JPH04290957A - Insulating oil deterioration sensing device - Google Patents

Insulating oil deterioration sensing device

Info

Publication number
JPH04290957A
JPH04290957A JP3080846A JP8084691A JPH04290957A JP H04290957 A JPH04290957 A JP H04290957A JP 3080846 A JP3080846 A JP 3080846A JP 8084691 A JP8084691 A JP 8084691A JP H04290957 A JPH04290957 A JP H04290957A
Authority
JP
Japan
Prior art keywords
acetylene
potential
insulating oil
gas
ethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3080846A
Other languages
Japanese (ja)
Other versions
JP2779272B2 (en
Inventor
Toru Ishichi
石地 徹
Shoichi Uchikoshi
祥一 打越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Keiki KK
Original Assignee
Riken Keiki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Keiki KK filed Critical Riken Keiki KK
Priority to JP3080846A priority Critical patent/JP2779272B2/en
Publication of JPH04290957A publication Critical patent/JPH04290957A/en
Application granted granted Critical
Publication of JP2779272B2 publication Critical patent/JP2779272B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To selectively sense the acetilene contained in an insulating oil. CONSTITUTION:At a window 3 installed in the wall surface of a vessel 2 a working electrode 4 is furnished, in which a metal 4b is formed on a diaphragm 4a consisting of a porous insulative film, while a reference electrode 7 is arranged at a window 5 installed in the other side wall surface, and therein dilute sulfuric acid is accommodated as an electrolyte 8. By a constant voltage circuit 10 a potential is impressed between these working electrode 4 and reference electrode 7, which is higher than the oxidating potential than acetylene and lower than the oxidating potential of ethylene. The acetylene having passed through the diaphragm 4a is oxidated and generates an oxidative current between the electrodes which is proportioned to the concentration. No electrolytic current will be generated even though ethylene passes the diaphragm 4a. Hydrogen, ethane, methane, CO, and CO2 are also contained in insulating oil, but a gas sensor 1 of constant voltage electrolysis type exhibits a very low sensitivity to these components, and therefore the acetylene in the insulating oil can be sensed with high sensitivity as long as the ethylene sensitivity is set low relative to the acetylene.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、変圧器や遮断器などに
封入されている絶縁油の劣化の程度を検査するのに適し
た装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device suitable for inspecting the degree of deterioration of insulating oil sealed in transformers, circuit breakers, etc.

【0002】0002

【従来の技術】絶縁電圧を高めるために絶縁油を封入し
た変圧器や遮断器等は、長期間の使用中に発生した部分
放電や局部的過熱により絶縁油が劣化して事故を招くた
め、絶縁油の検査が行なわれている。この検査は、通常
電気機器からサンプリングした絶縁油から気体成分を分
離し、この気体をガスクロマトグラフ用分析カラムによ
り水素、一酸化炭素、二酸化炭素、メタン、エタン、エ
チレン、アセチレン等の成分に分離し、水素炎イオン化
検出器等のガスクロマトグラフ用検出器により各成分の
濃度を測定することにより行なわれている。
[Prior Art] Transformers, circuit breakers, etc. that are filled with insulating oil to increase insulation voltage deteriorate due to partial discharge or local overheating that occurs during long-term use, which can lead to accidents. Insulating oil is being tested. This test usually involves separating gaseous components from insulating oil sampled from electrical equipment, and separating this gas into components such as hydrogen, carbon monoxide, carbon dioxide, methane, ethane, ethylene, and acetylene using a gas chromatography analytical column. This is done by measuring the concentration of each component using a gas chromatograph detector such as a hydrogen flame ionization detector.

【0003】しかしながら、このような装置は、ガスク
ロマトグラフと同様な構成と操作を必要として、装置が
大型、複雑化して野外での取扱に不便であるという問題
がある。このような問題を解消するために、アーク放電
や部分放電等の致命的な故障が生じた場合には、絶縁油
が高温熱分解を受けてアセチレンを特異的に生成するの
で、少なくともアセチレンを選択的に検出できるように
構造を簡素化して野外で使用可能とした装置も提案され
ているが、本質的にはガスクロマトグラフと同等の原理
を用いているので、依然として構造が複雑で、サイズが
大きくなるという問題を抱えている。
[0003] However, such an apparatus requires the same structure and operation as a gas chromatograph, and has the problem that the apparatus is large and complicated, making it inconvenient to handle outdoors. In order to solve this problem, at least acetylene is selected because insulating oil undergoes high-temperature thermal decomposition and specifically produces acetylene when a fatal failure such as arc discharge or partial discharge occurs. A device with a simplified structure that can be used outdoors has been proposed so that it can be detected visually, but since it essentially uses the same principle as a gas chromatograph, it still has a complex structure and is large in size. I have a problem with becoming.

【0004】0004

【発明が解決しようとする課題】本発明はこのような問
題に鑑みてなされたものであって、その目的とするとこ
ろは気体分離手段を特には必要とすることなく、絶縁油
中に含まれているアセチレンの有無を選択的に検出する
ことができる新規な絶縁油劣化検出装置を提供すること
である。
[Problems to be Solved by the Invention] The present invention has been made in view of these problems, and its purpose is to eliminate gases contained in insulating oil without the need for gas separation means. An object of the present invention is to provide a novel insulating oil deterioration detection device that can selectively detect the presence or absence of acetylene.

