイルばねは伸びてピッチが
広がるように作用する。これはばねが感温性材料で出来
ているためである。この結果、冷却水の流路断面が大き
くなるのでノズルから供給される冷却水流量を増加し、
半導体素子構らの発熱に対する冷却能力が増加する。よ
って半導体素子の温度が低下すればコイルばねは縮みも
とのピッチに戻り、冷却水流量も減少し基準の流量にな
る。このように、半導体素子の温度を維持するための冷
却能力を決める冷却水流量とコイルばねのピッチの関係
はノズル部の圧力損失との関係で決定される。また、ピ
ッチを変化させる温度は、コイルばねを構成する感温材
料の特性と伝熱面からコイルばねに伝わる伝熱状態によ
り最適に設計される。このようにコイルばねを冷却水流
路に配置し、そのピッチを変えることで各半導体素子ご
とに冷却能力を制御することができる。この最適設計に
より、基板上半導体素子の温度を均一にすることができ
る。
[Examples] The present invention will be explained below with reference to Examples. Figure 1 shows
1 is a cooling structure of a multi-chip module showing a cross-sectional structure of a typical embodiment of the present invention. A plurality of semiconductor elements 1 are mounted on a module substrate 6. This embodiment shows a cross-sectional structure in which semiconductor elements are arranged in five rows and five columns on a substrate. Pin 2 is used for power supply and signal transmission to these semiconductor elements. In order to cool the semiconductor elements, a cooling jacket 20 is collectively connected to the semiconductor elements on the substrate via a thermal compound 9. Cooling water is collectively supplied to the cooling jacket 20 from the cooling water inlet 7, and the supplied cooling water passes through the header 4 within the cooling jacket to the nozzle 3 for cooling each semiconductor element.
distributed to. Since the cooling water is supplied in the form of a jet to the heat transfer surface of each semiconductor element from this nozzle, high cooling performance can be obtained. The cooling water ejected from each nozzle and having cooled the heat from the semiconductor elements is collectively discharged from the cooling water outlet 8 to the outside of the module. In addition to this configuration, in the present invention, a coil spring 5 is arranged at the nozzle outlet inside the cooling jacket. This may be made using, for example, a shape memory alloy that expands and contracts in response to temperature. This coil spring can be arranged for each nozzle as shown in the figure. Therefore, the cooling water supplied from the nozzle 3 jet-cools the semiconductor element and flows as shown by the arrow in the figure. Thereafter, the cooling water passes through the gap between the pitches of the coil springs and heads toward the cooling water outlet 8. With this structure, when the temperature of the semiconductor element rises, this heat is transmitted to the coil spring, and the coil spring stretches and acts to widen the pitch. This is because the spring is made of a temperature-sensitive material. As a result, the cross section of the cooling water flow path becomes larger, increasing the flow rate of cooling water supplied from the nozzle.
The cooling capacity against heat generated by the semiconductor element structure is increased. Therefore, when the temperature of the semiconductor element decreases, the coil spring contracts and returns to its original pitch, and the cooling water flow rate decreases to the standard flow rate. In this way, the relationship between the cooling water flow rate and the pitch of the coil spring, which determines the cooling capacity for maintaining the temperature of the semiconductor element, is determined by the relationship with the pressure loss of the nozzle portion. Further, the temperature at which the pitch is changed is optimally designed depending on the characteristics of the temperature-sensitive material that constitutes the coil spring and the state of heat transfer from the heat transfer surface to the coil spring. By arranging the coil springs in the cooling water flow path in this manner and changing the pitch thereof, the cooling capacity can be controlled for each semiconductor element. With this optimal design, the temperature of the semiconductor elements on the substrate can be made uniform.

