JPH04290549A - Treatment to recover sulfuric acid-activated activated carbon fiber and treatment to remove no from no-containing gas - Google Patents

Treatment to recover sulfuric acid-activated activated carbon fiber and treatment to remove no from no-containing gas

Info

Publication number
JPH04290549A
JPH04290549A JP3130816A JP13081691A JPH04290549A JP H04290549 A JPH04290549 A JP H04290549A JP 3130816 A JP3130816 A JP 3130816A JP 13081691 A JP13081691 A JP 13081691A JP H04290549 A JPH04290549 A JP H04290549A
Authority
JP
Japan
Prior art keywords
sulfuric acid
activated
acf
containing gas
reactivation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3130816A
Other languages
Japanese (ja)
Inventor
Isao Mochida
勲 持田
Shizuo Kono
河野 静夫
Takeshi Maeda
武士 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP3130816A priority Critical patent/JPH04290549A/en
Publication of JPH04290549A publication Critical patent/JPH04290549A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To reactivate a sulfuric acid-activated ACF having decreased NH3 adsorptivity at room temp. to about 100 deg.C, lower than a conventional method, and to remove NO from NO-contg. gas. CONSTITUTION:This recovering method for sulfuric acid-activated activated carbon fiber features in that a NO-contg. gas is brought into contact with the sulfuric acid-activated activated carbon fiber adsorbing NH3 to reactivate the carbon fiber. Also, this invention relates to the method of removing NO from NO-contg. gas. by the treatment above described.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、悪臭物質のひとつであ
るNH3を吸着した硫酸賦活活性炭素繊維の再生処理方
法、及びNO含有ガスのNO除去処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for regenerating sulfuric acid-activated carbon fibers that have adsorbed NH3, which is one of the malodorous substances, and a method for removing NO from NO-containing gas.

【0002】0002

【従来技術とその問題点】悪臭源であるアンモニアの簡
便な除去方法が現代の高密度居住空間の居住性改善のた
めに切望されており、現在種々の除去方法が開発されて
いる。
[Prior Art and its Problems] A simple method for removing ammonia, which is a source of bad odors, is desperately needed to improve the livability of modern high-density living spaces, and various methods are currently being developed.

【0003】硫酸で賦活した活性炭素繊維(ACF)が
アンモニア吸着を有することは知られている(Moch
ida,Kawano,Fujitsu  Chem.
Lett.,NO.9,1990,1627〜1630
)。本発明者らは先にアンモニアを吸着した上記硫酸賦
活ACFを高温に加熱した空気と接触させることにより
、吸着アンモニアを回収し、活性炭素繊維の吸着能を再
生できることを報告した。
It is known that activated carbon fiber (ACF) activated with sulfuric acid has ammonia adsorption (Moch
ida, Kawano, Fujitsu Chem.
Lett. , NO. 9, 1990, 1627-1630
). The present inventors previously reported that by bringing the sulfuric acid-activated ACF that has adsorbed ammonia into contact with air heated to a high temperature, the adsorbed ammonia can be recovered and the adsorption ability of activated carbon fibers can be regenerated.

【0004】しかし、上記方法によれば、充分な再生効
果を得るためには185℃以上の加熱空気で処理しなけ
ればならず、コスト面、装置の耐久性の面等において大
きな問題がある。
However, according to the above method, in order to obtain a sufficient regeneration effect, treatment must be performed with heated air at a temperature of 185° C. or higher, which poses major problems in terms of cost and durability of the device.

【0005】[0005]

【問題点を解決するための手段】本発明の目的は、上記
の問題点に鑑み、より低温で効率良く硫酸賦活ACFを
再活性化する方法を提供することにある。また、他の目
的は、NO含有ガスからNOを除去する方法を提供する
ことにある。
[Means for Solving the Problems] In view of the above-mentioned problems, an object of the present invention is to provide a method for efficiently reactivating sulfuric acid-activated ACF at a lower temperature. Another object is to provide a method for removing NO from an NO-containing gas.

【0006】即ち、本発明は、NH3を吸着した硫酸賦
活活性炭素繊維にNO含有ガスを接触させることにより
、該炭素繊維を再活性化することを特徴とする硫酸賦活
活性炭素繊維の再生処理方法、及び上記処理により該N
O含有ガスからNOを除去することを特徴とするNO含
有ガスのNO除去処理方法に係るものである。
That is, the present invention provides a method for regenerating sulfuric acid-activated carbon fibers, which comprises reactivating the sulfuric acid-activated carbon fibers by bringing NO-containing gas into contact with the sulfuric acid-activated carbon fibers that have adsorbed NH3. , and the N
The present invention relates to a method for removing NO from an NO-containing gas, which is characterized in that NO is removed from the O-containing gas.