【0005】[0005]

【課題を解決するための手段】このような問題を解消す
るために本発明においては、容器の壁面に設けた窓に、
多孔性電気絶縁膜に金層を形成した作用極と対極物質を
形成した対極とを設けて電解液を収容するとともに、前
記作用極と対極との間にアセチレンの酸化電位よりも大
きく、かつエチレンの酸化電位よりも小さい電位を印加
するようにした。
[Means for Solving the Problems] In order to solve such problems, in the present invention, a window provided on the wall of the container,
A working electrode in which a gold layer is formed on a porous electrical insulating film and a counter electrode in which a counter electrode material is formed are provided to accommodate an electrolytic solution, and the oxidation potential is greater than that of acetylene and ethylene is present between the working electrode and the counter electrode. A potential smaller than the oxidation potential was applied.

【0006】[0006]

【作用】多孔性電気絶縁膜を通過したアセチレンは、作
用極と対極とに印加されている電位により酸化を受けて
両電極間に酸化電流を生じさせる。多孔性電気絶縁膜を
通過したエチレンは、作用極と対極との間にエチレンを
酸化させるよりも低い電位しか印加されていないので、
酸化されることがなく、酸化電流が極めて小さく、さら
にエチレンよりも酸化電位が高い一酸化炭素や水素等な
どの流入による酸化電流も小さい。この結果、絶縁油に
含まれるガス成分の内、アセチレンだけを高い選択性で
もって検出することができる。
[Operation] Acetylene passing through the porous electrical insulating film is oxidized by the potential applied to the working electrode and the counter electrode, producing an oxidation current between the two electrodes. The ethylene that has passed through the porous electrical insulating film has only a lower potential applied between the working electrode and the counter electrode than the one that would oxidize the ethylene.
It is not oxidized, has an extremely small oxidation current, and also has a small oxidation current due to the inflow of carbon monoxide, hydrogen, etc., which have a higher oxidation potential than ethylene. As a result, only acetylene among the gas components contained in the insulating oil can be detected with high selectivity.

【0007】[0007]

【実施例】そこで以下に本発明の詳細を図示した実施例
に基づいて説明する。図1は、本発明の一実施例を示す
ものであって、図中符号1は、定電位電解式ガス検出器
で、容器2の側壁に穿設された窓3に作用極4を、また
他方側の側壁に穿設された窓5に対極6と参照極7を配
置し、電解液8として希硫酸が収容されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be explained below based on illustrated embodiments. FIG. 1 shows an embodiment of the present invention, and reference numeral 1 in the figure is a constant potential electrolysis type gas detector, in which a working electrode 4 is installed in a window 3 formed in the side wall of a container 2. A counter electrode 6 and a reference electrode 7 are arranged in a window 5 formed in the other side wall, and dilute sulfuric acid is contained as an electrolytic solution 8.

【0008】前述の作用極4は、ガス透過性と発水性と
を有する合成樹脂膜、例えば多孔質フッ素樹脂膜を隔膜
4aとして使用し、これの表面に金(Au)を蒸着して
金層4bを形成して構成され、金層4bが電解液8に浸
漬されるように容器2の窓3に取り付けられている。ま
た対極6と参照極7は、同じくガス透過性樹脂膜に白金
黒を厚膜印刷し、これを焼成して構成され、作用極4と
同様に白金黒層を電解液8に接しさせて窓5に取り付け
られている。これら作用極4と対極6には負荷抵抗9を
介して定電圧回路10が接続されている。
The above-mentioned working electrode 4 uses a synthetic resin membrane having gas permeability and water repellency, for example, a porous fluororesin membrane, as the diaphragm 4a, and gold (Au) is deposited on the surface of the membrane to form a gold layer. 4b, and is attached to the window 3 of the container 2 so that the gold layer 4b is immersed in the electrolyte 8. The counter electrode 6 and the reference electrode 7 are also constructed by printing a thick layer of platinum black on a gas-permeable resin film and firing it.Similarly to the working electrode 4, the platinum black layer is brought into contact with the electrolyte 8, and a window is formed. It is attached to 5. A constant voltage circuit 10 is connected to the working electrode 4 and the counter electrode 6 via a load resistor 9.

【0009】定電圧回路10は、アセチレンが酸化され
る電位よりも高く、かつエチレンが酸化される電位より
も低い電位、例えばマイナス0.3ボルト以上プラス0
.1ボルト以下の電位を発生するように構成されている
。また負荷抵抗9の両端には測定回路11が接続されて
いて、作用極4と対極6に流れる電解電流を検出するよ
うになっている。なお、図中符号12、13は、膜固定
部材を示す。
The constant voltage circuit 10 operates at a potential higher than the potential at which acetylene is oxidized and lower than the potential at which ethylene is oxidized, for example, at least minus 0.3 volts or more at plus zero.
.. It is configured to generate a potential of 1 volt or less. Further, a measuring circuit 11 is connected to both ends of the load resistor 9 to detect the electrolytic current flowing through the working electrode 4 and the counter electrode 6. Note that reference numerals 12 and 13 in the figure indicate membrane fixing members.