【0007】この実施例では感温材料として単に形状記
憶合金を利用した場合を示したが、このコイルばねが正
確に温度に反応して伸び縮みするには半導体素子からの
熱を効率的にコイルばねに伝えることが必要である。こ
のため熱伝導性の良い材料であることが望ましい。図2
はこの要求を満たす一実施例として複合材料からなるコ
イルばねの構造を示したものである。これは内部が銅系
の形状記憶合金、例えば、Cu−Zn−Al合金やCu
−Zn−Ni合金を用いた高熱伝導性の形状記憶合金と
し、その周囲を感温精度が高く、耐食性のTi−Ni系
の形状記憶合金で囲んだものである。このコイルばねは
伝熱面と接する端面からの熱伝導性が高く半導体素子の
温度をより正確にコイルばねに伝えることが出来る。こ
のため、本構成のコイルばねを前述の冷却モジュールの
実施例に使用するとコイルばねのピッチ制御の精度を高
めることができ、精度が高い温度制御特性を持った冷却
モジュールを得ることができる。図3はさらにコイルば
ねの形状を径違いの構造にしたものの一例を示したもの
である。このコイルばねは径の大きい方を伝熱面に接触
するようにして使用する。すなわち、本実施例では伝熱
面からばねに伝わる伝熱面積を大きくする効果があり、
半導体素子の温度がコイルばねに良く伝わるようにする
構造である。このように図2及び図3に示した複合材料
からなる形状記憶合金は冷却水と接する外表面が耐食性
の高い材料であるため長期信頼性も確保できる。また、
このように耐食性を増すために、図4に示すように、銅
系の形状記憶合金製コイネばねに、例えば、撥水性の特
性をもつ表面処理として、フッ素コート12をした構造
も可能である。このようなコイルばねはばね全体が熱伝
導性のよい材料で構成され、且つ、耐食性が維持できる
ため、これを用いた冷却モジュールは、前述のように、
高精度のピッチ制御が可能になる。図5は更にコイルば
ねの温度均一化を図るためコイルばねを形状記憶合金製
のヒートパイプで製作して用いる場合のばねの素線の構
造を示したものである。図6は図5のVI−VI間の断
面構造を示したものである。すなわち、本構造によるコ
イルばねは、例えば、Ti−Ni系の形状記憶合金製パ
イプ21の内部に作動流体13を、例えば、減圧した水
あるいはメタノールなど半導体素子の温度で気化できる
条件で封入した直径1ないし2mmのマイクロヒートパ
イプをコイル状に形成しばねとしたものである。この構
造のコイルばねは、ばねの端面で受けた熱により内部の
作動流体が蒸発し、瞬時にばね全体に拡散するためコイ
ルばねに温度勾配が生じない。この結果、コイルばねの
変化によるピッチ変化を精度良く形状記憶合金の変態温
度で起こすことが出来る。図7は、例えば、図2や図3
に示した本実施例によるコイルばねの製法の一実施例を
示したものである。これは引き抜き加工を利用して製作
する例であり、銅系形状記憶合金11を芯線とし、これ
にTi−Ni系形状記憶合金10の板材をダイスを用い
て引き抜きながら囲み込む。次の工程では出来た複合材
料を更に必要な素線径を得るための引き抜き加工を行う
。最後に素線を曲げ加工によりコイル状に形成し、変態
温度前後における形状を決める熱処理を行う。この様に
して得た形状記憶合金からなる複合材料のコイルばねは
、図1に示した冷却構造に用いられる。
This example shows the case where a shape memory alloy is simply used as the temperature-sensitive material, but in order for this coil spring to expand and contract in response to temperature accurately, the heat from the semiconductor element must be efficiently absorbed into the coil. It is necessary to tell the spring. Therefore, it is desirable to use a material with good thermal conductivity. Figure 2
shows the structure of a coil spring made of a composite material as an example that satisfies this requirement. This is a shape memory alloy with a copper-based interior, such as a Cu-Zn-Al alloy or Cu
A highly thermally conductive shape memory alloy using -Zn-Ni alloy is surrounded by a Ti-Ni type shape memory alloy that has high temperature sensitivity and corrosion resistance. This coil spring has high thermal conductivity from the end surface in contact with the heat transfer surface, and can more accurately transmit the temperature of the semiconductor element to the coil spring. Therefore, when the coil spring of this configuration is used in the above-described embodiment of the cooling module, the precision of pitch control of the coil spring can be improved, and a cooling module with highly accurate temperature control characteristics can be obtained. FIG. 3 further shows an example of a coil spring having a structure with different diameters. This coil spring is used with the larger diameter end in contact with the heat transfer surface. In other words, this embodiment has the effect of increasing the heat transfer area from the heat transfer surface to the spring.
This structure allows the temperature of the semiconductor element to be well transmitted to the coil spring. In this way, since the outer surface of the shape memory alloy made of the composite material shown in FIGS. 2 and 3 that comes into contact with the cooling water is made of a material with high corrosion resistance, long-term reliability can be ensured. Also,
In order to increase the corrosion resistance in this manner, as shown in FIG. 4, a structure in which a copper spring made of a shape memory alloy is coated with fluorine 12 as a surface treatment with water repellent properties, for example, is also possible. The entire spring of such a coil spring is made of a material with good thermal conductivity, and corrosion resistance can be maintained, so a cooling module using this spring can be used as described above.
Highly accurate pitch control becomes possible. FIG. 5 shows the structure of a spring wire when a coil spring is made of a heat pipe made of a shape memory alloy in order to further equalize the temperature of the coil spring. FIG. 6 shows a cross-sectional structure taken along VI-VI in FIG. That is, the coil spring of this structure has a diameter in which the working fluid 13 is sealed inside the pipe 21 made of, for example, a Ti-Ni shape memory alloy under conditions that allow it to be vaporized at the temperature of the semiconductor element, such as water or methanol under reduced pressure. The spring is a 1 to 2 mm micro heat pipe formed into a coil shape. In a coil spring with this structure, the internal working fluid evaporates due to the heat received at the end face of the spring and instantly diffuses throughout the spring, so no temperature gradient occurs in the coil spring. As a result, pitch changes due to changes in the coil spring can be accurately caused at the transformation temperature of the shape memory alloy. Figure 7 is, for example, Figure 2 or Figure 3.
This figure shows an example of the method for manufacturing the coil spring according to this embodiment shown in FIG. This is an example of manufacturing using drawing processing, in which a copper-based shape memory alloy 11 is used as a core wire, and a plate material of a Ti-Ni-based shape memory alloy 10 is surrounded by the core wire while being drawn using a die. In the next step, the composite material is drawn to obtain the required wire diameter. Finally, the strands are bent into a coil shape and heat treated to determine the shape before and after the transformation temperature. The composite material coil spring made of the shape memory alloy thus obtained is used in the cooling structure shown in FIG.