【0007】本発明者の研究によれば、アンモニアを吸
着した硫酸賦活ACFにNO含有ガスを接触させると室
温乃至100℃前後の温度でACFの再活性化を行なう
ことができることが見出された。しかも硫酸賦活ACF
の再活性化に用いられたNO含有ガスからはNOが除去
される。従って、本発明はアンモニア吸着した硫酸賦活
ACFの再活性化と同時にNO含有ガスからNOを除去
することを目的として一挙に両者の処理を図ることも、
あるいは前者又は後者の処理を主目的として、硫酸賦活
ACFの再活性化又はNO含有ガスからのNOの除去処
理を行なうこともできる。
According to the research conducted by the present inventor, it was found that when NO-containing gas is brought into contact with sulfuric acid-activated ACF that has adsorbed ammonia, ACF can be reactivated at temperatures ranging from room temperature to around 100°C. . Moreover, sulfuric acid activated ACF
NO is removed from the NO-containing gas used for reactivation. Therefore, the present invention aims to simultaneously reactivate the sulfuric acid-activated ACF that has adsorbed ammonia and simultaneously remove NO from the NO-containing gas.
Alternatively, with the former or latter treatment as the main purpose, the reactivation of the sulfuric acid-activated ACF or the removal of NO from the NO-containing gas can also be performed.

【0008】以下、本発明方法を詳細に説明する。The method of the present invention will be explained in detail below.

【0009】まず、本発明で用いるACFは、特に限定
されることはなく、ピッチ系、フェノール樹脂系、PA
N系等の市販されているものを使用でき、これらACF
は繊維、ウェッブ、布、紙等の任意の形態で使用できる
。硫酸賦活ACFは、上記ACFを硫酸で賦活させるこ
とにより得られる。賦活化の方法及び条件はACFがア
ンモニア吸着能を発現する限り制限されず、適宜選択で
きる。例えば、ACFを硫酸に浸漬する等により硫酸を
含浸させ、次いで熱処理する。使用する硫酸は、濃硫酸
(37wt%)が好ましい。熱処理は、通常200〜3
00℃程度で2〜10時間程度行なわれる。このように
してアンモニア吸着能を存する賦活されたACFが得ら
れる。硫酸賦活ACFのアンモニア吸着量は通常2〜3
wt%である。
First, the ACF used in the present invention is not particularly limited, and may be pitch-based, phenolic resin-based, PA
Commercially available products such as N-based ACFs can be used.
can be used in any form such as fiber, web, cloth, paper, etc. Sulfuric acid-activated ACF is obtained by activating the above ACF with sulfuric acid. The activation method and conditions are not limited as long as ACF exhibits ammonia adsorption ability, and can be selected as appropriate. For example, ACF is impregnated with sulfuric acid by immersing it in sulfuric acid, etc., and then heat treated. The sulfuric acid used is preferably concentrated sulfuric acid (37 wt%). Heat treatment is usually 200 to 3
The process is carried out at about 00°C for about 2 to 10 hours. In this way, an activated ACF having ammonia adsorption capacity is obtained. The amount of ammonia adsorbed by sulfuric acid-activated ACF is usually 2 to 3.
It is wt%.

【0010】本発明方法において、アンモニアを吸着し
てアンモニア吸着能を喪失乃至減退した硫酸賦活ACF
をNO含有ガスと接触させ、該ACFを再生させる。こ
の際、吸着されたNH3とNOとの間に生ずる反応は次
式に従うものと考えられる。 NO+NH3+1/402  −>  N2+3/2H
2O
In the method of the present invention, sulfuric acid-activated ACF which has lost or decreased its ammonia adsorption ability by adsorbing ammonia
is brought into contact with NO-containing gas to regenerate the ACF. At this time, the reaction that occurs between the adsorbed NH3 and NO is thought to follow the following equation. NO+NH3+1/402 -> N2+3/2H
2O

【0011】本発明によれば、アンモニアを吸着し
た硫酸賦活ACFが再活性化されると共に、その再活性
化で用いたNO含有ガス中のNOが除去される。従って
、本発明の方法は、アンモニアを吸着した硫酸賦活AC
Fが再活性化すると同時にNO含有ガス中のNOを除去
する方法としても、あるいは前者だけを目的としてAC
Fを再活性化する方法として、又は後者だけを目的とし
てNO含有ガス中からNOを除去する方法として適用す
ることが可能である。
According to the present invention, the sulfuric acid-activated ACF that has adsorbed ammonia is reactivated, and NO in the NO-containing gas used for the reactivation is removed. Therefore, the method of the present invention uses sulfuric acid-activated AC that has adsorbed ammonia.
AC can be used as a method to remove NO in NO-containing gas at the same time as F is reactivated, or for the former purpose only.
It can be applied as a method for reactivating F or for the latter purpose only as a method for removing NO from NO-containing gas.