【0010】先ず、水素を300PPM、一酸化炭素を
200PPM、エチレンを50PPM、及びアセチレン
を20PPMの濃度となるようにそれぞれ空気で希釈し
て標準ガスを調製しておく。キャリアガスとなる空気を
供給した状態で電解電圧を変化させ、各電圧での電解電
流、いわゆる暗電流を測定する(図2のI)。また、エ
チレンを空気により希釈した標準ガスを流した状態で作
用極の電位を徐々に低下させて、空気を供給したときと
同一の電流、つまり暗電流(図2のI)と一致する最高
の電位、換言すればエチレンに起因する電解電流が消滅
する電位Ve(図2に示した実施例ではプラス0.1ボ
ルト)を測定する(図2のII)。さらに、アセチレン
を空気により希釈した標準ガスを流し、作用極4に印加
する電位を徐々に上昇させて上記暗電流(図2のI)以
上の電解電流が発生する最低電位Va(図2に示した実
施例ではマイナス0.3ボルト)を測定する(図2のI
II)。このようにして得られた2つの電位Vaと電位
Vbとの間(マイナス0.3〜プラス0.1ボルト)の
任意の値、例えばマイナス0.1ボルトが作用極4に印
加されるように定電圧回路10の電位を設定する。
First, standard gases are prepared by diluting hydrogen with air to a concentration of 300 PPM, carbon monoxide to 200 PPM, ethylene to 50 PPM, and acetylene to a concentration of 20 PPM. The electrolytic voltage is varied while air as a carrier gas is supplied, and the electrolytic current, so-called dark current, at each voltage is measured (I in FIG. 2). In addition, by gradually lowering the potential of the working electrode while flowing a standard gas made of ethylene diluted with air, we obtained the highest current that corresponds to the same current as when air was supplied, that is, the dark current (I in Figure 2). The potential, in other words, the potential Ve at which the electrolytic current caused by ethylene disappears (plus 0.1 volt in the example shown in FIG. 2) is measured (II in FIG. 2). Further, a standard gas prepared by diluting acetylene with air is flowed, and the potential applied to the working electrode 4 is gradually increased to the lowest potential Va (shown in FIG. 2) at which an electrolytic current greater than the dark current (I in FIG. 2) is generated. In the example shown in FIG.
II). Any value between the two potentials Va and Vb thus obtained (from minus 0.3 to plus 0.1 volts), for example minus 0.1 volt, is applied to the working electrode 4. The potential of the constant voltage circuit 10 is set.

【0011】このような準備を終了した段階でアセチレ
ンを空気により希釈した標準ガスを検出器1に供給する
と、アセチレンは、空気とともに作用極4の隔膜4aを
透過して電解液8に溶け込み、作用極4の金層4bと対
極6との間に印加されている電位により酸化を受ける。 これによりアセチレンの濃度に比例した電解電流が発生
して負荷抵抗9に測定信号が発生する。また同様にエチ
レンを空気により希釈した標準ガスを検出器1に供給す
ると、エチレンは空気とともに作用極4の隔膜4aを透
過して電解液8に溶け込むが、作用極4の金層4bと対
極6との間に印加されている電位がエチレンを酸化させ
る電位よりも低いため、電解が起こらず、測定信号が発
生しない。
When a standard gas prepared by diluting acetylene with air is supplied to the detector 1 after completing such preparations, acetylene passes through the diaphragm 4a of the working electrode 4 together with the air, dissolves in the electrolytic solution 8, and becomes active. Oxidation occurs due to the potential applied between the gold layer 4b of the electrode 4 and the counter electrode 6. As a result, an electrolytic current proportional to the acetylene concentration is generated, and a measurement signal is generated at the load resistor 9. Similarly, when a standard gas prepared by diluting ethylene with air is supplied to the detector 1, the ethylene passes through the diaphragm 4a of the working electrode 4 together with the air and dissolves in the electrolyte 8, but the gold layer 4b of the working electrode 4 and the counter electrode 6 Since the potential applied between is lower than the potential that would oxidize ethylene, no electrolysis occurs and no measurement signal is generated.