【0008】以上の実施例はコイルばねそのものが感温
性の材料で製作されており、半導体素子から伝わった熱
によりコイルばね自ら変形してピッチを変化させる。し
かし、図8に示す実施例ではコイルばねは温度感応機能
を持たないステンレス製のばねを用いた構造でコイルば
ねのピッチ変化を生じさせ半導体素子の温度を制御する
一実施例を示した。なお、図8ではモジュールの一部で
ある半導体素子の一個分の構造を示した。本実施例では
、ノズル3の出口に温度感応機能を持たないステンレス
製のコイルばねを配置し、これを駆動するためにバイメ
タル17を半導体素子1とコイルばね5の間に図示のよ
うに挿入する。本構造では冷却媒体による噴流冷却の基
本構成は図1の実施例と同じであるが、コイルばねのピ
ッチ変化はバイメタル17が半導体素子からの熱をうけ
てコイルばねの拘束を緩め、ばねが伸びるように変形し
、コイルばねのピッチを変化させる。このように温度感
応機能を持たないコイルばねのピッチを半導体素子の温
度に応じて変化させるための構造は他にも考えられる。 例えば、図9はコイルばねを駆動するための感温機能素
子の構造の一例を示したものである。図10は図9の可
動部分の部分断面構造を示したものである。本例は二種
類の形状記憶合金製の板を張り合わせ、コイルばねと接
触する周辺部分を図のように板ばねの集合体のように加
工する。これは噴流の当たる表面に耐食性のTi−Ni
系形状記憶合金10,半導体素子から熱を受ける伝熱面
側に熱伝導性の良い銅系形状記憶合金11を用いて構成
している。本構成によると温度により変形する板ばね部
分が形状記憶合金の特性による変形力と二種の金属を合
わせたことによるバイメタル効果により感度良く変形す
ることができ、この上部に配置されるコイルばねのピッ
チを容易に変化させることが出来る。これらを冷却モジ
ュールに用いて半導体素子ごとに冷却水の流量を制御で
きることは図1で説明した実施例と同様である。
In the above embodiments, the coil spring itself is made of a temperature-sensitive material, and the coil spring itself deforms and changes its pitch due to the heat transmitted from the semiconductor element. However, in the embodiment shown in FIG. 8, the coil spring is constructed using a stainless steel spring that does not have a temperature sensitive function, and the temperature of the semiconductor element is controlled by changing the pitch of the coil spring. Note that FIG. 8 shows the structure of one semiconductor element that is part of a module. In this embodiment, a stainless steel coil spring that does not have a temperature sensitive function is placed at the outlet of the nozzle 3, and a bimetal 17 is inserted between the semiconductor element 1 and the coil spring 5 as shown in the figure to drive this spring. . In this structure, the basic configuration of jet cooling using a cooling medium is the same as the embodiment shown in FIG. 1, but the change in pitch of the coil spring is caused by the bimetal 17 receiving heat from the semiconductor element, loosening the restraint of the coil spring, and causing the spring to expand. The pitch of the coil spring changes. Other structures are conceivable for changing the pitch of a coil spring that does not have a temperature sensitive function in accordance with the temperature of a semiconductor element. For example, FIG. 9 shows an example of the structure of a temperature-sensitive functional element for driving a coil spring. FIG. 10 shows a partial cross-sectional structure of the movable part shown in FIG. In this example, two types of shape memory alloy plates are pasted together, and the peripheral parts that come into contact with the coil springs are processed to look like an assembly of plate springs as shown in the figure. This is because the surface that is hit by the jet is made of corrosion-resistant Ti-Ni.
A copper-based shape memory alloy 11 having good thermal conductivity is used on the heat transfer surface side that receives heat from the semiconductor element. According to this configuration, the leaf spring portion that deforms due to temperature can be deformed with high sensitivity due to the deformation force due to the characteristics of the shape memory alloy and the bimetallic effect resulting from the combination of two types of metals, and the coil spring disposed above this Pitch can be changed easily. Similar to the embodiment described in FIG. 1, these can be used in a cooling module to control the flow rate of cooling water for each semiconductor element.

