JP2562198B2 - Sensor element for measuring components in molten metal - Google Patents
Sensor element for measuring components in molten metalInfo
- Publication number
- JP2562198B2 JP2562198B2 JP1026644A JP2664489A JP2562198B2 JP 2562198 B2 JP2562198 B2 JP 2562198B2 JP 1026644 A JP1026644 A JP 1026644A JP 2664489 A JP2664489 A JP 2664489A JP 2562198 B2 JP2562198 B2 JP 2562198B2
- Authority
- JP
- Japan
- Prior art keywords
- coating layer
- molten metal
- sensor element
- aggregate
- component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Measuring Oxygen Concentration In Cells (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、溶融金属中の酸素等の成分を測定する成分
測定センサ素子に関するものである。TECHNICAL FIELD The present invention relates to a component measuring sensor element for measuring components such as oxygen in molten metal.
(従来の技術) 従来、ジルコニア等の酸素イオン導電性固体電解質に
より片側を閉じた筒状体とし、その内側に金属−金属酸
化物を混合した固体極を封入し、外側には金属酸化物等
よりなる均質な被覆層を付与したセンサ素子が、例えば
特公昭61〜47377号公報、特開昭60−52763号公報におい
て知られている。(Prior Art) Conventionally, a cylindrical body having one side closed by an oxygen ion conductive solid electrolyte such as zirconia, a solid electrode mixed with a metal-metal oxide is enclosed inside, and a metal oxide is formed outside. Sensor elements provided with a uniform coating layer are known, for example, from Japanese Patent Publication Nos. 61-47377 and 60-52763.
(発明が解決しようとする課題) 上述した特公昭61−47377号公報および特開昭60−527
63号公報記載の技術では、高温により被覆層が焼結収縮
してはく離しやすくなる点を、被覆層中に弗化物を均一
分散させて防止しようとしている。(Problems to be Solved by the Invention) The above-mentioned JP-B-61-47377 and JP-A-60-527 are mentioned above.
In the technique described in Japanese Patent Laid-Open No. 63-63, the point where the coating layer sinters and shrinks due to high temperature and is easily peeled off is attempted by uniformly dispersing the fluoride in the coating layer.
しかしながら、上述した技術でも、より高温の溶融金
属に対しては焼結が進みすぎ、被覆層にクラックが発生
したり、被覆層がはく離するため、使用温度範囲が限定
される問題があった。However, even in the above-mentioned technique, there is a problem that the operating temperature range is limited because the sintering proceeds excessively to a higher temperature molten metal, cracks occur in the coating layer, and the coating layer peels off.
本発明の目的は上述した課題を解消して、高温におい
て被覆層のはく離やクラックの発生がなく、広い使用温
度範囲で使用できる溶融金属中の成分測定センサ素子を
提供しようとするものである。An object of the present invention is to solve the above-mentioned problems and to provide a sensor element for measuring a component in a molten metal which can be used in a wide operating temperature range without peeling or cracking of a coating layer at a high temperature.
(課題を解決するための手段) 本発明の溶融金属中の成分測定センサ素子は、固体電
解質素子の外周面の溶融金属と接する面に被覆層を設け
た溶融金属中の成分測定センサ素子において、少なくと
も2種類の粉末状物質の各々がその粉末状物質を主成分
とした集合体を形成し、前記被覆層が該集合体の複数種
により構成されることを特徴とするものである。(Means for Solving the Problems) The component measuring sensor element in molten metal of the present invention is a component measuring sensor element in molten metal in which a coating layer is provided on the surface in contact with the molten metal on the outer peripheral surface of the solid electrolyte element, Each of the at least two kinds of powdery substances forms an aggregate containing the powdery substance as a main component, and the coating layer is composed of a plurality of kinds of the aggregates.
(作用) 上述の構成において、複数種の粉末状物質の各々に集
合体を形成させ、それら集合体をつみ重ねた構造とした
不均質な被覆層とすることにより、高温溶融金属中でも
はく離や大きなクラックは発生しないことを見出したこ
とによる。これは、個々の集合体内で焼結しても、集合
体間にできる小さな隙間がその応力を吸収するため、は
く離やクラックが発生しなくなるためと考えられる。こ
の場合、被覆層は厚さ50〜300μmが好ましく、さらに
好ましくは100〜200μmである。(Operation) In the above-mentioned configuration, by forming an aggregate in each of a plurality of types of powdery substances and forming an inhomogeneous coating layer having a structure in which the aggregates are stacked, peeling or large This is due to the finding that cracks do not occur. It is considered that this is because even if the individual aggregates are sintered, the small gaps formed between the aggregates absorb the stress, so that peeling and cracks do not occur. In this case, the coating layer preferably has a thickness of 50 to 300 μm, more preferably 100 to 200 μm.
