JPH04291146A - Element for measuring concentration of oxygen within melted metal - Google Patents

Element for measuring concentration of oxygen within melted metal

Info

Publication number
JPH04291146A
JPH04291146A JP3080628A JP8062891A JPH04291146A JP H04291146 A JPH04291146 A JP H04291146A JP 3080628 A JP3080628 A JP 3080628A JP 8062891 A JP8062891 A JP 8062891A JP H04291146 A JPH04291146 A JP H04291146A
Authority
JP
Japan
Prior art keywords
particle size
coating layer
powder
layer
types
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3080628A
Other languages
Japanese (ja)
Other versions
JP2868920B2 (en
Inventor
Takumi Narahara
楢原 卓美
Hiroshi Orito
博 折戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP3080628A priority Critical patent/JP2868920B2/en
Publication of JPH04291146A publication Critical patent/JPH04291146A/en
Application granted granted Critical
Publication of JP2868920B2 publication Critical patent/JP2868920B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To enable a stable measurement to be made without any release of a film layer or generation of cracks when dipping in a melted steel by mixing a powder with two types of grain size distributions with an oxide containing a fluoride for forming the film layer. CONSTITUTION:A film layer 2 is provided on a surface which contacts a melted metal on an outer-periphery surface for a solid electrolyte 1 consisting of zirconia. This layer 2 is an oxide containing fluoride and is formed by mixing a powder with two types of grain size distributions and a filling density of the powder can be increased and the intricate layer 2 can be formed since small particles fill a gap of large particles. Therefore, by reducing sintering shrinkage, release of the layer 2 or generation of cracks can be reduced. Also, an amount of added fluoride with a binding effect within high temperature can be suppressed to a small amount owing to their reduction and a melting point of the layer 2 can be increased, thus preventing expansion or melting of the layer 2. Therefore, a stable measurement can be made.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、溶融した金属の酸素濃
度を測定するために用いられる素子であって、固体電解
質体の外周面の溶融金属と接する面に被覆層を設けた構
造の酸素濃度測定用素子に関するものである。
[Industrial Application Field] The present invention relates to an element used for measuring the oxygen concentration of molten metal, which has a structure in which a coating layer is provided on the outer peripheral surface of a solid electrolyte body in contact with the molten metal. This invention relates to a concentration measuring element.

【0002】0002

【従来の技術】従来から、ジルコニア等の酸素イオン導
電性固体電解質を用いて片側が閉じた有底円筒形状とし
、その内側に金属ー金属酸化物を混合した固体極を封入
し、その外側に金属酸化物等による被覆層を付与した構
造のセンサ素子が知られている。上述した構造のセンサ
素子では、素子を溶融金属中に投入したとき被覆層が高
温の溶融金属中で焼結収縮し、剥離やクラックの発生が
生じ、溶融金属と固体電解質の接触面積が変化するため
、安定した起電力波形が得られない問題があった。また
、被覆層の剥離やクラックの発生をなくすため、被覆層
の厚さを100μm 以上にすることも考えられるが、
そうすると応答時間が遅くなるという問題が生じていた
[Prior Art] Conventionally, an oxygen ion conductive solid electrolyte such as zirconia is used to form a cylindrical shape with a closed end on one side, a solid electrode made of a metal-metal oxide mixture is enclosed inside the cylindrical shape, and a solid electrode made of a metal-metal oxide mixture is enclosed inside the cylindrical shape. 2. Description of the Related Art Sensor elements having a structure provided with a coating layer made of metal oxide or the like are known. In the sensor element with the above structure, when the element is placed in molten metal, the coating layer shrinks due to sintering in the high-temperature molten metal, causing peeling and cracking, and changing the contact area between the molten metal and the solid electrolyte. Therefore, there was a problem that a stable electromotive force waveform could not be obtained. In addition, in order to prevent peeling and cracking of the coating layer, it is possible to make the thickness of the coating layer 100 μm or more.
This has caused a problem of slow response time.