【0009】図11は本発明の他の実施例を示したもの
で、これはコイルばねが温度変化に対して一方向にしか
変形しない材料で構成される場合の一実施例を示したも
のである。すなわち、本実施例ではコイルばねが変態温
度になると初期の長さから伸びる方向に変形するだけで
あり、変形後、温度が下がっても元に戻らない形状記憶
合金を使用した場合の例である。この場合、温度が下が
った場合、コイルばねを元の状態に押し縮めるバイアス
力が必要であり、本実施例ではゴム製リング22を使用
している。これは一般に用いられるステンレス製コイル
ばね等を用いても良いことは明らかである。図示の様に
配置したゴム製リングは形状記憶合金製のコイルばね5
に、常時、押しつけられているが半導体素子の温度が上
昇するとコイルばね5が伸びゴム製リングを押し縮める
。この結果、コイルばねのピッチが広がりノズル2から
供給される冷却水流量が増加し、冷却効率が高まる。 半導体素子の温度が下がり元の温度になった場合、今度
は押し縮められていたゴム製リング22の反力が増しコ
イルばね5が押し縮められて元のピッチに戻り冷却水の
供給量は減少する。半導体素子の発熱量の変化に伴いこ
のような動作が繰返され半導体素子の冷却量を制御する
ことができる。
FIG. 11 shows another embodiment of the present invention, in which the coil spring is made of a material that deforms only in one direction in response to temperature changes. be. In other words, this example uses a shape memory alloy that only deforms in the direction of elongation from its initial length when the coil spring reaches the transformation temperature, and does not return to its original state even if the temperature drops after deformation. . In this case, a bias force is required to compress the coil spring to its original state when the temperature drops, and a rubber ring 22 is used in this embodiment. It is clear that a generally used stainless steel coil spring or the like may be used. The rubber ring arranged as shown is a shape memory alloy coil spring 5.
The coil spring 5 is always pressed against the rubber ring, but when the temperature of the semiconductor element rises, the coil spring 5 expands and compresses the rubber ring. As a result, the pitch of the coil springs widens, the flow rate of cooling water supplied from the nozzle 2 increases, and the cooling efficiency increases. When the temperature of the semiconductor element decreases and returns to its original temperature, the reaction force of the compressed rubber ring 22 increases, compressing the coil spring 5 and returning to its original pitch, reducing the amount of cooling water supplied. do. This operation is repeated as the amount of heat generated by the semiconductor element changes, and the amount of cooling of the semiconductor element can be controlled.

