JPH0429006B2 - - Google Patents

Info

Publication number
JPH0429006B2
JPH0429006B2 JP57062359A JP6235982A JPH0429006B2 JP H0429006 B2 JPH0429006 B2 JP H0429006B2 JP 57062359 A JP57062359 A JP 57062359A JP 6235982 A JP6235982 A JP 6235982A JP H0429006 B2 JPH0429006 B2 JP H0429006B2
Authority
JP
Japan
Prior art keywords
measured
shaped steel
amount
bending
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57062359A
Other languages
Japanese (ja)
Other versions
JPS58180905A (en
Inventor
Jun Furukawa
Nobuyuki Sekimizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP6235982A priority Critical patent/JPS58180905A/en
Publication of JPS58180905A publication Critical patent/JPS58180905A/en
Publication of JPH0429006B2 publication Critical patent/JPH0429006B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/32Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring the deformation in a solid

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【発明の詳細な説明】 この発明は形鋼の曲り量測定装置に関する。[Detailed description of the invention] The present invention relates to an apparatus for measuring the amount of bending of a section steel.

形鋼製品は通常熱間圧延後冷却されるが、これ
らの過程において製品断面各部の熱容量の違いや
冷却の不均一等により曲りを生ずる。この曲りは
ローラ矯正機あるいはプレス矯正機により矯正さ
れるのが普通である。
Shaped steel products are usually cooled after hot rolling, but during these processes, bending occurs due to differences in heat capacity at various parts of the product cross section, uneven cooling, etc. This bending is usually corrected using a roller straightening machine or a press straightening machine.

しかし平面上に置かれた形鋼製品は自重により
たわみを生ずるため、普通の測定方法では曲り量
の定量的把握は困難である。
However, since shaped steel products placed on a flat surface bend due to their own weight, it is difficult to quantitatively determine the amount of bending using ordinary measurement methods.

そのため従来は、次のような測定方法により曲
り量を測定していた。
Therefore, conventionally, the amount of bending has been measured using the following measurement method.

まず形鋼製品がH形鋼や溝形鋼等の90゜転回可
能な断面形状を有する製品の場合、クレーン等に
より製品を90゜転回させ、垂直方向の曲りを水平
方向の曲りにし、これにより自重によるたわみを
なくした上で水糸等により測定する。
First, if the shaped steel product has a cross-sectional shape that can be rotated 90 degrees, such as H-shaped steel or channel steel, the product is rotated 90 degrees using a crane, etc., and the vertical bend is turned into a horizontal bend. Measure with a water string, etc. after eliminating deflection due to its own weight.

また製品が鋼矢板等の90゜転回することが困難
な断面形状を有するものである場合には、測定す
る製品の長さにより予め定められた間隔で配設さ
れた2個の支点上に、各々の支点外張り出し長さ
が均等になるように製品を載せこの時のたわみ量
を測定する。次に該製品をクレーン等により180゜
転回し、同様に支点上に載せこの時のたわみ量を
測定する。このようにして求めた2つのたわみ量
から曲り量を算出する。
In addition, if the product has a cross-sectional shape that makes it difficult to turn 90 degrees, such as steel sheet piles, the product may be placed on two fulcrums placed at a predetermined interval depending on the length of the product to be measured. Place the product so that the length of each fulcrum is equal and measure the amount of deflection. Next, the product is turned 180 degrees using a crane, etc., and similarly placed on a fulcrum and the amount of deflection at this time is measured. The amount of bending is calculated from the two amounts of deflection obtained in this way.

しかし上記したような従来の測定方法ではいず
れもクレーン等の装置を使用する必要があるため
オンラインでの迅速な測定が出来なかつた。ま
た、そのためにオフラインにおける抜取検査とせ
ざるを得ず、製品すべての検査を行い品質保証を
することが困難である等の欠点があつた。
However, all of the conventional measurement methods described above require the use of equipment such as a crane, making it impossible to perform quick online measurements. In addition, this necessitated off-line sampling inspection, which had the disadvantage of making it difficult to inspect all products and guarantee quality.

このような欠点を改善するため本願出願人は既
に特願昭56−43986号にて新規な曲り測定方法及
び装置を提案済である。
In order to improve these drawbacks, the applicant of the present application has already proposed a new method and apparatus for measuring bending in Japanese Patent Application No. 56-43986.