【0003】0003

【発明が解決しようとする課題】上述した被覆層の剥離
等の問題を解決するため、近年になって、高温でバイン
ダー効果のあるCaF2 を被覆層内に含ます技術が例
えば特公昭61ー47377号公報において開示されて
いる。しかしながら、従来このバインダー効果を発揮さ
せるためにはCaF2 を多量に添加しなければならず
、CaF2 が多量に添加されると被覆層の融点が下が
り、その結果発泡や溶けの発生により、溶融金属と固体
電解質の接触面積が変化し、安定した起電力波形を得る
ことができない問題があった。
[Problems to be Solved by the Invention] In order to solve the above-mentioned problems such as peeling of the coating layer, a technology has been developed in recent years in which CaF2, which has a binder effect at high temperatures, is included in the coating layer. It is disclosed in the publication No. However, in the past, in order to exhibit this binder effect, a large amount of CaF2 had to be added, and when a large amount of CaF2 was added, the melting point of the coating layer decreased, resulting in foaming and melting, which caused the molten metal to melt. There was a problem in that the contact area of the solid electrolyte changed, making it impossible to obtain a stable electromotive force waveform.

【0004】本発明の目的は上述した課題を解消して、
弗化物のバインダー効果を利用できるとともに被覆層の
剥離やクラック発生のない溶融金属中の酸素濃度測定用
素子を提供しようとするものである。
[0004] The purpose of the present invention is to solve the above-mentioned problems,
The object of the present invention is to provide an element for measuring oxygen concentration in molten metal that can utilize the binder effect of fluoride and that does not cause peeling of the coating layer or generation of cracks.

【0005】[0005]

【課題を解決するための手段】本発明の溶融金属中の酸
素濃度測定用素子は、固体電解質素子の外周面の溶融金
属と接する面に被覆層を設けた構造の酸素濃度測定用素
子において、前記被覆層を、弗化物を含有した酸化物の
粉末であって、2種類の粒度分布をもつ粉末を混合して
構成したことを特徴とするものである。
[Means for Solving the Problems] An element for measuring oxygen concentration in molten metal of the present invention has a structure in which a coating layer is provided on the outer peripheral surface of a solid electrolyte element in contact with molten metal. The coating layer is characterized in that it is composed of a mixture of fluoride-containing oxide powders having two types of particle size distributions.

【0006】[0006]

【作用】上述した構成において、弗化物を含有する酸化
物であって2種類の粒度分布をもつ粉末を混合して被覆
層を形成することにより、大粒子の隙間を小粒子が埋め
ることにより粉末の充填密度をあげ緻密な被覆層を形成
することができるため、、焼結収縮を減少させることが
でき、その結果被覆層の剥離やクラックの発生を減少さ
せることができる。また、上述したように、被覆層の骨
材自体が緻密化し、クラックや剥離が減少するため、高
温中でバインダー効果のある弗化物の添加を小量に抑え
ることができ、被覆層の融点をあげることができ、その
結果被覆層の発泡や溶融を防止することができる。さら
に、被覆層の焼結収縮が減少するため、被覆層を薄く構
成することができ、溶融金属と固体電解質素子の内側に
設けた固体極の熱平衡に達する時間が速くなり、応答性
が向上する。
[Operation] In the above structure, by forming a coating layer by mixing powders of fluoride-containing oxides with two types of particle size distribution, the small particles fill the gaps between the large particles. Since it is possible to increase the packing density and form a dense coating layer, sintering shrinkage can be reduced, and as a result, peeling and cracking of the coating layer can be reduced. In addition, as mentioned above, the aggregate of the coating layer itself becomes densified, reducing cracks and peeling, making it possible to suppress the addition of fluoride, which has a binder effect, to a small amount at high temperatures, and lowering the melting point of the coating layer. As a result, foaming and melting of the coating layer can be prevented. Furthermore, since the sintering shrinkage of the coating layer is reduced, the coating layer can be made thinner, which speeds up the time to reach thermal equilibrium between the molten metal and the solid electrode provided inside the solid electrolyte element, improving responsiveness. .

【0007】なお、2種類の粒度分布をもつ粉末として
は、後述する実施例から明らかなように、平均粒子径:
0.7〜1.4μm で粒度範囲:0.1〜7μm の
粉末10〜50重量%と、平均粒子径:1.5〜2.5
μm で粒度範囲:0.1〜15μm の粉末50〜9
0重量%との混合物を使用すると、被覆層の緻密性があ
がり好ましい。
[0007] As is clear from the examples described below, the powders having two types of particle size distribution have an average particle size of:
10-50% by weight of powder with particle size range: 0.1-7μm and average particle size: 1.5-2.5
Particle size range in μm: 0.1-15 μm powder 50-9
It is preferable to use a mixture with 0% by weight because the denseness of the coating layer increases.