【0012】本発明においてNO含有ガスとアンモニア
を吸着した硫酸賦活ACFとの接触は、NO含有ガスを
該ACFの層中を通過させることにより行なわれる。硫
酸賦活ACFの層は、該ACFの充填又は積重層であっ
ても、又は繊維、ウェッブ、紙等であってもよい。NO
含有ガスは、上記ACF層を横切って、あるいはACF
層に平行に通過させる等任意の方法で両者を接触させれ
ばよい。
In the present invention, contact between the NO-containing gas and the sulfuric acid-activated ACF adsorbing ammonia is carried out by passing the NO-containing gas through a layer of the ACF. The layer of sulfuric acid activated ACF may be a packed or stacked layer of the ACF, or may be a fiber, web, paper, etc. NO
The contained gas may cross the ACF layer or
The two may be brought into contact by any method such as passing parallel to the layer.

【0013】本発明方法におけるNO含有ガスとしては
、ACFの再活性化の目的のためにはその再活性化を妨
げない程度のNO含有ガスを使用できる。最も好適なも
のとしては、NOを含有する空気を挙げることができる
。この場合、ガス中のNO含有量は広い範囲にわたり得
るが、通常300〜500ppm、特に350〜450
ppmの範囲が好ましい。
As the NO-containing gas in the method of the present invention, for the purpose of reactivating ACF, any NO-containing gas that does not interfere with the reactivation can be used. Most preferred is air containing NO. In this case, the NO content in the gas can vary over a wide range, but is usually between 300 and 500 ppm, especially between 350 and 450 ppm.
A range of ppm is preferred.

【0014】ACFの再活性化と共にNO含有ガスから
NOを除去する目的のためにはNOを被除去成分として
含有し、且つACFを再活性化することを妨げない各種
NO含有ガスを用いることができる。
[0014] For the purpose of reactivating ACF and removing NO from NO-containing gas, it is possible to use various NO-containing gases that contain NO as a component to be removed and do not hinder reactivation of ACF. can.

【0015】本発明の処理は、室温乃至100℃程度の
低い温度で有利に効率よく行なうことができる。特に本
発明方法によれば、室温で処理してもACFのアンモニ
ア吸着能を充分に高めることができる。例えば、室温の
NO含有空気を用いて再活性化した場合、185℃の加
熱空気で再活性化した場合のアンモニア吸着能の40〜
90%の回復率を得ることができる。この効果は、NO
との接触によってのみ得られ、NOを含まない室温の空
気では185℃での再活性化時の10〜20%しか吸着
能の回復が図れないのに比して著しく顕著なものである
。また、再活性化処理温度が高くなるに従い、再生効果
は増大し、再活性化されたACFの破過時間が長くなる
。例えば、ピッチ系活性炭素繊維やPAN系活性炭素繊
維では100℃での再活性化処理で185℃加熱空気再
活性化処理とほぼ同一の再活性化効果が得られる。また
、NO含有ガスの湿度は、低いほどよく、とりわけ相対
湿度60%以下のものを用いることが好ましい。むろん
、相対湿度100%ものNO含有ガスを用いることも不
可能ではないが、室温での再活性化効果は低下し、処理
温度を高くしなれば充分な効果は得られなくなる。上記
処理温度及び湿度の影響はNO含有ガスからNOを除去
処理する場合においても同様である。
The process of the present invention can advantageously be carried out efficiently at temperatures ranging from room temperature to as low as 100°C. In particular, according to the method of the present invention, the ammonia adsorption ability of ACF can be sufficiently increased even when treated at room temperature. For example, when reactivating using NO-containing air at room temperature, the ammonia adsorption capacity when reactivating with heated air at 185 ° C.
A recovery rate of 90% can be obtained. This effect is NO
This is remarkable compared to the fact that the adsorption capacity can only be recovered by 10 to 20% during reactivation at 185° C. with NO-containing room temperature air. Furthermore, as the reactivation treatment temperature increases, the regeneration effect increases and the breakthrough time of reactivated ACF becomes longer. For example, for pitch-based activated carbon fibers and PAN-based activated carbon fibers, reactivation treatment at 100°C provides almost the same reactivation effect as 185°C heated air reactivation treatment. Further, the lower the humidity of the NO-containing gas, the better, and it is particularly preferable to use a relative humidity of 60% or less. Of course, it is not impossible to use a NO-containing gas with a relative humidity of 100%, but the reactivation effect at room temperature is reduced, and if the treatment temperature is raised, a sufficient effect cannot be obtained. The effects of the processing temperature and humidity are the same when NO is removed from the NO-containing gas.