この提案済の方法及び装置は所定の間隔を有す
る支点の上に被測定形鋼を載置し、該被測定形鋼
のたわみ量を測定し、更に該被測定形鋼に所定の
加重をかけた状態でそのたわみ量の測定し、前記
夫々測定した2つのたわみ量から被測定形鋼の真
の曲り量を算出しようとするものである。
This proposed method and device place a shaped steel to be measured on fulcrums having a predetermined interval, measure the amount of deflection of the shaped steel, and then apply a predetermined load to the shaped steel to be measured. The purpose is to measure the amount of deflection of the shaped steel in the state in which it is bent, and calculate the true amount of bending of the shaped steel to be measured from the two amounts of deflection measured respectively.

本発明は上記した提案済の曲り測定の構成を更
に発展させたものであり、支点間に載置した形鋼
を下から自重によるたわみを相殺するように押し
上げ、この状態でたわみ量を測定し形鋼の曲りを
得るようにしたものである。
The present invention is a further development of the proposed bending measurement configuration described above, in which a section steel placed between fulcrums is pushed up from below to offset the deflection due to its own weight, and the amount of deflection is measured in this state. This is to obtain the bending of the shaped steel.

まず本発明装置による曲り測定の原理につき先
に説明する。第1図に示すように被測定形鋼Aを
支点B,B上に載置する。この形鋼Aの重量W及
び全長lは予め測定しておく。また支点B,Bか
らはみ出すオーバーハング長さl1,l1が同一の長
さとなるように該形鋼Aを載置する。このオーバ
ーハング長さl1,l1は予め決定しておき、それに
合わせて支点B,B間隔l2を調整し、その後上述
のように形鋼Aを支点B,B上に載置する。
First, the principle of bending measurement using the apparatus of the present invention will be explained first. As shown in FIG. 1, the shaped steel A to be measured is placed on fulcrums B and B. The weight W and overall length l of this shaped steel A are measured in advance. Further, the section steel A is placed so that the overhang lengths l 1 and l 1 protruding from the fulcrums B and B are the same length. The overhang lengths l 1 and l 1 are determined in advance, and the fulcrums B and the distance between them l 2 are adjusted accordingly, and then the section steel A is placed on the fulcrums B and B as described above.

この時測定される形鋼Aのたわみ量δ1は形鋼A
の曲り量δと自重によるたわみ量δcoから成り、 δ1=δ+δco が成立する。これを書き替えると、 δ=δ1−δcoとなる。
The amount of deflection δ 1 of section steel A measured at this time is
It consists of the bending amount δ and the deflection amount δco due to its own weight, and δ 1 = δ + δco holds true. Rewriting this gives δ=δ 1 − δco.

本発明においては、ここで第1図bに示すよう
に被測定形鋼Aを支点間の中心下側から所定の抗
力Pで押し上げ、自重によるたわみ量δcoを相殺
して0とし、δ=δ1として、この時のたわみ量δ1
を形鋼の曲り量δとする。
In the present invention, as shown in FIG. 1b, the shaped steel A to be measured is pushed up from below the center between the fulcrums with a predetermined drag force P, and the amount of deflection δco due to its own weight is offset to 0, and δ=δ 1 , the amount of deflection at this time δ 1
Let be the bending amount δ of the section steel.

ここで自重によるたわみ量δcoは理論的に下式
で示される。
Here, the amount of deflection δco due to its own weight is theoretically expressed by the following formula.

δco=W/384EIl2 2(5l2 2−24l1 2)… ここで、E:ヤング率(Kg/cm2) I:断面2次モーメント(cm4) W:単位長さ当り重量(Kg/cm) 一方、抗力Pによる押し上げ量δPは理論的に下
式により示される。
δco=W/384EIl 2 2 (5l 2 2 −24l 1 2 )... Here, E: Young's modulus (Kg/cm 2 ) I: Second moment of area (cm 4 ) W: Weight per unit length (Kg/cm 2 ) cm) On the other hand, the amount of push-up δ P due to the drag force P is theoretically expressed by the following formula.