【0008】[0008]

【実施例】図1は本発明の溶融金属中の酸素濃度測定用
素子の一例の構成を示す部分断面図である。図1におい
て、1は酸素イオン導電性を示すジルコニアからなる固
体電解質体、2は固体電解質体1の外周面の溶融金属と
接する面に設けた被覆層であり、有底円筒状の酸素濃度
測定用素子3を構成している。本発明では、この被覆層
2として2種類の粒度分布を有する弗化物を含有した酸
化物の粉末を混合したものを使用する必要がある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a partial sectional view showing the structure of an example of an element for measuring oxygen concentration in molten metal according to the present invention. In FIG. 1, 1 is a solid electrolyte body made of zirconia that exhibits oxygen ion conductivity, and 2 is a coating layer provided on the outer peripheral surface of the solid electrolyte body 1 in contact with the molten metal. This constitutes the element 3 for use. In the present invention, it is necessary to use a mixture of fluoride-containing oxide powders having two types of particle size distributions as the coating layer 2.

【0009】本発明において、ジルコニアからなる固体
電解質体1および酸素濃度測定用素子は以下のようにし
て製造される。まず、例えばジルコニア粉末92モル%
とマグネシア粉末8モル%と、その全量に対して1重量
%のアルミナ粉末を調合する。次に、得られた調合物を
水とジルコニア玉石により所定粒度となるまで粉砕する
。粉砕後、バインダーとしてポリビニールアルコールを
加えた後、スプレードライヤにより造粒して、マグネシ
ア部分安定化ジルコニア原料を得る。次に、得られた原
料を所定形状にラバープレス後、外周を切削して有底円
筒形状の成形体とした後、1700℃以上の温度で焼成
して、ジルコニアからなる固体電解質体1を得る。最後
に、有底円筒形状の固体電解質体1の外周面の溶融金属
と接する面に、弗化物を含有した酸化物の2種類の粒度
分布をもつ粉末を混合し、後述する方法でコーティング
して被覆層2を形成することにより、本発明の溶融金属
中の酸素濃度測定用素子を得ている。
In the present invention, the solid electrolyte body 1 made of zirconia and the oxygen concentration measuring element are manufactured as follows. First, for example, zirconia powder 92 mol%
8 mol% of magnesia powder and 1% by weight of alumina powder based on the total amount are mixed. Next, the obtained mixture is ground with water and zirconia cobbles until it reaches a predetermined particle size. After pulverization, polyvinyl alcohol is added as a binder and then granulated using a spray dryer to obtain a magnesia partially stabilized zirconia raw material. Next, the obtained raw material is rubber pressed into a predetermined shape, the outer periphery is cut to form a bottomed cylindrical molded body, and then fired at a temperature of 1700° C. or higher to obtain a solid electrolyte body 1 made of zirconia. . Finally, fluoride-containing oxide powders having two types of particle size distributions are mixed on the outer circumferential surface of the solid electrolyte body 1 having a cylindrical shape with a bottom, which is in contact with the molten metal, and coated by the method described below. By forming the coating layer 2, the element for measuring oxygen concentration in molten metal of the present invention is obtained.