【0012】さらに、絶縁油に含まれるエタンや、メタ
ン、水素、一酸化炭素、二酸化炭素についても同様な測
定を行なったが、作用極を構成している金属の種類に関
わりなく定電位電解式ガス検出器は、一般に飽和炭素を
酸化還元することができないないので、エタン、メタン
には感度を示さず、また二酸化炭素には全く感度を示さ
ず、さらには一酸化炭素に対する感度も極めて低い(図
2におけるIV)。さらに水素に対しても感度を有さず
、ほとんど空気と同等レベルの信号が出力される(同図
V)。いうまでもなく、これらエタンや、メタン、二酸
化炭素、一酸化炭素、水素は、劣化した絶縁油に含まれ
るているものの、絶縁油の劣化検査に重要なファクター
とはならないので、これらの成分に感度を有しないこと
が、絶縁油の劣化検査の障害にはならない。ちなみに、
本実施例の定電位電解式ガス検出器1においては、前述
の設定電位の範囲(Va〜Ve)ではアセチレンの測定
感度を基準にした場合、エチレンの測定感度比は1.4
×10のマイナス3乗となり(図3のI)、また水素の
測定感度比は4×10のマイナス3乗であり(同図のI
I)、さらに一酸化炭素の測定感度比は1.6×10の
マイナス4乗となった(同図のIII)。特に熱伝導検
出器や水素炎イオン化検出器等の他の形式の検出器では
アセチレンとほぼ同等の感度で検出されてしまうエチレ
ンは、上記定電位電解式ガス検出器1では測定感度がほ
ぼ1/1000以下と極めて低くなり、アセチレンを選
択的に検出することができる。そして、これらの設定電
位を逸脱すると、設定電位の上昇につれてエチレンの測
定感度が急激に大きくなる。
Furthermore, similar measurements were carried out for ethane, methane, hydrogen, carbon monoxide, and carbon dioxide contained in insulating oil, and it was found that regardless of the type of metal constituting the working electrode, the constant potential electrolysis method Gas detectors generally cannot redox saturated carbon, so they are not sensitive to ethane and methane, and they are not sensitive to carbon dioxide at all, and their sensitivity to carbon monoxide is extremely low ( IV in Figure 2). Furthermore, it has no sensitivity to hydrogen, and outputs a signal almost at the same level as air (V in the same figure). Needless to say, these ethane, methane, carbon dioxide, carbon monoxide, and hydrogen are contained in deteriorated insulating oil, but they are not important factors in deterioration inspection of insulating oil, so these components are not included. Lack of sensitivity is not an obstacle to deterioration testing of insulating oil. By the way,
In the potentiostatic electrolytic gas detector 1 of this embodiment, in the above-mentioned set potential range (Va to Ve), when the measurement sensitivity of acetylene is taken as the standard, the measurement sensitivity ratio of ethylene is 1.4.
×10 to the minus cube power (I in Figure 3), and the hydrogen measurement sensitivity ratio is 4 × 10 to the minus cube power (I in the figure).
I), and the measurement sensitivity ratio for carbon monoxide was 1.6×10 to the minus fourth power (III in the same figure). In particular, ethylene, which is detected with almost the same sensitivity as acetylene with other types of detectors such as thermal conduction detectors and hydrogen flame ionization detectors, has a measurement sensitivity of approximately 1/2 with the potentiostatic gas detector 1. It is extremely low, 1000 or less, and acetylene can be selectively detected. When the set potential is deviated from these set potentials, the ethylene measurement sensitivity increases rapidly as the set potential increases.

【0013】次に、アーク放電や部分放電を起こさず、
単に経年劣化した絶縁油に含まれるガス成分と同一組成
比となるように、水素150PM、一酸化炭素100P
PM、エチレン25PPMを空気に混入して調製した第
1試料ガスをサンプルとし、上記定電位電解式ガス検出
器1によりこのサンプルを測定したところ、相対出力”
1”の信号を得た。次に第1試料ガスに放電により特異
的に発生するアセチレンを濃度2PPMとなるように混
入して調製した第2試料ガスをサンプルとして測定した
ところ、相対出力”2.5”の信号を得た。この結果、
アセチレン濃度が他の成分に比較してほぼ275分の1
と極めて低いのにも関わらず、アセチレンの有無による
両者間の信号レベルにはほぼ2倍半もの開きがあり、絶
縁油に含まれるアセチレンを特異的に検出できることが
明らかとなった。
Next, without causing arc discharge or partial discharge,
Hydrogen 150PM and carbon monoxide 100P so that the composition ratio is the same as that of the gas components contained in insulation oil that has simply deteriorated over time.
The first sample gas prepared by mixing PM and 25 PPM of ethylene into air was used as a sample, and when this sample was measured using the potentiostatic electrolytic gas detector 1, the relative output was found.
A signal of 1" was obtained.Next, when a second sample gas prepared by mixing acetylene, which is specifically generated by electric discharge, into the first sample gas at a concentration of 2 PPM was measured, the relative output was "2". I got a signal of .5”. As a result,
Acetylene concentration is approximately 1/275 compared to other components
Despite this being extremely low, there was a difference of approximately two and a half times in the signal level between the two depending on the presence and absence of acetylene, making it clear that acetylene contained in insulating oil could be specifically detected.

【0014】このことから、長期間使用されてはいるが
、アーク放電や局部放電を起こしていない変圧器の絶縁
油から採取したガス、例えば上述の第1試料ガスの出力
をしきい値として設定しておくことにより、変圧器から
採取した絶縁油のガスの測定値が設定されているしきい
値を超えか、否かを判定し、測定値がしきい値を超える
場合にはアセチレンを含む可能性が大きい、つまり絶縁
油を採取した電気機器がアーク放電や局部放電を起こし
ている可能性が極めて高いと判断することができる。
[0014] From this, the output of the gas sampled from the insulating oil of a transformer that has been used for a long time but has not caused arc discharge or local discharge, such as the above-mentioned first sample gas, is set as the threshold value. By doing so, it is possible to determine whether the measured value of the gas in the insulating oil collected from the transformer exceeds the set threshold, and if the measured value exceeds the threshold, it is determined whether or not it contains acetylene. It can be determined that there is a high possibility that the electrical equipment from which the insulating oil was collected is causing arc discharge or local discharge.