δP=P/48EIl2 3… したがつて自重によるたわみ量δcoを押し上げ
量δPにより相殺するには、 δP=δco… とする必要がある。
δ P = P/48EIl 2 3 ... Therefore, in order to offset the amount of deflection δco due to self-weight by the amount of push up δ P , it is necessary to set δ P = δco...

ここで式に,式を代入すれば、 P=W/8l2(5l2 2−24l1 2)… が求まる。即ちW/8l2(5l2 2−24l1 2)の抗力で形鋼 Aを押し上げれば、自重によるたわみ量δcoが相
殺され、この状態でたわみ量δ1を測定すれば、こ
れが形鋼Aの曲り量δとなる。
By substituting the formula into the equation, P=W/8l 2 (5l 2 2 −24l 1 2 )... can be found. In other words, if we push up the shape steel A with a drag force of W/8l 2 (5l 2 2 -24l 1 2 ), the amount of deflection δco due to its own weight will be canceled out, and if we measure the amount of deflection δ 1 in this state, this will be the result of the shape steel A. The amount of bending is δ.

このような測定方法を実施すれば、形鋼Aを転
回させる必要が全くないから、オンラインでの測
定が可能となる。
If such a measurement method is implemented, there is no need to rotate the section steel A, so online measurement becomes possible.

次に以上の方法を実現するための本発明装置の
具体的一実施例を第2図に基づいて説明する。
Next, a specific embodiment of the apparatus of the present invention for realizing the above method will be described based on FIG.

この装置は被測定形鋼の重量を測定する重量測
定装置(図示せず)及びその全長を測定する測長
器5と、支点装置1と曲り量検出器2と演算制御
装置3と押し上げ装置4とからなる。
This device includes a weight measuring device (not shown) for measuring the weight of the shaped steel to be measured, a length measuring device 5 for measuring its total length, a fulcrum device 1, a bending amount detector 2, an arithmetic control device 3, and a pushing device 4. It consists of.

支点装置1は昇降自在でかつ被測定形鋼Aの長
手方向移動自在な一対の支点10,10から成
る。支点10,10の移動及び昇降は演算制御装
置3により制御され、支点10,10の距離l2
演算制御装置3に入力される。また上記重量測定
装置により測定された重量Wも演算制御装置3に
入力される。
The fulcrum device 1 consists of a pair of fulcrums 10, 10, which are movable up and down and movable in the longitudinal direction of the shaped steel A to be measured. The movement and elevation of the fulcrums 10, 10 are controlled by the arithmetic and control device 3, and the distance l 2 between the fulcrums 10, 10 is input to the arithmetic and control device 3. Furthermore, the weight W measured by the weight measuring device is also input to the arithmetic and control device 3.

曲り量検出器2は支点10,10間を移動し得
るようになつており、形鋼Aの下面が支点10,
10の高さレベルに対してどれだけ変位している
かを検知することにより、たわみ量を検出する。
この検出値はまた演算制御装置3に入力される。
The bending amount detector 2 is movable between the fulcrums 10, 10, and the lower surface of the section steel A is the fulcrum 10, 10.
The amount of deflection is detected by detecting the amount of displacement with respect to the 10 height levels.
This detected value is also input to the arithmetic and control unit 3.

押し上げ装置4は、曲り量検出器2と同じく支
点10,10間を移動可能となつており、形鋼A
を所定の抗力Pで押し上げる押し棒40と荷重を
検出するロードセル41から成る。押し棒40は
適宜な駆動装置により形鋼Aを押し上げる。この
時の負荷すべき抗力Pは演算制御装置3により上
記式に従つて算出され出力される。また実際に
負荷された荷重はロードセル41により検出され
演算制御装置3に入力される。
The pushing up device 4 is movable between the supporting points 10 and 10 like the bending amount detector 2, and is
It consists of a push rod 40 that pushes up with a predetermined resistance P, and a load cell 41 that detects the load. The push rod 40 pushes up the section steel A by a suitable drive device. The drag force P to be applied at this time is calculated and output by the arithmetic and control unit 3 according to the above formula. Further, the load actually applied is detected by the load cell 41 and inputted to the arithmetic and control device 3.