【0010】次に、被覆層2について詳細に説明する。 被覆層2は、2種類の粒度分布をもつ弗化物が含有され
た酸化物と有機バインダーにより構成される。酸化物の
例としては、アルミナ、マグネシア、カルシア、ジルコ
ニアおよびアルミナとの複合酸化物であるアルミナマグ
ネシアスピネル、アルミナストロンチア等が使用できる
。また、弗化物の例としては、弗化カルシウム、弗化マ
グネシウム、弗化アルミニウム、弗化ストロンチウム等
が使用できる。その製造法は、まず上記酸化物の1種類
を80〜90重量%と上記弗化物の1種類を10〜20
重量%とを調合する。次に、得られた調合粉末をトロン
メル中で水とジルコニア玉石を使用して粉砕する。異な
る粒度分布の粉末を得るため、粉砕時間を変えて粉砕し
た後、得られた粉砕物を乾燥し、弗化物を含有した好ま
しくは平均粒子径:0.7〜1.4μm で粒度範囲:
0.1〜7μm の酸化物粉末と、平均粒子径:1.5
〜2.5μm で粒度範囲:0.1〜15μm の酸化
物粉末とを得る。次に、上記粒度分布の異なる弗化物が
含有した酸化物粉末2種類と水と有機バインダーとを混
合し、被覆液とする。この被覆液に固体電解質体の被覆
層を設ける面を浸漬後、乾燥して、本発明の被覆層2を
固体電解質体1の外周部に設けた酸素濃度測定用素子を
得ている。
Next, the covering layer 2 will be explained in detail. The coating layer 2 is composed of an oxide containing fluoride having two types of particle size distribution and an organic binder. Examples of oxides that can be used include alumina, magnesia spinel, alumina strontia, and the like, which are composite oxides of alumina, magnesia, calcia, zirconia, and alumina. Further, as examples of fluorides, calcium fluoride, magnesium fluoride, aluminum fluoride, strontium fluoride, etc. can be used. The manufacturing method is as follows: First, 80 to 90% by weight of one of the above oxides and 10 to 20% by weight of one of the above fluorides.
% by weight. The resulting blended powder is then ground in a trommel using water and zirconia cobblestones. In order to obtain powders with different particle size distributions, after pulverizing with different pulverizing times, the obtained pulverized product is dried and the fluoride-containing powder is preferably average particle size: 0.7 to 1.4 μm and particle size range:
Oxide powder of 0.1 to 7 μm and average particle size: 1.5
to 2.5 μm and particle size range: 0.1 to 15 μm. Next, two types of oxide powders containing fluorides having different particle size distributions, water, and an organic binder are mixed to form a coating liquid. The surface of the solid electrolyte body on which the coating layer is to be provided is immersed in this coating liquid and then dried to obtain an oxygen concentration measuring element in which the coating layer 2 of the present invention is provided on the outer periphery of the solid electrolyte body 1.

【0011】以下、実際の例について説明する。 実施例1 表1に示すような平均粒子径および粒度分布を有する2
種類のスピネル粉末とスピネル粉末全量に対して15重
量%のCaF2 とからなる厚さ100μm 被覆層を
ジルコニア固体電解質体の外周部に設けてなる酸素濃度
測定用素子を作製し、10kg高周波誘導炉中で165
0℃のFe−C−O系の溶鋼中に一定時間浸漬保持し、
その後引き上げて被覆層の状態を目視で観察した。なお
、粒度分布の測定はレーザ散乱法により行った。また、
2種類の粒度分布の粉末を混合した粒度分布の一例を図
2に示す。結果を表1に示す。
An actual example will be explained below. Example 1 2 having the average particle size and particle size distribution as shown in Table 1
An element for measuring oxygen concentration was prepared by providing a 100 μm thick coating layer on the outer periphery of a zirconia solid electrolyte body consisting of various types of spinel powder and 15% by weight of CaF2 based on the total amount of spinel powder, and placed in a 10 kg high frequency induction furnace. So 165
Immersed and held in Fe-C-O-based molten steel at 0°C for a certain period of time,
Thereafter, it was pulled up and the state of the coating layer was visually observed. Note that the particle size distribution was measured by a laser scattering method. Also,
FIG. 2 shows an example of a particle size distribution obtained by mixing powders with two types of particle size distributions. The results are shown in Table 1.

【0012】0012

【表1】[Table 1]

【0013】表1の結果から明らかなように、2種類の
粒度分布の粉末を使用した試験No2〜10は、いずれ
か1種類しか使用しなかった試験No1、11と比べて
不良割合が少なく、その中でも2種類の粒度分布の粉末
の添加量が近い試験No6〜10はもっとも不良割合が
少なかった。
As is clear from the results in Table 1, Test Nos. 2 to 10, which used powders with two types of particle size distributions, had a lower percentage of defects than Tests Nos. 1 and 11, which used only one type of powder. Among them, Test Nos. 6 to 10, in which the amounts of powders with two different particle size distributions were added, had the lowest percentage of defects.

【0014】実施例2 実施例1と同様に、表2に示すような平均粒子径および
粒度分布を有する2種類のスピネル粉末を原料として、
酸素濃度測定用素子を作製し、実施例1と同様に溶鋼浸
漬後の被覆層の状態を目視で観察した。結果を表2に示
す。
Example 2 As in Example 1, two types of spinel powder having the average particle diameter and particle size distribution as shown in Table 2 were used as raw materials.
An element for measuring oxygen concentration was prepared, and as in Example 1, the state of the coating layer after immersion in molten steel was visually observed. The results are shown in Table 2.