【0016】[0016]

【発明の効果】本発明方法によれば、NH3吸着能の低
下した硫酸賦活ACFを室温乃至100℃前後という従
来に比して低い温度で容易に再活性化させることができ
、高温下での装置の負担を軽減することができ、省エネ
ルギー化、省コスト化等を図り得る。特に室温で高い再
生効果が得られるという特徴がある。本発明の硫酸賦活
ACFの再生処理は再生効果を低下させることなく繰り
返し行なうことができる。またこれと同時に、有害物質
であるNOを人体等に無害の窒素に変換してNO含有ガ
スからNOを除去することができる。
Effects of the Invention According to the method of the present invention, sulfuric acid-activated ACF with reduced NH3 adsorption capacity can be easily reactivated at a temperature lower than that of the conventional method, from room temperature to around 100°C. The load on the device can be reduced, and energy and cost savings can be achieved. In particular, it has the characteristic that a high regeneration effect can be obtained at room temperature. The regeneration treatment of the sulfuric acid-activated ACF of the present invention can be repeated without reducing the regeneration effect. At the same time, NO, which is a harmful substance, can be converted into nitrogen, which is harmless to the human body, and NO can be removed from the NO-containing gas.

【0017】[0017]

【実施例】以下に実施例を示し、本発明の特徴とすると
ころをより明瞭にする。
EXAMPLES Examples are shown below to make the features of the present invention clearer.

【0018】[0018]

【参考例1】硫酸賦活ACFの調製 PAN系炭素繊維(FE−200、東邦レーヨン社製)
、ピッチ系炭素繊維(OG−5A、大阪ガス社製)及び
フェノール樹脂系炭素繊維(ACN−210−20、日
本カイノール社製)のACFを原材料として用い、これ
らACFを3倍重量の硫酸に浸漬し、窒素気流下250
℃、5時間熱処理し、硫酸賦活させた。硫酸賦活させた
AFCをそれぞれPAN−FE−200、OG−5A及
びACN−210−20と略記する。これら硫酸賦活A
FCの特性を表1に示す。
[Reference Example 1] Preparation of sulfuric acid-activated ACF PAN-based carbon fiber (FE-200, manufactured by Toho Rayon Co., Ltd.)
, ACF of pitch-based carbon fiber (OG-5A, manufactured by Osaka Gas Co., Ltd.) and phenolic resin-based carbon fiber (ACN-210-20, manufactured by Nippon Kynor Co., Ltd.) were used as raw materials, and these ACFs were immersed in 3 times the weight of sulfuric acid. 250℃ under nitrogen flow
It was heat-treated at ℃ for 5 hours and activated with sulfuric acid. The sulfuric acid-activated AFCs are abbreviated as PAN-FE-200, OG-5A, and ACN-210-20, respectively. These sulfuric acid activation A
Table 1 shows the characteristics of FC.

【0019】[0019]

【0020】[0020]

【実施例1】NH3を飽和吸着した参考例1による硫酸
賦活ACFに、NO400ppmを含む相対湿度60%
の空気を25℃、流量2×10−3g・min・ml−
1で10時間流通することによりNH3を脱離させ、再
活性化させた。かくして得られた再生ACF0.2gを
内径8mmのガラス製U字型反応管に詰め、固定床流通
反応器を用い、NH3=400ppm(ヘリウム中)、
流量2×10−3g・min・ml−1とし、常温でN
H3の吸着を調べた。出口ガス中のアンモニアをNOに
転化し、NOXメータ(ECL−77A柳本製作所製)
で連続分析し、破過までの吸着量(wt%)を算定した
。PAN−FE−200、OG−5A及びACN−21
0−20の各ACFについての測定結果を図1中の(4
)、(5)及び(6)に示す。また図には上記と同条件
で空気のみで再活性化を行なった結果を(1)、(2)
及び(3)として、185℃の空気のみを用いる以外は
上記と同様にして再活性化を行なった結果を(7)、(
8)及び(9)として比較のために併記した。
[Example 1] Sulfuric acid-activated ACF according to Reference Example 1 with saturated adsorption of NH3 contains 400 ppm of NO at a relative humidity of 60%.
of air at 25℃, flow rate 2 x 10-3 g・min・ml-
1 for 10 hours to remove NH3 and reactivate it. 0.2 g of the thus obtained recycled ACF was packed into a glass U-shaped reaction tube with an inner diameter of 8 mm, and using a fixed bed flow reactor, NH3 = 400 ppm (in helium),
With a flow rate of 2 x 10-3 g・min・ml-1, N at room temperature
The adsorption of H3 was investigated. Converts ammonia in the outlet gas to NO and uses a NOX meter (ECL-77A manufactured by Yanagimoto Seisakusho)
The amount of adsorption (wt%) up to breakthrough was calculated. PAN-FE-200, OG-5A and ACN-21
The measurement results for each ACF of 0-20 are shown in (4) in Figure 1.
), (5) and (6). The figure also shows the results of reactivation using only air under the same conditions as above (1) and (2).
And (3), the results of reactivation in the same manner as above except using only 185°C air are shown in (7), (
8) and (9) are listed together for comparison.