以上のような構成の装置は被測定形鋼の測長機
能を有する装置の下流側であれば、製造フロー内
のどの位置に設置することも可能である。以下そ
の一例として形鋼製品をその長手方向に移送する
搬送テーブル上に設置した場合の動作について説
明する。
The device configured as described above can be installed at any position in the manufacturing flow as long as it is downstream of the device having the function of measuring the length of the shaped steel to be measured. As an example, the operation will be described below when the shaped steel product is placed on a conveyance table that transports it in its longitudinal direction.

まず、その長さlを上流側に位置する測長器5
により測長された被測定形鋼は、本測定装置の位
置で停止する。この停止はストツパ等により行え
ば良い。
First, the length l is measured by the length measuring device 5 located on the upstream side.
The shape steel to be measured whose length has been measured by this method is stopped at the position of this measuring device. This stop may be performed using a stopper or the like.

前記測長器5からの長さl信号は演算制御装置
3に送信され、ここで予め決められたオーバーハ
ング長さl1から支点間隔l2が演算される。演算制
御装置3はこの演算された支点間隔l2となるよう
に支点10,10を移動させ、次いで支点10,
10を上昇させて形鋼を支持した後、検出器2及
び押し棒40が形鋼Aのほぼ中央部に来るように
移動させる。なおオーバーハング長さl1は測定作
業に支障をきたさない範囲で小さくする方が測定
誤差が小さくなるので好ましい。
The length l signal from the length measuring device 5 is transmitted to the arithmetic and control unit 3, where the fulcrum spacing l2 is calculated from the predetermined overhang length l1 . The arithmetic and control device 3 moves the fulcrums 10, 10 so that the calculated fulcrum spacing l 2 is achieved, and then moves the fulcrums 10, 10,
10 is raised to support the section steel, and then moved so that the detector 2 and the push rod 40 are located approximately at the center of the section steel A. Note that it is preferable to make the overhang length l 1 as small as possible within a range that does not interfere with the measurement work, since this reduces measurement errors.

形鋼Aが支点10,10に支持されると、重量
Wが測定され、演算制御装置3に入力される。こ
こで演算制御装置3においては、 P=W/8l2(5l2 2−24l1 2) の演算を行い、この抗力Pを押し上げ装置4に出
力する。押し上げ装置4は演算制御装置3から指
令された抗力Pで押し棒40を形鋼Aに押し付け
る。この実際に負荷された抗力Pはロードセル4
1により検出され、装置3に読み込まれる。
When the shaped steel A is supported by the fulcrums 10, 10, the weight W is measured and input to the arithmetic and control device 3. Here, the arithmetic and control device 3 calculates P=W/8l 2 (5l 2 2 −24l 1 2 ) and outputs this drag force P to the pushing up device 4. The push-up device 4 pushes the push rod 40 against the section steel A with a drag force P commanded by the arithmetic and control device 3. This actually applied drag force P is the load cell 4
1 and read into the device 3.

これにより形鋼Aの自重によるたわみδcoは0
となるから、この状態で曲り量検出器2によりた
わみ量δ1を検出すれば、このδ1が即曲り量δとな
る。この曲り量δは適宜手段により外部に表示さ
れる。
As a result, the deflection δco of section steel A due to its own weight is 0.
Therefore, if the bending amount detector 2 detects the deflection amount δ 1 in this state, this δ 1 immediately becomes the bending amount δ. This amount of bending δ is displayed externally by appropriate means.

上記動作を第3図の流れ図に示す。 The above operation is shown in the flowchart of FIG.

なお、曲り量検出器2としては接触式のセンサ
とマグネスケール等を用いて形鋼A下側から該セ
ンサを接触させ、その時のセンサの上下位置を検
出するような構成のものでも良いが本実施例では
第4図に示すような光学式のものを用いており、
演算制御装置3と接続している。第4図中、21
は光検出装置、22はこの光検出装置21を昇降
させる昇降装置、23は光検出装置21の上下方
向位置を検出する位置検出装置、Xは支点10,
10のレベル、αとβは被測定形鋼Aのたわみ部
最下端部である。
It should be noted that the bending amount detector 2 may be of a structure in which a contact type sensor and a magnescale or the like are used to contact the sensor from below the section steel A and detect the vertical position of the sensor at that time, but this is not the case. In the example, an optical type as shown in Fig. 4 is used.
It is connected to the arithmetic and control unit 3. In Figure 4, 21
22 is a lifting device that raises and lowers this photodetecting device 21; 23 is a position detecting device that detects the vertical position of the photodetecting device 21; X is a fulcrum 10;
Level 10, α and β, are the lowest ends of the flexure of the section steel A to be measured.