【0015】[0015]

【表2】[Table 2]

【0016】表2の結果からも、2種類の粒度分布を有
する粉末を使用した試験No17〜24は、いずれか1
種類しか使用しなかった試験No12〜16と比べて不
良割合が少なかった。また、その中でも試験No18、
19、21、22が最良で、2種類の平均粒子径の範囲
として、平均粒子径が0.7〜1.4μm の粉末と平
均粒子径が1.5〜2.5μmの粉末を混合して使用す
ると好ましいことがわかった。
[0016] From the results in Table 2, it can be seen that in Test Nos. 17 to 24, which used powders having two types of particle size distribution, either one
The percentage of defects was lower than in Test Nos. 12 to 16, in which only different types were used. Also, among them, test No. 18,
19, 21, and 22 are the best, and the two types of average particle size ranges are a powder with an average particle size of 0.7 to 1.4 μm and a powder with an average particle size of 1.5 to 2.5 μm. It was found to be advantageous to use it.

【0017】実施例3 被覆層の厚さと応答性との関係を調べるため、実施例1
と同様に、表3に示すような平均粒子径を有する2種類
のスピネル粉末を原料として、酸素測定用素子を作製し
、実施例1と同様に被覆層の状態を目視で調べるととも
に、浸漬後の起電力と応答時間を測定して応答性を比較
した。結果を表3に示す。
Example 3 In order to investigate the relationship between the thickness of the coating layer and the response, Example 1 was conducted.
Similarly, oxygen measuring elements were prepared using two types of spinel powders having average particle diameters as shown in Table 3 as raw materials, and the state of the coating layer was visually examined in the same manner as in Example 1. The electromotive force and response time were measured and the responsiveness was compared. The results are shown in Table 3.

【0018】[0018]

【表3】[Table 3]

【0019】表3の結果から、2種類の平均粒子径の粉
末を使用した試験No29〜32は、いずれか1種類し
か使用しなかった試験No25〜28と比べて不良もな
く、応答時間が短くて応答性が良好であった。また、2
種類の平均粒子径の粉末を使用した場合は、試験No3
1に示されるように、被覆層の厚さを50μm として
も不良はなく、また試験No32に示されるようにCa
F2 の添加量を低減しても不良がなく、厚さを薄くし
た分だけ応答時間がさらに良くなることもわかった。
From the results in Table 3, Test Nos. 29 to 32, which used powders with two types of average particle diameters, had no defects and had a shorter response time than Tests Nos. 25 to 28, which used only one type of powder. The response was good. Also, 2
When using powder with a different average particle size, test No. 3
As shown in Test No. 1, there was no defect even when the thickness of the coating layer was 50 μm, and as shown in Test No. 32, Ca
It was also found that there were no defects even when the amount of F2 added was reduced, and that the response time was further improved as the thickness was reduced.

【0020】[0020]

【発明の効果】以上の説明から明らかなように、本発明
の溶融金属中の酸素濃度測定用素子によれば、弗化物を
含有する酸化物であって2種類の粒度分布をもつ粉末を
混合して被覆層を形成することにより、溶鋼浸漬時の被
覆層の剥離やクラック発生がなく、安定した起電力波形
を得ることができる。
Effects of the Invention As is clear from the above description, according to the element for measuring oxygen concentration in molten metal of the present invention, powders of fluoride-containing oxides having two types of particle size distributions are mixed. By forming the coating layer in this manner, it is possible to obtain a stable electromotive force waveform without peeling or cracking of the coating layer during immersion in molten steel.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の溶融金属中の酸素濃度測定用素子の一
例の構成を示す部分断面図である。
FIG. 1 is a partial cross-sectional view showing the structure of an example of an element for measuring oxygen concentration in molten metal according to the present invention.

【図2】本発明における2種類の粒度分布の粉末を混合
した粒度分布の一例を示すグラフである。
FIG. 2 is a graph showing an example of a particle size distribution obtained by mixing powders with two types of particle size distributions in the present invention.