ここで、集合体とはたとえば造粒粉のことであり、平
均粒径1μm程度の粉末粒子が数百個程度集まったもの
をいい、集合体の平均粒径は5〜30μmが好ましい。Here, the aggregate refers to, for example, granulated powder, and refers to an aggregate of several hundreds of powder particles having an average particle diameter of about 1 μm, and the average particle diameter of the aggregate is preferably 5 to 30 μm.
二種以上の物質としては、酸化物と弗化物の二種類を
それぞれ集合体として少なくとも含んでいると、クラッ
クおよび剥離の防止効果が大きくなり好ましい。その理
由は、弗化物が集合体間にできる小さな隙間を大きなク
ラックに発展しにくくする働きをするためと考えられ
る。It is preferable that the two or more kinds of substances include at least two kinds of oxides and fluorides as an aggregate, because the effect of preventing cracks and peeling is increased. The reason for this is thought to be that the fluoride acts to prevent the small gaps formed between the aggregates from developing into large cracks.
また、弗化物は被覆層内でセンサ素子側から外側に向
かって多くするほど好ましい。その理由は、被覆層の外
側ほど焼結しやすいため、通常集合物間の隙間が大きく
なるが、弗化物量を増すことにより隙間を小さくする効
果があるためである。なお、弗化物が多すぎるとセンサ
素子の信号出力が影響を受けるので、弗化物量には限度
がある。Further, it is preferable that the amount of fluoride increases in the coating layer from the sensor element side toward the outside. The reason is that since the outer side of the coating layer is more easily sintered, the gap between the aggregates is usually larger, but the gap is reduced by increasing the amount of fluoride. If the amount of fluoride is too large, the signal output of the sensor element is affected, so the amount of fluoride is limited.
さらに、使用する酸化物としては、アルミナ、アルミ
ナマグネシアスピネル、マグネシア、アルミナバリアス
ピネル(アルミン酸バリウム)、アルミナストロンチア
(アルミン酸ストロンチウム)のいずれか1種または複
数の混合物が好ましい。Further, the oxide to be used is preferably any one or a mixture of alumina, alumina magnesia spinel, magnesia, alumina barrier spinel (barium aluminate), and alumina strontia (strontium aluminate).
(実施例) 第1図は本発明の溶融金属中の成分測定センサ素子の
一例の構成を示す部分断面図である。第1図において、
1はジルコニア固体電解質体、2は被覆層であり、有底
円筒形状の成分測定センサ素子を構成している。(Example) FIG. 1 is a partial cross-sectional view showing a configuration of an example of a sensor element for measuring a component in a molten metal of the present invention. In FIG.
Reference numeral 1 denotes a zirconia solid electrolyte body, and 2 denotes a coating layer, which constitutes a component measuring sensor element having a bottomed cylindrical shape.
ジルコニア固体電解質体1は以下のようにして製造さ
れる。まず、例えばジルコニア粉末92モル%とマグネシ
ア粉末8モル%とその全量に対しアルミナ粉末1重量%
とを調合する。次に、上記調合粉末を水とジルコニア玉
石を使用してトロンメル中で混合粉砕した後乾燥する。
乾燥後の粉末を1200〜1500℃で仮焼して、仮焼後水とジ
ルコニア玉石を使用して所定粒度となるまで粉砕する。
粉砕後、バインダーとしてポリビニルアルコールを加え
た後、スプレードライアにより造粒して、マグネシア部
分安定化ジルコニア原料を得る。次に、得られた原料を
所定形状にラバープレス後外周を切削して、有底円筒形
状の成形体とした後、1700℃以上の温度で焼成して、ジ
ルコニア固体電解質体1を得る。最後に、有底円筒状の
固体電解質体1の外周面の溶融金属と接する面に、粉末
粒子の集合体の二種以上を層状に設けた構造の被覆層2
を、後述する方法により設けて、本発明の溶融金属中の
成分測定センサ素子を得ている。The zirconia solid electrolyte body 1 is manufactured as follows. First, for example, 92 mol% of zirconia powder, 8 mol% of magnesia powder, and 1 wt% of alumina powder with respect to the total amount.
And mix. Next, the above-mentioned prepared powder is mixed and ground in water and zirconia cobblestone in a trommel, and then dried.