光検出装置21は図示するように断面E字形の
ヘツド24と投光器25及び受光器26から構成
されている。投光器25と受光器26はヘツド2
4の先端部に向い合せて設けられており、この実
施例ではこの組合せが2組設けられている。投光
器25からは光が投ぜられ、受光器26に受光さ
れ、この際のビームm1,m2が測定レベルを形成
するが、該ビームm1,m2は同一水平線上に位置
させるように投光器25と受光器26の水平位置
を合せておく。ビームm1,m2が遮断されると受
光器26は物体検出の信号を出力し、この信号は
演算制御装置3に入力されるように構成されてい
る。
As shown in the figure, the photodetector 21 is composed of a head 24 having an E-shaped cross section, a light emitter 25, and a light receiver 26. The emitter 25 and the receiver 26 are connected to the head 2.
In this embodiment, two sets of this combination are provided. Light is emitted from the emitter 25 and received by the receiver 26, and the beams m 1 and m 2 at this time form a measurement level, but the beams m 1 and m 2 are arranged so that they are located on the same horizontal line. The horizontal positions of the light emitter 25 and the light receiver 26 are aligned. When the beams m 1 and m 2 are interrupted, the light receiver 26 outputs an object detection signal, and this signal is configured to be input to the arithmetic and control unit 3.

なお、この実施例においては、受光器26,2
6の前面に受光スリツト27,27を設けてあ
り、投光器25からのビームの拡がりをこのスリ
ツト27で絞り検出精度を高めている。また各投
光器25と受光器26の上部にはタツチスイツチ
28を設けてあり、ここに被測定形鋼等が衝突し
た場合直ちにこれを検知するようにしている。こ
のタツチスイツチ28は昇降装置22に接続させ
衝突時に非常停止するように構成しておいても良
い。
Note that in this embodiment, the light receivers 26, 2
Light receiving slits 27, 27 are provided on the front surface of the projector 6, and the slit 27 improves the aperture detection accuracy of the spread of the beam from the projector 25. Further, a touch switch 28 is provided above each of the light emitters 25 and the light receivers 26, so that if a shaped steel to be measured or the like collides with the touch switch 28, this is immediately detected. This touch switch 28 may be connected to the elevating device 22 and configured to make an emergency stop in the event of a collision.

以上のような構成の光検出装置21は昇降装置
22に支持され、またこれにより昇降可能となつ
ている。昇降装置22は架台29とモータ30と
一対のリニアヘツド31とから構成されている。
リニアヘツド31はモータ30に接続されモータ
30の回転運動を直線運動に変換するもので、ラ
ツクピニオン等と同一の機能を有するものであ
る。光検出装置21はこのリニアヘツド31のロ
ツド32上に載置されている。モータ30は正逆
転可能とし、演算処理装置3からの上昇又は下降
指令により正又は逆回転するように構成されてい
る。
The photodetecting device 21 configured as described above is supported by a lifting device 22, and can be raised and lowered thereby. The lifting device 22 is composed of a pedestal 29, a motor 30, and a pair of linear heads 31.
The linear head 31 is connected to the motor 30 and converts the rotational motion of the motor 30 into linear motion, and has the same function as a rack and pinion. The photodetector 21 is placed on the rod 32 of this linear head 31. The motor 30 is capable of forward and reverse rotation, and is configured to rotate forward or backward in response to an ascending or descending command from the arithmetic processing unit 3.

なお、33,33は架台29の上方位置と下方
位置に設けられたリミツトスイツチであり、ロツ
ド32の昇降範囲即ち光検出装置21の昇降範囲
を規制している。このリミツトスイツチ33はモ
ータ30と接続させてONとなつた時にモータ3
0を非常停止するように構成しても良い。
Note that limit switches 33 and 33 are provided at upper and lower positions of the pedestal 29, and limit the lifting range of the rod 32, that is, the lifting range of the photodetector 21. When this limit switch 33 is connected to the motor 30 and turned on, the motor 3
0 may be configured to cause an emergency stop.