【0015】図4は、前述の定電位電解式ガス検出装置
を用いた絶縁油劣化判定装置の一実施例を示すものであ
っって、図中符号20は、絶縁油Aを収容する密栓可能
なサンプル容器で、一端が絶縁油中に浸漬される第1の
管21と、一端が容器20の空間Bに位置する第2の管
22が挿入されている。これら各管21,22の他端は
、切換弁23を介して空気ポンプ25、計量管26に接
続されていて、サンプリング時には流路内の空気をサン
プリング容器20、空気ポンプ25、計量管26を循環
させるように第1流路(図中、実線により示す流路)を
形成している。切換弁23には空気取入れ口27、及び
油除去用フィルタ28を介して前述の検出装置29が接
続されていて、測定時には空気取入れ口27からポンプ
25により取入れた外部空気を計量管26に送り込み、
計量管26に蓄えられているサンプルガスを検出装置2
9に排出させるように第2流路(図中、点線により示す
流路)を形成している。
FIG. 4 shows an embodiment of an insulating oil deterioration determination device using the above-mentioned constant potential electrolytic gas detection device. A first tube 21 whose one end is immersed in insulating oil and a second tube 22 whose one end is located in the space B of the container 20 are inserted into the sample container. The other ends of these pipes 21 and 22 are connected to an air pump 25 and a metering tube 26 via a switching valve 23, and during sampling, the air in the flow path is connected to the sampling container 20, the air pump 25, and the metering tube 26. A first flow path (the flow path indicated by a solid line in the figure) is formed to allow circulation. The aforementioned detection device 29 is connected to the switching valve 23 via an air intake port 27 and an oil removal filter 28, and during measurement, external air taken in by a pump 25 from the air intake port 27 is sent into a measuring tube 26. ,
The detection device 2 detects the sample gas stored in the measuring tube 26.
A second flow path (the flow path indicated by a dotted line in the figure) is formed so that the liquid is discharged to 9.

【0016】この実施例において、変圧器から採取した
絶縁油Aを容器20に収容して切換弁23を第1流路に
切換えて、空気ポンプ25を作動させると、流路内の空
気が管21から絶縁油Aに送り込まれて、絶縁油Aに溶
け込んでいるガス成分を遊離させて容器20の空間Bに
排出させる。空間Bの空気は他方の管22を介してポン
プ25により吸出され、計量管26を経て再び管21か
ら絶縁油中に排出される。以下、このような経路で空気
が循環して絶縁油Aに溶け込んでいるガス成分を流路内
の空気に排出させる。このようにして所定時間のバブリ
ングを行なった後、切換弁23を第2の流路に切換える
と(図中、点線により示す流路)、計量管26に収容さ
れている空気がフィルタ28を介して検出装置29に排
出される。この結果、前述したように検出装置29は、
計量管26の空気に含まれているガス成分に対応した測
定信号を出力することになる。
In this embodiment, when the insulating oil A collected from the transformer is stored in the container 20, the switching valve 23 is switched to the first flow path, and the air pump 25 is operated, the air in the flow path is removed from the pipe. 21 into the insulating oil A, the gas component dissolved in the insulating oil A is liberated and discharged into the space B of the container 20. The air in the space B is sucked out by the pump 25 via the other pipe 22, passes through the metering pipe 26, and is discharged again from the pipe 21 into the insulating oil. Thereafter, air circulates through such a path, and the gas component dissolved in the insulating oil A is discharged to the air in the flow path. After performing bubbling for a predetermined time in this manner, when the switching valve 23 is switched to the second flow path (the flow path indicated by the dotted line in the figure), the air contained in the metering tube 26 passes through the filter 28. and is discharged to the detection device 29. As a result, as described above, the detection device 29
A measurement signal corresponding to the gas component contained in the air in the metering tube 26 is output.