【符号の説明】[Explanation of symbols]

1  固体電解質体 2  被覆層 3  酸素濃度測定用素子 1 Solid electrolyte body 2 Coating layer 3 Oxygen concentration measurement element

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  固体電解質素子の外周面の溶融金属と
接する面に被覆層を設けた構造の酸素濃度測定用素子に
おいて、前記被覆層を、弗化物を含有した酸化物の粉末
であって、2種類の粒度分布をもつ粉末を混合して構成
したことを特徴とする溶融金属中の酸素濃度測定用素子
1. An oxygen concentration measuring element having a structure in which a coating layer is provided on the outer peripheral surface of the solid electrolyte element in contact with molten metal, wherein the coating layer is made of fluoride-containing oxide powder, An element for measuring oxygen concentration in molten metal, characterized in that it is composed of a mixture of powders having two types of particle size distributions.
【請求項2】  前記2種類の弗化物を含有した酸化物
粉末からなる被覆層が、平均粒子径:0.7〜1.4μ
m で粒度範囲:0.1〜7μm の粉末10〜50重
量%と、平均粒子径:1.5〜2.5μm で粒度範囲
:0.1〜15μm の粉末50〜90重量%とからな
る請求項1記載の溶融金属中の酸素濃度測定用素子。
2. The coating layer made of oxide powder containing the two types of fluorides has an average particle size of 0.7 to 1.4 μm.
A claim consisting of 10-50% by weight of a powder with a particle size range of 0.1-7 μm and 50-90% by weight of a powder with an average particle size of 1.5-2.5 μm and a particle size range of 0.1-15 μm. Item 1. The element for measuring oxygen concentration in molten metal according to item 1.
JP3080628A 1991-03-20 1991-03-20 Element for measuring oxygen concentration in molten metal Expired - Lifetime JP2868920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3080628A JP2868920B2 (en) 1991-03-20 1991-03-20 Element for measuring oxygen concentration in molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3080628A JP2868920B2 (en) 1991-03-20 1991-03-20 Element for measuring oxygen concentration in molten metal

Publications (2)

Publication Number Publication Date
JPH04291146A true JPH04291146A (en) 1992-10-15
JP2868920B2 JP2868920B2 (en) 1999-03-10

Family

ID=13723622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3080628A Expired - Lifetime JP2868920B2 (en) 1991-03-20 1991-03-20 Element for measuring oxygen concentration in molten metal

Country Status (1)

Country Link
JP (1) JP2868920B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4961506B1 (en) * 2011-11-30 2012-06-27 株式会社ニッカトー Zirconia oxygen sensor element having a coating layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4961506B1 (en) * 2011-11-30 2012-06-27 株式会社ニッカトー Zirconia oxygen sensor element having a coating layer

Also Published As

Publication number Publication date
JP2868920B2 (en) 1999-03-10

Similar Documents

Publication Publication Date Title
US4283441A (en) Method of making an ion conductive gas sensor body with a cermet electrode thereon
US4221650A (en) Solid electrolyte oxygen sensors
DE2760440C2 (en)
Kleitz et al. Model for ion-blocking at internal interfaces in zirconias
EP0812931B1 (en) Vapor deposition material
EP0008175B1 (en) Process for forming a dense thin sintered layer
US5766434A (en) Oxygen concentration detecting device and method for fabricating the same
JPS56111455A (en) Solid electrolyte body for oxygen sensor
US4409135A (en) Paste containing electrically conducting powder to form conducting solid filler in cavity in ceramic substrate
US4451350A (en) Sensor for measuring density of oxygen in molten metal
US4183798A (en) Stabilized zirconium dioxide compositions and oxygen sensors utilizing said compositions
US4713646A (en) Gas sensor and method of producing the same
US7254985B2 (en) Oxygen sensor and a manufacturing method of the sensor device
AU698761B2 (en) Magnesia-titania refractory and method for manufacturing the same
JP5485275B2 (en) Ceramic material, method for producing the ceramic material, and electronic ceramic element made of the ceramic material
US4111852A (en) Pre-glassing method of producing homogeneous sintered zno non-linear resistors
GB2027729A (en) Paste of oxygen ion conductive solid electrolyte
JPH04291146A (en) Element for measuring concentration of oxygen within melted metal
DE102014206814A1 (en) A / F sensor element and method for its manufacture
Radford et al. Zirconia electrolyte cells: Part 2 Electrical properties
JP3365072B2 (en) Ferrite material and method for producing the same
ES372713A1 (en) Refractory hollow body
JPS63167261A (en) Production of oxygen sensor element
Aleksić et al. Resistivity versus geometry relation in bulk-sintered and thick film MnCoFe-oxide thermistors
JP2562198B2 (en) Sensor element for measuring components in molten metal

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981124