【0021】図1中の(7)、(8)及び(9)に示す
ように3種の各ACFを185℃の空気で再活性化処理
を繰り返した場合は、3.0時間、3.6時間及び3.
4時間後にNH3を完全に吸着除去して破過した。また
、NOを含まない室温の空気で再活性化処理した(1)
、(2)及び(3)の各ACFも再びNH3を吸着でき
るようになるが、そのときの破過時間は各0.5時間、
0.7時間及び0.3時間となり、その吸着能は185
℃で再活性化した時の10〜20%にとどまった。
As shown in (7), (8) and (9) in FIG. 1, when each of the three types of ACF was repeatedly reactivated with air at 185°C, the reactivation process was repeated for 3.0 hours and 3. 6 hours and 3.
After 4 hours, NH3 was completely adsorbed and removed and breakthrough occurred. In addition, reactivation treatment was performed with room temperature air that does not contain NO (1)
, (2) and (3) are also able to adsorb NH3 again, but the breakthrough time at that time is 0.5 hours each.
0.7 hours and 0.3 hours, and the adsorption capacity is 185
It remained at 10-20% of that when reactivated at ℃.

【0022】これに対し、本発明方法による(4)、(
5)及び(6)は、その破過時間は大幅に延長され、そ
れぞれ2.3時間、3.2時間及び1.4時間に達し、
その吸着能は185℃で再活性化した時の40〜90%
に回復することができた。これより、本発明方法が室温
においても優れた再活性化効果を発揮することがわかる
In contrast, (4), (
5) and (6), their breakthrough times were significantly extended, reaching 2.3 hours, 3.2 hours and 1.4 hours, respectively;
Its adsorption capacity is 40-90% when reactivated at 185℃
was able to recover. This shows that the method of the present invention exhibits an excellent reactivation effect even at room temperature.

【0023】また、表2には上記と同じ条件で再活性化
させた各ACFの乾燥空気中における破過までに吸着し
たNH3量のNOによる効果を示す。尚、表2中の初期
吸着における値は、再活性化する前の硫酸賦活ACFの
NH3吸着量を示す。
Table 2 also shows the effect of NO on the amount of NH3 adsorbed before breakthrough in dry air for each ACF reactivated under the same conditions as above. Note that the values for initial adsorption in Table 2 indicate the amount of NH3 adsorbed by the sulfuric acid-activated ACF before reactivation.

【0024】[0024]

【0025】[0025]

【実施例2】OG−5Aを用いてNH3吸着能の再活性
化温度による影響を調べた結果を図2の(5)〜(10
)に示す。NH3吸着能の測定は、実施例1と同様にし
て行なった。再活性化の条件は、(5)、(8)、(9
)及び(10)の再活性化温度をそれぞれ25℃、50
℃、80℃及び100℃とした以外は実施例1と同様に
して行なった。また、(6)及び(7)は、温度25℃
の再活性化を2回及び3回繰り返した場合のNH3吸着
の結果である。尚、(1)、(2)、(3)、(4)及
び(11)は、25℃、50℃、80℃、100℃及び
185℃の空気のみを用いて再活性化した場合の結果を
、並びに(12)には再活性化前のACFについて測定
した結果を示す。
[Example 2] The results of investigating the influence of reactivation temperature on NH3 adsorption capacity using OG-5A are shown in (5) to (10) in Figure 2.
). The measurement of NH3 adsorption capacity was carried out in the same manner as in Example 1. The reactivation conditions are (5), (8), (9
) and (10) at 25°C and 50°C, respectively.
The same procedure as in Example 1 was conducted except that the temperature was 80°C, 80°C, and 100°C. In addition, (6) and (7) are at a temperature of 25°C.
These are the results of NH3 adsorption when the reactivation was repeated two and three times. In addition, (1), (2), (3), (4) and (11) are the results when reactivating only using air at 25°C, 50°C, 80°C, 100°C and 185°C. and (12) show the results of measuring ACF before reactivation.