The dried powder is calcined at 1200 to 1500 ° C., and after calcining, is ground using water and zirconia cobblestone to a predetermined particle size.
After pulverization, polyvinyl alcohol is added as a binder, and then granulated by a spray drier to obtain a partially stabilized zirconia raw material for magnesia. Next, the obtained raw material is rubber-pressed into a predetermined shape, the outer periphery is cut to form a bottomed cylindrical shaped body, and the body is fired at a temperature of 1700 ° C. or higher to obtain a zirconia solid electrolyte body 1. Finally, a coating layer 2 having a structure in which two or more kinds of aggregates of powder particles are provided in layers on the outer peripheral surface of the bottomed cylindrical solid electrolyte body 1 in contact with the molten metal.
Is provided by the method described below to obtain the component measuring sensor element in the molten metal of the present invention.
第2図は本願発明のセンサ素子の被覆層の一例の構造
を示す断面模式図である。この例では。三種の集合体で
被覆層を構成している。この構成はセンサ素子を切断あ
るいは割った後に走査型電子顕微鏡等により観察するこ
とができる。第2図は示す例において、3はアルミナ微
粉の集合体、4は弗化カルシウム微粉の集合体、5はア
ルミナマグネシアスピネル微粉の集合体である。これら
集合体の平均粒径は5〜30μmが好ましい。被覆層の組
成は、例えばアルミナ30重量%、スピネル50重量%、弗
化カルシウム20重量%である。また、第2図には図示し
ていないが、この集合体中および集合体界面にポリビニ
ルアルコール等の有機接合剤や界面活性剤等が含まれて
いる方が、被覆層の膜強度上好ましい。FIG. 2 is a schematic sectional view showing the structure of an example of the coating layer of the sensor element of the present invention. In this example. The covering layer is composed of three kinds of aggregates. This structure can be observed with a scanning electron microscope or the like after cutting or breaking the sensor element. In the example shown in FIG. 2, 3 is an aggregate of alumina fine powder, 4 is an aggregate of calcium fluoride fine powder, and 5 is an aggregate of alumina magnesia spinel fine powder. The average particle size of these aggregates is preferably 5 to 30 μm. The composition of the coating layer is, for example, 30% by weight of alumina, 50% by weight of spinel, and 20% by weight of calcium fluoride. Although not shown in FIG. 2, it is preferable in terms of the film strength of the coating layer that the aggregate and the interface of the aggregate include an organic bonding agent such as polyvinyl alcohol or a surfactant.
なお、この集合体は単独物質であることが好ましい
が、少量の異種酸化物あるいは弗化物を含んでいても良
い。また、弗化物系集合体を被覆層の外表面ほど多くす
ることによって、耐久性向上の効果も認められる。酸化
物の例としては、アルミナ、アルミナマグネシアスピネ
ル、アルミナバリアスピネル、マグネシア、アルミナト
ロンチア等がある。弗化物の例としては、弗化カルシウ
ム、弗化マグネシウム、弗化ストロンチウム等がある。Although this aggregate is preferably a single substance, it may contain a small amount of a different kind of oxide or fluoride. Further, by increasing the amount of fluoride-based aggregates on the outer surface of the coating layer, the effect of improving durability is also recognized. Examples of oxides include alumina, alumina magnesia spinel, alumina barrier spinel, magnesia, alumina toronthia, and the like. Examples of fluorides include calcium fluoride, magnesium fluoride, strontium fluoride and the like.
上記被覆層の付与方法としては、ディッピング法、ス
プレー法等が考えられる。ディッピング法の場合は、各
物質微粉末をスプレードライア等の方法で造粒する方
法、あるいは微粉末をセラミックルツボ等に入れ低温で
仮焼した後、粗粉砕する方法などで集合体を得ることが
できる。仮焼体の場合は、微粉末が互いにその接触点の
みが反応焼結するぐらいの仮焼温度が好ましい。これら
の集合体は所定の分量調合後、水等の溶剤中の有機接合
剤(例えばポリビニルアルコール)等とともに投入混合
されディッピング液とされる。このディッピング液に固
体電解質体の被覆層を設ける面を浸漬後乾燥して、本発
明の被覆層を得ている。As a method for applying the coating layer, a dipping method, a spray method, or the like can be considered. In the case of the dipping method, the aggregate may be obtained by a method of granulating the fine powder of each substance by a method such as a spray dryer, or a method of putting the fine powder in a ceramic crucible or the like, calcining it at a low temperature, and then coarsely pulverizing it. it can. In the case of a calcined body, a calcining temperature at which the fine powders react and sinter only at their contact points is preferable. These aggregates are mixed in a predetermined amount and then mixed with an organic bonding agent (for example, polyvinyl alcohol) in a solvent such as water to form a dipping liquid. The surface of the solid electrolyte body on which the coating layer is provided is dipped in this dipping solution and then dried to obtain the coating layer of the present invention.