位置検出装置23はこの実施例では直線型のマ
グネスケールを用いており、その磁気ヘツド34
を連結棒35を介してヘツド24の下端部と連結
している。このマグネスケール23は形鋼Aの支
点レベルXにビームm1,m2が位置している時そ
の上下方向位置信号S=0となるように調整され
ており、ヘツド24が下降するほどSが大きくな
るようにセツトされている。このマグネスケール
23の出力は演算制御装置3に入力されている。
In this embodiment, the position detection device 23 uses a linear magnet scale, and its magnetic head 34
is connected to the lower end of the head 24 via a connecting rod 35. This magnescale 23 is adjusted so that when the beams m 1 and m 2 are located at the fulcrum level X of the section steel A, the vertical position signal S = 0, and the lower the head 24 is, the more S increases. It is set to be large. The output of this Magnescale 23 is input to the arithmetic and control unit 3.

演算制御装置3は、時々刻々変化する位置検出
装置23からの位置信号Sを入力すると共に、受
光器26,26からのたわみ部最下端部α,βの
検出信号を入力し、α,β検出時点での位置信号
を読み、たわみ量δ1即ち曲り量δを出力する。な
お、この際、形鋼Aの両エツジα,βの下端にお
けるたわみ量δ1〓,δ1〓を求めて下式のように平均
値δ1をとるようにしても良い。
The arithmetic and control device 3 inputs the position signal S from the position detection device 23 that changes every moment, and also inputs the detection signals of the lowest ends α and β of the bending part from the light receivers 26 and 26, and detects α and β. The position signal at the time is read and the deflection amount δ 1 , that is, the bending amount δ is output. At this time, the deflection amounts δ 1 〓 and δ 1 〓 at the lower ends of both edges α and β of the section steel A may be determined and the average value δ 1 may be taken as shown in the following formula.

δ1=δ1〓+δ1〓/2 この理由は一般に形鋼の断面形状及び寸法が完
全な対称形ではなく、若干左右のアンバランスが
あること、また抗力Pを加える位置が形鋼巾方向
中心よりもずれることがあり、この影響で両エツ
ジ下端位置が左右同じとはならないことがあるた
めである。
δ 1 = δ 1 〓 + δ 1 〓/2 The reason for this is that the cross-sectional shape and dimensions of the section steel are generally not completely symmetrical, and there is a slight left-right imbalance, and the position where the drag force P is applied is in the direction of the section width. This is because the lower end positions of both edges may not be the same on the left and right sides due to this influence.

次にこの曲り量検出器2の動作を説明する。 Next, the operation of this bend amount detector 2 will be explained.

まず演算制御装置3からモータ30へ正転駆動
指令が出力され、モータ30が正転を始め光検出
装置21が上昇を始める。いま最下端部αがβよ
り下位置にあるとするとαがビームm1位置にく
ると、光を遮断するため受光器26からはα検出
信号が演算制御装置3へと出力される。装置3で
はこの時の位置検出装置23からの信号Sをたわ
み量δ1〓としてその内部メモリに記憶する。続け
て他方の受光器26によりβが検出されて同様に
演算制御装置3はその内部メモリにたわみ量δ1
を記憶する。次にこのδ1〓とδ1〓から平均値を求め
てたわみ量δ1即ち曲り量δを得てこれを出力す
る。次いで演算制御装置3はモータ30に停止及
び逆転指令を出力し、光検出装置21が元の位置
に戻つた時点でこれを停止させ測定を完了する。
First, a normal rotation drive command is output from the arithmetic and control unit 3 to the motor 30, and the motor 30 starts rotating in the normal direction and the photodetecting device 21 starts moving upward. Assuming that the lowest end α is now below β, when α comes to the beam m1 position, the light receiver 26 outputs an α detection signal to the arithmetic and control unit 3 in order to block the light. The device 3 stores the signal S from the position detection device 23 at this time as the deflection amount δ 1 〓 in its internal memory. Subsequently, β is detected by the other light receiver 26, and the arithmetic and control unit 3 similarly records the deflection amount δ 1 〓 in its internal memory.
Remember. Next, the average value is calculated from these δ 1 〓 and δ 1 〓 to obtain the deflection amount δ 1 , that is, the bending amount δ, and output it. Next, the arithmetic and control unit 3 outputs stop and reverse commands to the motor 30, and when the photodetector 21 returns to its original position, it is stopped and the measurement is completed.