【0026】図2の結果より、再活性化温度による影響
は、空気及びNO含有空気のいずれの場合においても再
活性化温度が高いと破過時間が延長されるが、いずれの
温度でもNOを添加した場合の方が、そのNH3吸着能
の効果は顕著に認められる。さらには、100℃でNO
含有空気での再活性化は、NOを含まない空気を用いた
185℃での再活性化に匹敵する効果が得られた。
From the results shown in Figure 2, the effect of the reactivation temperature is that the breakthrough time is prolonged when the reactivation temperature is high for both air and NO-containing air; The effect of the NH3 adsorption ability is more noticeable when it is added. Furthermore, NO at 100℃
Reactivation with contained air was comparable in effectiveness to reactivation at 185° C. with NO-free air.

【0027】図2の結果からも、再活性化におけるNO
含有ガスによる効果が大きいことが明らかである。
[0027] From the results in Figure 2, it is clear that NO in reactivation
It is clear that the effect of the contained gas is large.

【0028】[0028]

【実施例3】再活性化温度を変化させた場合のNH3吸
着量の違いを3種のACFについて調べた。その結果を
図3に示す。NH3吸着量の測定は、実施例1と同様に
して行なった。再活性化条件は、温度を変化させた以外
は実施例1と同様にして行なった。図3中(1)、(2
)及び(3)はNO含有空気中でのPAN−FE−20
0、OG−5A及びACN−210−20の測定結果で
ある。また、図3中の(4)、(5)及び(6)は空気
中でのOG−5A、PAN−FE−200及びACN−
210−20の測定結果である。この結果によると、い
ずれのACFの場合も再活性化温度が高くなれば、NH
3吸着量も増大し、またNOを添加することにより、N
H3吸着量が顕著に増大することがわかる。特に、PA
N−FE−200及びOG−5AではNO含有空気で1
00℃で再活性化処理した場合には空気中185℃で再
活性化した場合と同等の効果が達成できることがわかる
[Example 3] The difference in NH3 adsorption amount when the reactivation temperature was changed was investigated for three types of ACF. The results are shown in FIG. The amount of NH3 adsorption was measured in the same manner as in Example 1. The reactivation conditions were the same as in Example 1 except that the temperature was changed. (1), (2) in Figure 3
) and (3) are PAN-FE-20 in NO-containing air.
0, OG-5A, and ACN-210-20. In addition, (4), (5) and (6) in Figure 3 are OG-5A, PAN-FE-200 and ACN-
This is the measurement result of 210-20. According to this result, for any ACF, the higher the reactivation temperature, the higher the NH
3.The amount of adsorption also increases, and by adding NO, the amount of N adsorption increases.
It can be seen that the amount of H3 adsorption increases significantly. In particular, P.A.
1 with NO-containing air for N-FE-200 and OG-5A.
It can be seen that when the reactivation treatment is performed at 00°C, the same effect as when reactivated at 185°C in air can be achieved.

【0029】[0029]

【実施例4】PAN−FE−200及びOG−5Aの再
活性化する湿度によるNH3吸着量の影響を調べた。そ
の結果を図4及び図5にそれぞれ示す。NH3吸着量の
測定は、実施例1と同様にして行なった。再活性化条件
は、相対湿度を変化させた以外は実施例1と同様にして
行なった。図4中(1)、(2)、(3)及び(4)、
並びに図5中(1)、(2)、(3)及び(4)はそれ
ぞれ相対湿度0%、60%、80%及び100%の条件
下でNH3吸着量の測定を行なった結果である。この結
果より、相対湿度が低い(特に60%以下)ほどNH3
吸着能が向上することがわかる。
[Example 4] The influence of the reactivation humidity of PAN-FE-200 and OG-5A on the amount of NH3 adsorbed was investigated. The results are shown in FIGS. 4 and 5, respectively. The amount of NH3 adsorption was measured in the same manner as in Example 1. The reactivation conditions were the same as in Example 1 except that the relative humidity was changed. (1), (2), (3) and (4) in FIG.
In addition, (1), (2), (3), and (4) in FIG. 5 are the results of measuring the amount of NH3 adsorption under conditions of relative humidity of 0%, 60%, 80%, and 100%, respectively. From this result, the lower the relative humidity (especially below 60%), the more NH3
It can be seen that the adsorption capacity is improved.