【0010】0010

【発明の効果】本発明によると、各半導体素子毎に供給
する冷却電体の流量を簡単な原理と構造で制御できるた
め、冷却媒体の偏流や不均一流れの影響を無くす効果が
ある。
According to the present invention, since the flow rate of the cooling current supplied to each semiconductor element can be controlled using a simple principle and structure, there is an effect of eliminating the effects of uneven flow and non-uniform flow of the cooling medium.

【0011】また、モジュール基板に装着した発熱量の
大きい複数の半導体素子を冷却媒体の温度上昇の影響な
く個別に冷却できるため、モジュール基板上の温度分布
の不均一性が無いように均一に冷却できるため、動作時
の基板の熱変形を小さく抑えることに効果があり、信頼
性の高いモジュールの冷却が出来る。
[0011] Furthermore, since multiple semiconductor elements mounted on the module board that generate a large amount of heat can be individually cooled without being affected by the temperature rise of the cooling medium, uniform cooling is possible without unevenness in temperature distribution on the module board. This is effective in minimizing thermal deformation of the board during operation, and allows highly reliable cooling of the module.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例を示すマルチチップモジュー
ルの断面図。
FIG. 1 is a sectional view of a multi-chip module showing one embodiment of the present invention.

【図2】複合材料からなるコイルばねの説明図。FIG. 2 is an explanatory diagram of a coil spring made of a composite material.

【図3】複合材料からなる径違いコイルばねの説明図。FIG. 3 is an explanatory diagram of a reducing diameter coil spring made of a composite material.

【図4】表面コートしたコイルばねの説明図。FIG. 4 is an explanatory diagram of a surface-coated coil spring.

【図5】ヒートパイプ型コイルばね用素線の断面図。FIG. 5 is a cross-sectional view of a wire for a heat pipe type coil spring.

【図6】図5のVI−VI矢視断面図。FIG. 6 is a sectional view taken along the line VI-VI in FIG. 5;

【図7】本発明の複合材料製コイルばねの製法説明図。FIG. 7 is an explanatory diagram of the manufacturing method of the composite material coil spring of the present invention.

【図8】非感温性材料のコイルばねを用いた冷却構造の
部分断面図。
FIG. 8 is a partial cross-sectional view of a cooling structure using a coil spring made of non-temperature-sensitive material.

【図9】コイルばね駆動用温度感応素子の説明図。FIG. 9 is an explanatory diagram of a temperature sensitive element for driving a coil spring.

【図10】図9の円周に沿った断面図。FIG. 10 is a cross-sectional view taken along the circumference of FIG. 9;

【図11】バイアス構造もつ冷却構造の部分断面図。FIG. 11 is a partial cross-sectional view of a cooling structure with a bias structure.