次に、スプレー法の場合は、まず微粉末原料と溶剤、
有機接合剤および分散剤とを加えたスプレー液を作成す
る。このスプレー液を各集合体種ごとに作成し、スプレ
ーガンを集合体の種類分準備し、被覆層を設けるべき固
体電解質体を回転させながら、スプレーガンから同時に
各集合体のスプレー液を噴霧して被覆層を得ている。ス
プレー法では、噴霧条件を変えることで液適の大きさを
調節し、集合体の大きさを制御することができる。ま
た、噴霧量を調整することで所定組成比の被覆層を得る
ことができる。例えば、弗化物の量を厚さ方向で増量さ
せるには、厚さが増すごとに噴霧量が増えるようにして
おけば良い。これにより、被覆層中の弗化物の分布量を
固体電解質素子に近い側から他方に向かって増加させる
ことができる。Next, in the case of the spray method, first, the fine powder raw material and the solvent,
Make a spray solution with the addition of organic binder and dispersant. This spray liquid is prepared for each aggregate type, spray guns are prepared for each type of aggregate, and the spray liquid of each aggregate is simultaneously sprayed from the spray gun while rotating the solid electrolyte body on which the coating layer should be provided. To obtain a coating layer. In the spray method, the size of the aggregate can be controlled by changing the spray conditions to adjust the size of the liquid. Moreover, a coating layer having a predetermined composition ratio can be obtained by adjusting the spray amount. For example, in order to increase the amount of fluoride in the thickness direction, it is sufficient to increase the spray amount as the thickness increases. As a result, the distribution amount of fluoride in the coating layer can be increased from the side closer to the solid electrolyte element to the other side.
実際には、第2図に示す構造の本発明の被覆層を設け
た成分測定センサ素子を1700℃の溶鋼中に10秒間浸漬し
たところ、はく離はなく、微細なクラックが被覆層表面
に見られるものが一部存在したのみで、良好な外観を示
していた。Actually, when the component measuring sensor element having the coating layer of the present invention having the structure shown in FIG. 2 was immersed in molten steel at 1700 ° C. for 10 seconds, no peeling occurred and fine cracks were observed on the coating layer surface. Only some of them were present, showing a good appearance.
本発明は上述した実施例にのみ限定されるものではな
く、幾多の変形、変更が可能である。例えば、上述した
例で示した被覆層の組成はこれに限定されるものでない
ことは明らかであるとともに、固体電解質の組成および
形状も上述した実施例に限定されるものでないことは明
らかである。The present invention is not limited to the above-described embodiments, but various modifications and changes can be made. For example, it is clear that the composition of the coating layer shown in the above-mentioned example is not limited to this, and it is also clear that the composition and shape of the solid electrolyte are not limited to the above-described embodiment.
(発明の効果) 以上の説明から明らかなように、本発明の溶融金属中
の成分測定センサ素子によれば、被覆層の構造を二種以
上の集合体を不均質に設けることにより、高温において
被覆層のはく離やクラックの発生がなく、溶融金属中の
酸素等の成分を広い温度範囲で測定することができる。(Effects of the Invention) As is clear from the above description, according to the component measuring sensor element in the molten metal of the present invention, by providing the structure of the coating layer in a non-homogeneous manner in two or more kinds of aggregates, at high temperature It is possible to measure components such as oxygen in the molten metal in a wide temperature range without peeling or cracking of the coating layer.