【0030】[0030]

【実施例5】NH3を吸着した3種のACFにNO40
0ppmを含む相対湿度60%の空気を、流量2×10
−3g・min・ml−1、室温(25℃)で流通させ
た場合のNO転化率を調べた。その測定結果を図6に示
す。図6中(1)、(2)及び(3)は、各々PAN−
FE−200、OG−5A及びACN−210−20の
各ACFについての測定結果である。OG−5Aの場合
には、流通直後は50%のNO転化率を示した後に直ち
に低下するが、1時間後には約20%の定常値となり、
以後10時間はこの転化率を維持することができた。他
の2種のACFについても初期の転化率が時間の経過に
伴い低下するが、その後は一定値を維持していた。
[Example 5] NO40 in three types of ACF that adsorbed NH3
Air with a relative humidity of 60% containing 0 ppm at a flow rate of 2 x 10
-3g·min·ml−1 and the NO conversion rate when flowing at room temperature (25°C) was investigated. The measurement results are shown in FIG. In FIG. 6, (1), (2) and (3) are PAN-
It is a measurement result about each ACF of FE-200, OG-5A, and ACN-210-20. In the case of OG-5A, immediately after distribution, the NO conversion rate showed 50% and then immediately decreased, but after 1 hour it reached a steady value of about 20%.
This conversion rate could be maintained for the next 10 hours. The initial conversion rates of the other two types of ACF also decreased with the passage of time, but remained constant thereafter.

【0031】[0031]

【実施例6】二酸化炭素等の生成率 25〜100℃におけるNO含有の乾燥空気による再活
性化中の出口ガスに認められるNO2、CO2及びCO
生成率、並びにNO転化率を測定した。その測定結果を
表3に示す。
[Example 6] Production rate of carbon dioxide, etc. NO2, CO2 and CO observed in outlet gas during reactivation with NO-containing dry air at 25-100°C
The production rate and NO conversion rate were measured. The measurement results are shown in Table 3.

【0032】 この結果、25℃において反応初期は、NO(人口濃度
400ppm)の47%が転化した。NO転化率は反応
温度の上昇に伴って100℃では92%を示し、1時間
後も50%以上を維持していた。また、NO2の生成率
においては、25℃の反応初期では8.3%を示し、温
度の上昇と共に低下し、100℃では2.7%に減少し
た。
[0032] As a result, at 25°C, 47% of NO (population concentration 400 ppm) was converted at the initial stage of the reaction. The NO conversion rate reached 92% at 100°C as the reaction temperature increased, and remained at 50% or higher even after 1 hour. Furthermore, the NO2 production rate was 8.3% at 25°C in the initial stage of the reaction, and decreased as the temperature increased, and decreased to 2.7% at 100°C.

【0033】CO及びCO2の生成率においては、25
〜50℃では生成が認められず、再活性化温度が80〜
100℃では出口ガス中にCO2が170〜270pp
m、COが100℃で微量が認められた。
[0033] Regarding the production rate of CO and CO2, 25
No formation was observed at ~50°C, and the reactivation temperature was at ~80°C.
At 100℃, CO2 is 170-270pp in the outlet gas.
A trace amount of CO was observed at 100°C.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】NH3吸着の破過時間と再活性化温度25℃に
おける各ACFとの関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the breakthrough time of NH3 adsorption and each ACF at a reactivation temperature of 25°C.

【図2】NH3吸着の破過時間と各再活性化温度におけ
る各ACFとの関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the breakthrough time of NH3 adsorption and each ACF at each reactivation temperature.

【図3】各再活性化温度における各ACFのNH3吸着
量を示すグラフである。
FIG. 3 is a graph showing the amount of NH3 adsorbed by each ACF at each reactivation temperature.

【図4】各再活性化湿度におけるPAN−FE−200
のNH3吸着量を示すグラフである。
[Figure 4] PAN-FE-200 at each reactivation humidity
It is a graph showing the amount of NH3 adsorption.

【図5】各再活性化湿度におけるOG−5AのNH3吸
着量を示すグラフである。
FIG. 5 is a graph showing the amount of NH3 adsorbed by OG-5A at each reactivation humidity.