【図12】形状記憶合金を用いた従来の冷却構造例の断
面図。
FIG. 12 is a cross-sectional view of an example of a conventional cooling structure using a shape memory alloy.

【符号の説明】[Explanation of symbols]

1…半導体素子、2…ピン、3…ノズル、4…ヘッダ、
5…コイルばね、6…モジュール基板、7…冷却水入口
、8…冷却水出口、9…サーマルコンパウンド、20…
冷却ジャケット。
1... Semiconductor element, 2... Pin, 3... Nozzle, 4... Header,
5... Coil spring, 6... Module board, 7... Cooling water inlet, 8... Cooling water outlet, 9... Thermal compound, 20...
cooling jacket.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】基板に複数の半導体素子を装着したマルチ
チップモジュールの各半導体素子から発生する熱を、対
向して設けた冷却ジャケットに伝導で伝えてモジュール
毎に一括冷却する半導体装置において、前記冷却ジャケ
ット内の冷却媒体流路にコイルばねを設け、前記コイル
ばねのピッチ変化を利用して冷却媒体の流量を変化させ
ることを特徴とするマルチチップモジュールの冷却制御
方法。
1. A semiconductor device in which heat generated from each semiconductor element of a multi-chip module in which a plurality of semiconductor elements are mounted on a substrate is transmitted by conduction to cooling jackets provided facing each other to collectively cool each module. A method for controlling cooling of a multi-chip module, characterized in that a coil spring is provided in a cooling medium flow path in a cooling jacket, and the flow rate of the cooling medium is changed using a pitch change of the coil spring.
【請求項2】基板に複数の半導体素子を装着したマルチ
チップモジュールの前記各半導体素子から発生する熱を
、対向して設けた冷却ジャケットに伝導で伝えてモジュ
ール毎に一括冷却する半導体装置において、基板上の前
記各半導体素子と対向する位置の伝熱面に冷却媒体を個
別に供給出来るノズルを設けた冷却ジャケットを用い、
各ノズル毎にコイルばねを配置し、前記コイルばねのピ
ッチ変化を利用して前記冷却媒体の供給量を個別に制御
するマルチチップモジュールの冷却制御方法。
2. A semiconductor device in which heat generated from each semiconductor element of a multi-chip module in which a plurality of semiconductor elements are mounted on a substrate is transmitted by conduction to a cooling jacket provided oppositely to cool each module at once, Using a cooling jacket provided with nozzles that can individually supply a cooling medium to the heat transfer surface at a position facing each of the semiconductor elements on the substrate,
A cooling control method for a multi-chip module, in which a coil spring is arranged for each nozzle, and the supply amount of the cooling medium is individually controlled using pitch changes of the coil spring.
【請求項3】請求項1または2において、前記基板に複
数の半導体素子を装着したマルチチップモジュールの各
半導体素子から発生する熱を、対向して設けた前記冷却
ジャケットに伝導で伝えてモジュール毎に一括冷却する
半導体装置において、冷却媒体流路の前記基板上の前記
半導体素子の温度を各々個別に検知し、検知温度を基に
圧電素子等の可動素子を用いてコイルばねのピッチを変
化させるマルチチップモジュールの冷却制御方法。
3. According to claim 1 or 2, heat generated from each semiconductor element of a multi-chip module in which a plurality of semiconductor elements are mounted on the substrate is conducted to the cooling jacket provided facing each other for each module. In a semiconductor device that is cooled all at once, the temperature of each of the semiconductor elements on the substrate in the cooling medium flow path is individually detected, and the pitch of the coil spring is changed using a movable element such as a piezoelectric element based on the detected temperature. Cooling control method for multi-chip modules.
【請求項4】請求項1または2において、前記基板に複
数の前記半導体素子を装着したマルチチップモジュール
の前記各半導体素子から発生する熱を、対向して設けた
冷却ジャケットに伝導で伝えてモジュール毎に一括冷却
し、前記基板に装着した前記各半導体素子と対向する位
置の前記冷却ジャケット内の伝熱面を介して前記半導体
素子の温度を感知して変形できる形状記憶合金又はバイ
メタルを用いて、コイルばねのピッチを変化させるマル
チチップモジュールの冷却制御法。