以上のような構成の曲り量検出器によれば極め
て精度の高い測定を行うことができる。
The bend amount detector configured as described above can perform measurements with extremely high accuracy.

以上説明したように、本発明の測定装置によれ
ば、形鋼を転回することなくその曲り量を測定す
ることが可能となるため、ライン内での連続測定
が可能となり、すべての製品の曲り検査を行うこ
とが出来る等の効果がある。
As explained above, according to the measuring device of the present invention, it is possible to measure the amount of bending of the shaped steel without turning it, so continuous measurement within the line is possible, and the bending amount of all products can be measured. There are effects such as being able to perform inspections.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置による曲り測定の原理を説
明する説明図、第2図は本発明装置の一実施例を
示す正面図、第3図はその動作を示す流れ図、第
4図では曲り量検出器の一実施例を示す正面図で
ある。 図中、1は支点装置、2は曲り量検出器、3は
演算制御装置、4は押し上げ装置、10は支点、
40は押し棒、41はロードセル、21は光検出
装置、22は昇降装置、23は位置検出装置、2
4はヘツド、25は投光器、26は受光器、27
は受光スリツト、28はタツチスイツチ、29は
架台、30はモータ、31はリニアヘツド、32
はロツド、33はリミツトスイツチ、24は磁気
ヘツド、35は連結棒を各示す。
Fig. 1 is an explanatory diagram explaining the principle of bending measurement by the device of the present invention, Fig. 2 is a front view showing an embodiment of the device of the present invention, Fig. 3 is a flowchart showing its operation, and Fig. 4 is the amount of bending. It is a front view showing one example of a detector. In the figure, 1 is a fulcrum device, 2 is a bending amount detector, 3 is an arithmetic control device, 4 is a push-up device, 10 is a fulcrum,
40 is a push rod, 41 is a load cell, 21 is a photodetector, 22 is a lifting device, 23 is a position detection device, 2
4 is the head, 25 is the emitter, 26 is the receiver, 27
28 is a touch switch, 29 is a stand, 30 is a motor, 31 is a linear head, 32
33 is a limit switch, 24 is a magnetic head, and 35 is a connecting rod.

Claims (1)

【特許請求の範囲】 1 被測定形鋼の重量及び全長を測定する夫々の
測定器と、被測定形鋼の長手方向に移動自在でか
つ上下方向昇降可能な被測定形鋼を載置する一対
の支点と、該支点間において被測定形鋼を任意の
力で押し上げる押し上げ装置と、前記各測定器で
検出された被測定形鋼の重量及び全長の測定値を
入力し、それに基づいて支点間隔の設定及び該支
点の昇降を行なうと共に、前記押し上げ装置の押
し上げ力の制御を行なう演算制御装置と、被測定
形鋼の曲り量を測定する曲り量測定装置とを有し
ており、被測定形鋼の載置される支点からの左右
はみ出し長さl1を予め等しい長さに決定してお
き、該形鋼の重量W及び全長を測定して、該全長
と左右はみ出し長さl1とを基に支点間隔l2の設定
を行なうと共に、これらの支点の上に左右のはみ
出し長さl1が上記の決定された長さとなるように
被測定形鋼を載置し、下式に基づき算出される自
重Wによるたわみ分に相当する抗力Pで該被測定
形鋼を押し上げてその自重Wによるたわみを相殺
し、この状態で被測定形鋼の曲り量を測定して、
被測定形鋼の曲りを得ることを特徴とする形鋼の
曲り量測定装置。 P=W/8l2(5l2 2−24l1 2
[Scope of Claims] 1. A pair of measuring instruments for measuring the weight and total length of the shaped steel to be measured, and a pair of measuring instruments on which the shaped steel to be measured is placed, which is movable in the longitudinal direction of the shaped steel and can be raised and lowered in the vertical direction. A push-up device that pushes up the shaped steel to be measured with arbitrary force between the fulcrums, and the measured values of the weight and total length of the shaped steel to be measured detected by each of the measuring instruments are input, and the fulcrum spacing is determined based on that. It has an arithmetic control device that sets the fulcrum and raises and lowers the fulcrum, and also controls the pushing force of the pushing up device, and a bending amount measuring device that measures the bending amount of the shaped steel to be measured. The left and right protrusion lengths l 1 from the fulcrum on which the steel is placed are determined in advance to be equal lengths, the weight W and the total length of the section steel are measured, and the total length and the left and right protrusion lengths l 1 are determined. Based on this, set the fulcrum spacing l 2 and place the shaped steel to be measured on these fulcrums so that the left and right protrusion length l 1 is the determined length above, and calculate based on the formula below. Pushing up the shaped steel to be measured with a drag force P corresponding to the deflection due to its own weight W, canceling out the deflection due to its own weight W, and measuring the amount of bending of the shaped steel to be measured in this state,
An apparatus for measuring the amount of bending of a shaped steel, characterized in that it measures the bending of a shaped steel to be measured. P=W/8l 2 (5l 2 2 −24l 1 2 )
JP6235982A 1982-04-16 1982-04-16 Method and apparatus for measuring bend of shape steel Granted JPS58180905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6235982A JPS58180905A (en) 1982-04-16 1982-04-16 Method and apparatus for measuring bend of shape steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6235982A JPS58180905A (en) 1982-04-16 1982-04-16 Method and apparatus for measuring bend of shape steel