【図6】再活性化湿度60%における各ACFのNO転
化率を示すグラフである。
FIG. 6 is a graph showing the NO conversion rate of each ACF at a reactivation humidity of 60%.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】NH3を吸着した硫酸賦活活性炭素繊維に
NO含有ガスを接触させることにより、該活性炭素繊維
を再活性化すると共に該NO含有ガスからNOを除去す
ることを特徴とする硫酸賦活活性炭素繊維の再生処理及
びNO含有ガスのNO除去処理方法。
Claim 1: Sulfuric acid activation characterized in that by bringing NO-containing gas into contact with sulfuric acid-activated activated carbon fibers that have adsorbed NH3, the activated carbon fibers are reactivated and NO is removed from the NO-containing gas. A method for regenerating activated carbon fibers and removing NO from NO-containing gas.
【請求項2】NH3を吸着した硫酸賦活活性炭素繊維に
NO含有ガスを接触させることにより、該活性炭素繊維
を再活性化することを特徴とする硫酸賦活活性炭素繊維
の再生処理方法。
2. A method for regenerating sulfuric acid-activated activated carbon fibers, which comprises reactivating the activated carbon fibers by bringing NO-containing gas into contact with the sulfuric acid-activated activated carbon fibers that have adsorbed NH3.
【請求項3】NH3を吸着した硫酸賦活活性炭素繊維に
NO含有ガスを接触させることにより、該NO含有ガス
からNOを除去することを特徴とするNO含有ガスのN
O除去処理方法。
3. A method for removing NO from an NO-containing gas by bringing the NO-containing gas into contact with sulfuric acid-activated carbon fibers that have adsorbed NH3.
O removal treatment method.
JP3130816A 1991-03-19 1991-03-19 Treatment to recover sulfuric acid-activated activated carbon fiber and treatment to remove no from no-containing gas Pending JPH04290549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3130816A JPH04290549A (en) 1991-03-19 1991-03-19 Treatment to recover sulfuric acid-activated activated carbon fiber and treatment to remove no from no-containing gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3130816A JPH04290549A (en) 1991-03-19 1991-03-19 Treatment to recover sulfuric acid-activated activated carbon fiber and treatment to remove no from no-containing gas

Publications (1)

Publication Number Publication Date
JPH04290549A true JPH04290549A (en) 1992-10-15

Family

ID=15043386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3130816A Pending JPH04290549A (en) 1991-03-19 1991-03-19 Treatment to recover sulfuric acid-activated activated carbon fiber and treatment to remove no from no-containing gas

Country Status (1)

Country Link
JP (1) JPH04290549A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006018985A1 (en) * 2004-08-06 2006-02-23 Asahi Kasei Chemicals Corporation Method for purifying aqueous alkaline solution

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006018985A1 (en) * 2004-08-06 2006-02-23 Asahi Kasei Chemicals Corporation Method for purifying aqueous alkaline solution
US8133459B2 (en) 2004-08-06 2012-03-13 Asahi Kasei Chemicals Corporation Method for purifying aqueous alkaline solution

Similar Documents

Publication Publication Date Title
US4831011A (en) Carbon-based adsorbent and process for production thereof
US4708853A (en) Mercury adsorbent carbon molecular sieves and process for removing mercury vapor from gas streams
JP3725196B2 (en) Nitrogen-containing molecular sieve activated carbon, its production method and use
JP3272367B2 (en) Heat-treated activated carbon fiber for denitration, method for producing the same, denitration method using the same, and denitration system using the same
Kisamori et al. Roles of surface oxygen groups on poly (acrylonitrile)-based active carbon fibers in SO2 adsorption
KR102062258B1 (en) Activated carbon with excellent adsorption performance
JPH02118121A (en) Pitch-based active carbon fiber and production thereof
US4259301A (en) Removal of acidic compounds from gaseous mixtures
JP2009056449A (en) Lower aldehyde adsorbent
JPH04219308A (en) Production of formed active coke for desulfurization and denitration having high denitration performance
JPH04290549A (en) Treatment to recover sulfuric acid-activated activated carbon fiber and treatment to remove no from no-containing gas
JPH0549918A (en) Carbon dioxide adsorbent
US5674462A (en) Method for the removal of non-metal and metalloid hydrides
JPH01236941A (en) Gaseous ammonia adsorbent
JP3234919B2 (en) Activated carbon fiber catalyst for nitric oxide-ammonia reduction reaction and nitric oxide removing method for nitric oxide containing gas
KR940021501A (en) How to remove iodine compounds in acetic acid
ATE280630T1 (en) METHOD FOR TREATING AMMONIA
JPH06296858A (en) Acid gas absorbent
JPH11188258A (en) Aldehyde removing agent
US3766090A (en) Process for regenerating active carbon loaded with sulfuric acid
JP7004611B2 (en) Carbon dioxide adsorbent and its manufacturing method
JP2662265B2 (en) Ammonia adsorption separation method in gas
KR102671784B1 (en) Method of reusing chemical filter
SU827132A1 (en) Method of cleaning oxygen-containing gases
JP4724937B2 (en) Adsorbent and method for producing the same