【0017】[実施例]アセチレン、エチレン、水素、
一酸化炭素が混合された場合のアセチレンに対する検出
感度を調べるためにこれらをそれぞれ100PPMの濃
度となるに空気に混合したガスと、このガスからアセチ
レンを除去したガスをそれぞれ5ミリリットルを用いて
測定したところ、それぞれ図5においてP1、P2で示
したような検出ピ−クを得た。この結果、全てのガスが
同じ濃度であるにも関わらず、アセチレンを含まない場
合にはピークハイトが約1/17となった。次に、エチ
レン、水素、一酸化炭素の存在下でのアセチレンの検出
限界を調べるために、水素150PM、一酸化炭素10
0PPM、エチレン25PPMを空気に混入した前述の
第1試料ガスと、これに5PPMのアセチレンを混入し
たガスをそれぞれ5ミリリットル計量管に収容し、乾燥
空気によって時間間隔をおいてガス検出装置29に送り
込むと、図6に示したように単峰性ピ−ク出力P3、P
4を得た。図からも明らかなごとく、アセチレンを5P
PM含むガスに起因するピ−クP4は、アセチレンを他
の成分の約5/275しか含まないのにも関わらず、第
1試料ガスのピ−クP3の3.2倍のピ−クハイトとな
った。さらに上記第1試料ガスにどの程度の濃度でアセ
チレンが含まれている場合に、他のガスとの共存下でも
識別が可能となるかを調べるために、第1試料ガスに2
.5PPM、及び1PPMのアセチレンを混合した試料
ガスを測定したところ、同図のP5、P6に示したよう
な測定結果を得た。このことからアセチレンが他のガス
に対してほぼ275分の1含まれていれば、アセチレン
を含まないガスのほぼ2倍の信号が出力されるので、単
に経年変化により劣化した絶縁油の出力レベルLを警報
レベルに設定しておくことにより、単なる経年変化を起
こした絶縁油か、経年変化に加えてアーク放電や局部放
電をも起こした絶縁油かの区別を現場で簡単かつ確実に
行な得ることが判明した。
[Example] Acetylene, ethylene, hydrogen,
In order to investigate the detection sensitivity for acetylene when carbon monoxide is mixed, measurements were made using 5 ml of each of these gases mixed with air to a concentration of 100 PPM and the gas from which acetylene was removed. However, detection peaks as shown by P1 and P2 in FIG. 5 were obtained. As a result, although all the gases had the same concentration, the peak height was about 1/17 when acetylene was not included. Next, in order to investigate the detection limit of acetylene in the presence of ethylene, hydrogen, and carbon monoxide, hydrogen 150PM and carbon monoxide 10PM were tested.
The above-mentioned first sample gas in which 0 PPM and 25 PPM of ethylene are mixed in air and the gas in which 5 PPM of acetylene is mixed are each stored in 5 ml measuring tubes, and are sent to the gas detection device 29 at time intervals using dry air. And, as shown in FIG. 6, the unimodal peak outputs P3, P
I got 4. As is clear from the figure, acetylene is 5P
Peak P4 caused by PM-containing gas has a peak height 3.2 times that of peak P3 of the first sample gas, even though it contains only about 5/275 of acetylene as other components. became. Furthermore, in order to investigate the concentration of acetylene contained in the first sample gas, it was possible to identify it even in the presence of other gases.
.. When a sample gas containing 5 PPM and 1 PPM of acetylene was measured, the measurement results shown in P5 and P6 of the figure were obtained. From this, if the amount of acetylene is approximately 1/275 of that of other gases, the signal will be approximately twice that of a gas that does not contain acetylene, so this is simply the output level of insulating oil that has deteriorated over time. By setting L to the alarm level, you can easily and reliably distinguish on-site between insulating oil that has simply deteriorated over time and insulating oil that has caused arcing or local discharge in addition to aging. It turns out that you can get it.

【0018】[比較例]上述した金層を形成した作用極
に代えて、定電位電界式ガスセンサーにおいて多用され
ている蒸着により白金黒を多孔性合成樹脂膜に形成した
作用極を使用して、作用極と対極間との設定電位を変化
させながらアセチレン、エチレン、水素、一酸化炭素に
対するについての測定を行なったところ、図7に示した
ように本質的、つまり実用的に電位が設定可能な範囲で
はアセチレンに対する測定感度よりもエチレンの測定感
度が高くなることが判明した。 $ なお、この実施例においては絶縁油から分離した気体成
分を直接測定する場合について説明したが、従来のガス
クロマトグラフィ法、つまり絶縁油に含まれるガスの成
分を分離カラムにより成分毎に分離し、分離後のガスを
水素炎イオン化検出器や熱伝導検出器により検出する方
式におけるガスクロマトグラフ用検出器として、上記実
施例に示した定電位電解式ガス検出器を使用することに
より極めて低濃度のアセチレンを高い感度で検出できる
ガスクロマトグラフを実現できることは明らかである。
[Comparative Example] Instead of the above-mentioned working electrode with a gold layer formed thereon, a working electrode with platinum black formed on a porous synthetic resin film by vapor deposition, which is often used in constant potential electric field type gas sensors, was used. , we performed measurements on acetylene, ethylene, hydrogen, and carbon monoxide while changing the set potential between the working electrode and the counter electrode, and found that the potential can be set essentially, that is, practically, as shown in Figure 7. It was found that the measurement sensitivity for ethylene is higher than the measurement sensitivity for acetylene in the above range. $ In this example, the case where gas components separated from insulating oil were directly measured was explained, but conventional gas chromatography method, that is, separating gas components contained in insulating oil into individual components using a separation column, By using the potentiostatic electrolytic gas detector shown in the above example as a gas chromatograph detector in which the separated gas is detected using a hydrogen flame ionization detector or a thermal conduction detector, extremely low concentrations of acetylene can be detected. It is clear that it is possible to realize a gas chromatograph that can detect with high sensitivity.