4. According to claim 1 or 2, in a multi-chip module in which a plurality of semiconductor elements are mounted on the substrate, heat generated from each of the semiconductor elements is transferred by conduction to a cooling jacket provided oppositely to the module. using a shape memory alloy or bimetal that can be cooled at once and deformed by sensing the temperature of the semiconductor elements through a heat transfer surface in the cooling jacket at a position facing each of the semiconductor elements mounted on the substrate. , a cooling control method for multichip modules that changes the pitch of coil springs.
【請求項5】請求項1または2において、前記コイルば
ねのピッチ変化を利用するマルチチップモジュールの冷
却のために前記コイルばねを二方向性の形状記憶合金で
製作したマルチチップモジュールの冷却制御法。
5. A cooling control method for a multi-chip module according to claim 1 or 2, in which the coil spring is made of a bidirectional shape memory alloy for cooling the multi-chip module using pitch changes of the coil spring. .
【請求項6】請求項1または2において、前記コイルば
ねのピッチ変化を利用するマルチチップモジュールの冷
却に、前記コイルばねをバイアス力を与えた一方向性の
形状記憶合金で製作したマルチチップモジュールを銅や
アルミニュウムなどの高熱伝導材料と形状記憶合金の複
合材料で製作したマルチチップモジュールの冷却制御法
6. The multi-chip module according to claim 1 or 2, wherein the multi-chip module is cooled by utilizing a pitch change of the coil spring, and the multi-chip module is made of a unidirectional shape memory alloy that applies a bias force to the coil spring. A cooling control method for multi-chip modules made of composite materials of high thermal conductivity materials such as copper and aluminum and shape memory alloys.
【請求項7】請求項6において、一方向性形状記憶合金
を銅やアルミニュウムなどの高熱伝導材料との複合した
材料で製作し、コイルばねに高熱伝導性を付加したマル
チチップモジュールの冷却制御法。
7. A cooling control method for a multi-chip module according to claim 6, in which a unidirectional shape memory alloy is made of a composite material with a high thermal conductivity material such as copper or aluminum, and high thermal conductivity is added to a coil spring. .
【請求項8】請求項6または7において、前記バイアス
力をゴム材料で与えるマルチチップモジュールの冷却制
御法。
8. A cooling control method for a multi-chip module according to claim 6 or 7, wherein the bias force is applied using a rubber material.
【請求項9】基板に複数の半導体素子を装着したマルチ
チップモジュールの各半導体素子から発生する熱を、対
向して設けた冷却ジャケットに伝導で伝えてモジュール
毎に一括冷却する半導体装置において、前記基板上の前
記各半導体素子と対向する位置の伝熱面に冷却媒体を個
別に供給出来るノズルをもった冷却ジャケットを用い、
前記各ノズル毎に噴流の出口側に流量制御機構を設けた
ことを特徴とするマルチチップモジュールの冷却制御方
法。
9. A semiconductor device in which heat generated from each semiconductor element of a multi-chip module in which a plurality of semiconductor elements are mounted on a substrate is transmitted by conduction to a cooling jacket provided oppositely to cool each module at once. Using a cooling jacket with nozzles that can individually supply a cooling medium to the heat transfer surface at a position facing each of the semiconductor elements on the substrate,
A cooling control method for a multi-chip module, characterized in that a flow rate control mechanism is provided on the jet outlet side of each nozzle.
【請求項10】請求項1,2,3,4,5,6,7,8
または9において、前記ノズルの噴流出口部にコイルば
ねを噴流が前記コイルばねの内部に噴出するように配置
したマルチチップモジュールの冷却制御法。
Claim 10: Claims 1, 2, 3, 4, 5, 6, 7, 8
or 9, the cooling control method for a multi-chip module, wherein a coil spring is disposed at the jet outlet portion of the nozzle so that a jet flow is jetted into the inside of the coil spring.
JP3056303A 1991-03-20 1991-03-20 Cooling control of multichip module Pending JPH04291751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3056303A JPH04291751A (en) 1991-03-20 1991-03-20 Cooling control of multichip module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3056303A JPH04291751A (en) 1991-03-20 1991-03-20 Cooling control of multichip module