第1図は本発明の溶融金属中の成分測定センサ素子の一
例の構造を示す部分断面図、 第2図は本発明のセンサ素子の被覆層の一例の構造を示
す断面模式図である。 1…固体電解質体、2…被覆層 3…アルミナ微粉の集合体 4…弗化カルシウムの微粉の集合体 5…アルミナマグネシアスピネル微粉の集合体FIG. 1 is a partial cross-sectional view showing the structure of an example of a sensor element for measuring a component in molten metal of the present invention, and FIG. 2 is a schematic cross-sectional view showing the structure of an example of a coating layer of the sensor element of the present invention. DESCRIPTION OF SYMBOLS 1 ... Solid electrolyte body, 2 ... Coating layer 3 ... Aggregate of fine alumina powder 4 ... Aggregate of fine powder of calcium fluoride 5 ... Aggregate of alumina magnesia spinel fine powder
Claims (3)
る面に被覆層を設けた溶融金属中の成分測定センサ素子
において、少なくとも2種類の粉末状物質の各々がその
粉末状物質を主成分とした集合体を形成し、前記被覆層
が該集合体の複数種により構成されることを特徴とする
溶融金属中の成分測定センサ素子。1. In a sensor element for measuring a component in a molten metal, wherein a coating layer is provided on a surface of an outer peripheral surface of a solid electrolyte element which is in contact with the molten metal, at least two kinds of powdered substances each contain the powdered substance as a main component. A sensor element for measuring a component in molten metal, characterized in that the above-mentioned coating layer is formed by a plurality of kinds of the above-mentioned assembly.
の集合体である請求項1記載の溶融金属中の成分測定セ
ンサ素子。2. A sensor element for measuring a component in a molten metal according to claim 1, wherein the aggregate is an aggregate of oxides and an aggregate of fluorides.
質素子に近い側から他方に向かって増加している請求項
2記載の溶融金属中の成分測定センサ素子。3. The component measuring sensor element in molten metal according to claim 2, wherein the distribution amount of fluoride in the coating layer increases from the side closer to the solid electrolyte element toward the other side.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1026644A JP2562198B2 (en) | 1989-02-07 | 1989-02-07 | Sensor element for measuring components in molten metal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1026644A JP2562198B2 (en) | 1989-02-07 | 1989-02-07 | Sensor element for measuring components in molten metal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02206753A JPH02206753A (en) | 1990-08-16 |
JP2562198B2 true JP2562198B2 (en) | 1996-12-11 |
Family
ID=12199157
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1026644A Expired - Lifetime JP2562198B2 (en) | 1989-02-07 | 1989-02-07 | Sensor element for measuring components in molten metal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2562198B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4724772B2 (en) * | 2009-02-06 | 2011-07-13 | 株式会社日本自動車部品総合研究所 | Solid electrolyte for gas sensor, method for producing the same, and gas sensor using the same |
-
1989
- 1989-02-07 JP JP1026644A patent/JP2562198B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH02206753A (en) | 1990-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4283441A (en) | Method of making an ion conductive gas sensor body with a cermet electrode thereon | |
US4585499A (en) | Method of producing ceramics | |
EP0812931B1 (en) | Vapor deposition material | |
EP3951815A1 (en) | Power storage device | |
CN110832315A (en) | Gas sensor element and gas sensor | |
JP2004503054A5 (en) | ||
JP3293403B2 (en) | Lateral high resistance agent for zinc oxide varistor, zinc oxide varistor using the same, and method of manufacturing the same | |
JP2562198B2 (en) | Sensor element for measuring components in molten metal | |
US5958285A (en) | Sintered piezoelectric ceramic, piezoelectric ceramic device, monolithic piezoelectric ceramic device, and method for producing sintered piezoelectric ceramic | |
GB2027729A (en) | Paste of oxygen ion conductive solid electrolyte | |
US6749891B2 (en) | Zinc oxide varistor and method of manufacturing same | |
Halls et al. | Processing-induced resistive barriers in ZnO varistor material | |
JP2000113898A (en) | MANUFACTURE OF LaGaO3 POWDER AND MANUFACTURE OF LaGaO3 SINTERED BODY | |
JPS63167261A (en) | Production of oxygen sensor element | |
US5998012A (en) | Ceramic layer systems, particularly for gas sensors | |
DE4221786C2 (en) | Temperature-resistant ceramic | |
JP4155457B2 (en) | Method for producing composite particles and method for producing composite dielectric material | |
JP3748084B2 (en) | Method for producing NiO / YSZ composite powder | |
JPH04291146A (en) | Element for measuring concentration of oxygen within melted metal | |
JPH0288407A (en) | Ceramic superconducting paste and its production and ceramic superconducting distributing board and its production | |
JP3137128B2 (en) | Manufacturing method of ceramic coating | |
DE102023202559A1 (en) | Ceramic composite component having at least one electrically insulating region and at least one electrically conductive region and method for its production | |
JP2604845B2 (en) | Sensor element for measuring components in molten metal | |
JP2556096B2 (en) | Superconductor manufacturing method | |
JPH0215519A (en) | Method of forming conductor junction film for ceramics superconductor |