【0019】さらに、この実施例においては作用極の金
層を蒸着により形成した場合について説明したが、金ブ
ラックを粘結剤に混ぜて多孔質合成樹脂膜に厚膜印刷し
、これを焼成する手法や、金(Au)を多孔質合成樹脂
膜にスパッタリングする手法を適用しても同様の作用を
奏することは明らかである。もとより、作用極に形成す
る金層や対極に形成する白金層の形成方法によってその
活性度が若干変化して測定対象ガスの酸化還元電位が変
化するから、前述したようエチレンとアセチレンの酸化
電位を測定して、作用極の金層や対極の白金層の形成方
法に対応した最適な電位に適宜変更しなければならない
ことは明らかである。
Furthermore, in this example, the case was explained in which the gold layer of the working electrode was formed by vapor deposition, but gold black was mixed with a binder, thick film was printed on a porous synthetic resin film, and this was baked. It is clear that the same effect can be achieved even if a method of sputtering gold (Au) onto a porous synthetic resin film is applied. Of course, depending on the method of forming the gold layer formed on the working electrode and the platinum layer formed on the counter electrode, their activity changes slightly and the oxidation-reduction potential of the gas to be measured changes.As mentioned above, the oxidation potential of ethylene and acetylene is It is clear that the potential must be measured and appropriately changed to the optimum potential corresponding to the method of forming the gold layer of the working electrode and the platinum layer of the counter electrode.

【0020】さらに、上述の実施例においてはキャリア
ガスとして空気を使用する場合を例に採って説明したが
、窒素やアルゴン等の定電位電解式ガス検出器が不感応
なガスを使用しても同様の作用を奏することは明らかで
ある。
Furthermore, although the above embodiments have been explained using air as an example of the carrier gas, even if a gas such as nitrogen or argon to which a constant potential electrolysis type gas detector is insensitive is used, It is clear that similar effects can be achieved.

【0021】[0021]

【発明の効果】以上説明したように本発明においては、
容器の壁面に設けた窓に、多孔性電気絶縁膜に金層を形
成した作用極と対極物質を形成した対極とを設けて電解
液を収容するとともに、前記作用極と対極との間にアセ
チレンの酸化電位よりも大きく、かつエチレンの酸化電
位よりも小さい電位を印加するようにしたので、絶縁油
に含まれているアセチレンを他のガスに比較して100
以上という高い感度で検出することができて、カラム等
のガス分離手段を特に必要とすることなく、通常の電気
化学式ガス測定装置と同じような構成と取扱で絶縁油の
劣化を簡便に判定することができる。また、分析用カラ
ムを用いてサンプルガスを成分に分離するガスクロマト
グラフ方式のガス検出手段として使用した場合には、微
量なアセチレンをも検出することができるばかりでなく
、分析用カラムから排出される特定成分のリテンション
タイムに合せて作用極の電位設定を変更することにより
、各成分の濃度測定を可能ならしめる装置を実現するこ
とができる。
[Effects of the Invention] As explained above, in the present invention,
A working electrode with a gold layer formed on a porous electrical insulating film and a counter electrode with a counter electrode material are provided in a window provided on the wall of the container to accommodate the electrolyte, and acetylene is placed between the working electrode and the counter electrode. Since we applied a potential greater than the oxidation potential of ethylene and smaller than the oxidation potential of ethylene, the acetylene contained in the insulating oil has a 100
It can detect with such high sensitivity and easily determine the deterioration of insulating oil with the same configuration and handling as a normal electrochemical gas measuring device, without the need for any special gas separation means such as columns. be able to. In addition, when used as a gas chromatography method gas detection means that uses an analytical column to separate sample gas into components, it is possible to not only detect trace amounts of acetylene, but also to detect the amount of acetylene that is emitted from the analytical column. By changing the potential setting of the working electrode in accordance with the retention time of a specific component, it is possible to realize a device that can measure the concentration of each component.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例を示す装置の構成図である。FIG. 1 is a configuration diagram of an apparatus showing an embodiment of the present invention.

【図2】同上装置における作用極の電位と測定感度の関
係を示す線図である。
FIG. 2 is a diagram showing the relationship between the potential of the working electrode and measurement sensitivity in the same device.

【図3】同上装置におけるアセチレンの測定感度を基準
として他のガスの測定感度との比を表す線図である。
FIG. 3 is a diagram showing the ratio of the measurement sensitivity of acetylene to the measurement sensitivity of other gases in the same device as a reference.

【図4】図1に示す検出装置を用いた劣化検査装置の一
実施例を示す構成図である。
FIG. 4 is a configuration diagram showing an embodiment of a deterioration inspection device using the detection device shown in FIG. 1;

【図5】アセチレン、エチレン、一酸化炭素、及び水素
がそれぞれ100PPMとなるように調整したサンプル
と、アセチレンを含まないサンプルを測定した結果を示
す線図である。
FIG. 5 is a diagram showing the results of measurements of a sample in which acetylene, ethylene, carbon monoxide, and hydrogen were each adjusted to 100 PPM, and a sample that did not contain acetylene.

【図6】エチレン、一酸化炭素、及び水素が混合された
ガスに対するアセチレンの濃度を極端に低くした場合の
測定結果を示す線図である。
FIG. 6 is a diagram showing measurement results when the concentration of acetylene in a gas mixture of ethylene, carbon monoxide, and hydrogen is extremely low.

【図7】作用極に白金を使用した場合の作用極の設定と
各ガスの測定感度を示す線図である。
FIG. 7 is a diagram showing the settings of the working electrode and the measurement sensitivity of each gas when platinum is used for the working electrode.