Publications (1)

Publication Number Publication Date
JPH04291751A true JPH04291751A (en) 1992-10-15

Family

ID=13023365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3056303A Pending JPH04291751A (en) 1991-03-20 1991-03-20 Cooling control of multichip module

Country Status (1)

Country Link
JP (1) JPH04291751A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020079296A (en) * 2001-04-11 2002-10-19 주식회사 태림테크 Heat Pipe and Cooler of IC using It
WO2012020453A1 (en) * 2010-08-10 2012-02-16 Empire Technology Development Llc Improved fluid cooling
JP2013062443A (en) * 2011-09-14 2013-04-04 Fujikura Ltd Flat plate-shaped cooler
US8479529B2 (en) 2007-08-09 2013-07-09 Millennium Energy Industries, Incorporated Two-stage low temperature air cooled adsorption cooling unit
JP2016082013A (en) * 2014-10-15 2016-05-16 富士通株式会社 Cooling apparatus and electronic apparatus
JP2021044469A (en) * 2019-09-13 2021-03-18 大日本印刷株式会社 Heat exchanger

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020079296A (en) * 2001-04-11 2002-10-19 주식회사 태림테크 Heat Pipe and Cooler of IC using It
US8479529B2 (en) 2007-08-09 2013-07-09 Millennium Energy Industries, Incorporated Two-stage low temperature air cooled adsorption cooling unit
WO2012020453A1 (en) * 2010-08-10 2012-02-16 Empire Technology Development Llc Improved fluid cooling
US8416573B2 (en) 2010-08-10 2013-04-09 Empire Technology Development Llc. Fluid cooling
JP2013062443A (en) * 2011-09-14 2013-04-04 Fujikura Ltd Flat plate-shaped cooler
JP2016082013A (en) * 2014-10-15 2016-05-16 富士通株式会社 Cooling apparatus and electronic apparatus
JP2021044469A (en) * 2019-09-13 2021-03-18 大日本印刷株式会社 Heat exchanger

Similar Documents

Publication Publication Date Title
EP1779052B1 (en) Heat transfer assembly
US7369409B2 (en) Apparatus, method, and control program for cooling electronic devices
EP2036123B1 (en) Cooled electronic assembly employing a thermally conductive composite interface material and fabrication method thereof
EP2003691B1 (en) Base for power module
US20240247883A1 (en) Deformable fin heat exchanger
EP2834841B1 (en) Semiconductor cooling apparatus
US5028989A (en) Semiconductor cooling module
JP2745948B2 (en) Integrated circuit cooling structure
JPS60160149A (en) Cooling system for integrated circuit device
US7549298B2 (en) Spray cooling with spray deflection
JPH04291751A (en) Cooling control of multichip module
US7779638B2 (en) Localized microelectronic cooling apparatuses and associated methods and systems
JP5378407B2 (en) COOLING ROLL FOR ROLL CROWN CONTROL AND ITS CONTROL METHOD
JP2006245356A (en) Cooling apparatus of electronic device
JPH04152659A (en) Method and device for cooling multichip module
US7365980B2 (en) Micropin heat exchanger
JP4228680B2 (en) Cooling member
Zhang et al. Experimental characterization of flow boiling heat dissipation in a microchannel heat sink with different orientations
JP3202372B2 (en) Heating element cooling device
CN114373729B (en) Microchannel heat abstractor capable of intelligently adjusting chip temperature
JPH046099B2 (en)
JPS62293745A (en) Heat transfer element
JP3184621B2 (en) Bonding equipment
JPH065754A (en) Cooling structure for integrated circuit
JPH11204978A (en) Electronic equipment