Publications (2)

Publication Number Publication Date
JPS58180905A JPS58180905A (en) 1983-10-22
JPH0429006B2 true JPH0429006B2 (en) 1992-05-15

Family

ID=13197837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6235982A Granted JPS58180905A (en) 1982-04-16 1982-04-16 Method and apparatus for measuring bend of shape steel

Country Status (1)

Country Link
JP (1) JPS58180905A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2097781A1 (en) * 1993-06-04 1994-12-05 Peter O. Paulson Apparatus and method for non-destructive testing of structures
CN108253927A (en) * 2018-01-18 2018-07-06 华南农业大学 A kind of method and system for detecting deformation seedling disk

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5679906A (en) * 1979-12-04 1981-06-30 Nippon Kokan Kk <Nkk> Measuring method for up-down curvature of steel material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5679906A (en) * 1979-12-04 1981-06-30 Nippon Kokan Kk <Nkk> Measuring method for up-down curvature of steel material

Also Published As

Publication number Publication date
JPS58180905A (en) 1983-10-22

Similar Documents

Publication Publication Date Title
US3499152A (en) Method and apparatus for improving backscatter gauge response
JPH0429006B2 (en)
JPS6253047B2 (en)
JP3028058B2 (en) Pipe roundness measuring device
JPS6110708A (en) Size measuring device using measuring camera
JPH08128807A (en) Method and apparatus for displacement measurement of roll of rolling mill
JP3331341B2 (en) Dimension measuring device for section of steel section
JPH09210665A (en) Method and device for plate width measurement
JP4444531B2 (en) Simple inspection vehicle and calibration method thereof
JP3334091B2 (en) Roll roll profile measurement method
JPS58123405A (en) Apparatus for measuring deflected amount of shape steel
JPH0422548A (en) Instrument for measuring interval between rolls in continuous casting
JPH10239012A (en) Contour shape measuring method and contour shape measuring machine
JP3028686B2 (en) Method and apparatus for measuring bending of top surface of railroad rail
JP2001133348A (en) Torque calibrating apparatus
KR100423925B1 (en) Shape coefficient determining method between hot finishing mill stands
JPH0428686A (en) Installation error measuring device for elevator guide rail
JPS61219822A (en) Rolling roll displacement correcting apparatus in measurement of rolling roll profile
JP2953784B2 (en) On-line dimension measuring device for section steel
JPS5939702B2 (en) Measuring device for moving objects
JPH06109455A (en) Measuring device for straightness of long material
JP2527028B2 (en) Thickness gauge
JPH1138176A (en) Method and device for measuring parallelism of attached end plug of nuclear fuel rod
JP2740119B2 (en) Method and apparatus for detecting shape of rolled material
JPH0253125B2 (en)