【符号の説明】[Explanation of symbols]

1  定電位電界式ガス検出器 2  容器 3  窓 4  作用極 4a  隔膜 4b  金層 5  窓 6  対極 7  参照極 8  電解液 9  負荷抵抗 10  定電圧回路 11  測定回路 20  サンプリング容器 21、22  管 23  切換弁 25  空気ポンプ 26  計量管 28  油除去用フィルタ 29  定電位電界式ガス検出器 1 Constant potential electric field type gas detector 2 Container 3. Window 4 Working electrode 4a Diaphragm 4b gold layer 5 Window 6. Opposite 7 Reference pole 8 Electrolyte 9 Load resistance 10 Constant voltage circuit 11 Measurement circuit 20 Sampling container 21, 22 tube 23 Switching valve 25 Air pump 26 Metering tube 28 Oil removal filter 29 Constant potential electric field type gas detector

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  容器の壁面に設けた窓に、多孔性電気
絶縁膜に金層を形成した作用極と、対極物質を形成した
対極と参照極を設けて電解液を収容するとともに、前記
作用極と参照極との間にアセチレンの酸化電位よりも大
きく、かつエチレンの酸化電位よりも小さい電位を印加
してなる絶縁油劣化検出装置。
Claim 1: A working electrode in which a gold layer is formed on a porous electrical insulating film, a counter electrode and a reference electrode in which a counter electrode material is formed are provided in a window provided on the wall of the container, and an electrolytic solution is accommodated therein. An insulating oil deterioration detection device in which a potential greater than the oxidation potential of acetylene and smaller than the oxidation potential of ethylene is applied between an electrode and a reference electrode.
JP3080846A 1991-03-19 1991-03-19 Insulation oil deterioration detector Expired - Lifetime JP2779272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3080846A JP2779272B2 (en) 1991-03-19 1991-03-19 Insulation oil deterioration detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3080846A JP2779272B2 (en) 1991-03-19 1991-03-19 Insulation oil deterioration detector

Publications (2)

Publication Number Publication Date
JPH04290957A true JPH04290957A (en) 1992-10-15
JP2779272B2 JP2779272B2 (en) 1998-07-23

Family

ID=13729716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3080846A Expired - Lifetime JP2779272B2 (en) 1991-03-19 1991-03-19 Insulation oil deterioration detector

Country Status (1)

Country Link
JP (1) JP2779272B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007040889A (en) * 2005-08-04 2007-02-15 Riken Keiki Co Ltd Electrode body for controlled potential electrolysis type gas detector
JP2008304402A (en) * 2007-06-11 2008-12-18 Riken Keiki Co Ltd Electrode body and manufacturing method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007040889A (en) * 2005-08-04 2007-02-15 Riken Keiki Co Ltd Electrode body for controlled potential electrolysis type gas detector
JP4730818B2 (en) * 2005-08-04 2011-07-20 理研計器株式会社 Electrode body for constant potential electrolysis gas detector for hydrogen detection
JP2008304402A (en) * 2007-06-11 2008-12-18 Riken Keiki Co Ltd Electrode body and manufacturing method therefor

Also Published As

Publication number Publication date
JP2779272B2 (en) 1998-07-23

Similar Documents

Publication Publication Date Title
CA1307320C (en) Acidic gas sensors
US3325378A (en) Electrochemical method and apparatus for measuring hydrogen content
US4083765A (en) Polymeric electrolytic hygrometer
EP0064337A1 (en) Carbon dioxide measurement
US4302315A (en) Gas sensing unit
Sawyer et al. Polarography of gases. Quantitative studies of oxygen and sulfur dioxide
Martin et al. Membrane-dialzer injection loop for enhancing the selectivity of anion-responsive liquid-membrane electrodes in flow systems: Part 1. A sensing system for NOx and nitrite
JP2007017317A (en) Gas sensor, gas concentration measuring instrument using it and method of measuring concentration of nitrogen oxide
KR850006895A (en) Air-fuel ratio detection device
JPH04290957A (en) Insulating oil deterioration sensing device
Stetter et al. Gas sensor and permeation apparatus for the determination of chlorinated hydrocarbons in water
Tierney et al. Microelectrochemical sensor for nitrogen oxides
Laitinen et al. Potentiometric Determination of Oxygen Using the Dropping Mercury Electrode1
JP2012042222A (en) Solid electrolyte-based co sensor
Chachulski Amperometric sulfur dioxide gas sensor with dimethyl sulfoxide as solvent for internal electrolyte solution
Otagawa et al. A room-temperature electrochemical sensor and instrument for monitoring methane
CA1114018A (en) Method for detecting the fouling of a membrane covered electrochemical cell
US7837846B2 (en) Electrochemical sensor
GB2288874A (en) Reducing gas analysis apparatus
CA1175905A (en) Analyzer for chemical oxidizing or reducing agents
JPS6243134B2 (en)
US20050155871A1 (en) Electrochemical sensor
Ernst et al. Continuous Detection of Volatile Aromatic, Unsaturated or Halogenated Hydrocarbons in Air by Adsorption on Pt‐Electrodes and Subsequent Oxidative Desorption
JPH08292169A (en) Detector for gas or volatile substance
SU1427280A1 (en) Method of analyzing oxygen-containing components in gas media

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980428

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term