JPH0429003A - Laser length measuring instrument - Google Patents

Laser length measuring instrument

Info

Publication number
JPH0429003A
JPH0429003A JP2133891A JP13389190A JPH0429003A JP H0429003 A JPH0429003 A JP H0429003A JP 2133891 A JP2133891 A JP 2133891A JP 13389190 A JP13389190 A JP 13389190A JP H0429003 A JPH0429003 A JP H0429003A
Authority
JP
Japan
Prior art keywords
measured
laser
interferometer
displacement
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2133891A
Other languages
Japanese (ja)
Inventor
Fumio Tabata
文夫 田畑
Hidenori Sekiguchi
英紀 関口
Toru Kamata
徹 鎌田
Yuji Sakata
裕司 阪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2133891A priority Critical patent/JPH0429003A/en
Publication of JPH0429003A publication Critical patent/JPH0429003A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To improve positioning accuracy by irradiating two places of an object of measurement in the direction of displacement measurement with laser beams coaxially and taking measurements simultaneously at the two places. CONSTITUTION:A laser beam 22 for measurement is split by a beam splitter in X and Y directions and made incident on 50% beam splitters 39 and 40. The laser beam which is made incident on the beam splitter 39 is split into two directions; and one is made incident on an interferometer 251 and the other is made incident on an interferometer 252 through beam benders 41 and 42 respectively. The laser beam which is made incident on the beam splitter 40, on the other hand, is split into two directions; and one beam is made incident on an interferometer 253 and the other is made incident on an interferometer 252 through beam benders 43 and 44 respectively. Consequently, the interferometers 251 and 252 which face reflecting surfaces 38a and 38b measure X-directional displacement and interferometers 253 and 254 facing reflecting surfaces 38c and 38d measure Y-directional displacement, so that the quantities of displacement of the object of measurement in the X and Y directions can accurately be measured.

Description

【発明の詳細な説明】 〔概 要] レーザの干渉を利用したレーザ測長装置に関し、ステー
ジ等の被測定対象物の移動量を高精度で測定してその位
置決め精度を向上させることを目的とし、 レーザを被測定対象物と基準面に照射し、それぞれの反
射光同士の干渉を利用して該被測定対象物の変位を測定
するレーザ測長装置において、前記被測定対象物の変位
測定方向の2箇所に、同軸上で前記レーザビームをそれ
ぞれ照射し、2箇所で同時に変位測定が行われるように
した構成とする。
[Detailed Description of the Invention] [Summary] The purpose of this invention is to improve the positioning accuracy of a laser length measurement device that uses laser interference by measuring the amount of movement of an object to be measured, such as a stage, with high precision. , in a laser length measuring device that irradiates a laser onto an object to be measured and a reference surface and measures the displacement of the object by utilizing interference between respective reflected lights, the direction of displacement measurement of the object to be measured is The laser beam is coaxially irradiated to two locations, respectively, so that displacement measurements are performed at the two locations simultaneously.

[産業上の利用分野] 本発明はレーザの干渉を利用したレーザ測長装置に関す
るものである。
[Industrial Application Field] The present invention relates to a laser length measuring device that utilizes laser interference.

近年、LSIの微細化に伴い、直動ステージ機構を備え
たステッパ等の半導体製造装置には、10万分の1mm
という非常に高い位置決め精度が必要である。このため
、直動ステージ機構の可動部分の位置を測定する手段と
して、レーザの干渉を利用したレーザ測長方式が多用さ
れている。しかし、この方式のレーザ発振器は、電源オ
ンの状態から出力が安定するまでにかなりの時間を要す
るばかりでなく、レーザが通過1反射する干渉計やミラ
ー、レトロリフレクタの温度がレーザによって変動する
と測長値がドリフトし、長時間の測定では0.1μmオ
ーダの大きな誤差を生ずる原因となっている、さらに、
通常、反射鏡の位置と実際に測定したい位置が異なるた
め、被測定対象物の熱変形等によってアツベの誤差が生
ずることがある。
In recent years, with the miniaturization of LSIs, semiconductor manufacturing equipment such as steppers equipped with linear motion stage mechanisms have become smaller than 1/100,000 mm.
This requires extremely high positioning accuracy. For this reason, a laser length measurement method that utilizes laser interference is often used as a means for measuring the position of a movable part of a linear motion stage mechanism. However, with this type of laser oscillator, not only does it take a considerable amount of time for the output to stabilize after the power is turned on, but the temperature of the interferometer, mirror, and retroreflector through which the laser passes and reflects varies depending on the laser. The long value drifts, causing a large error on the order of 0.1 μm in long-term measurements.
Since the position of the reflecting mirror and the actual position to be measured are usually different, errors may occur due to thermal deformation of the object to be measured.

すなわち、レーザ測長方式は、短時間の測定においては
最小の分解能のオーダまで正確に測長することが可能で
あるが、長時間にわたる測定では安定な測長値を得るこ
とが難しい。
That is, in the laser length measurement method, it is possible to accurately measure length to the order of the minimum resolution in short-time measurements, but it is difficult to obtain stable length measurement values in long-term measurements.

〔従来の技術〕[Conventional technology]

X、Y軸の直動方向に移動するステージの変位を測定す
る従来のレーザ測長装置を第4図に示す。
FIG. 4 shows a conventional laser length measuring device that measures the displacement of a stage moving in the linear directions of the X and Y axes.

このレーザ測長装置では、レーザ発振器1から照射すし
たレーザビーム2をビームスプリッタ3により2つに分
け、さらにY軸方向用をビームスプリンタフにより2つ
に分ける。そして、各軸の干渉計41.4g、43でス
テージ可動部5からの反射光と干渉計内部で反射する基
準光とを干渉させてレシーバ6、.6□、63で電気信
号に変換し、さらに電気的に処理することによって各軸
の移動量を測定する。この例では、Y軸方向に2本のレ
ーザビームを使用しているので、ステージ可動部5のヨ
ーイングも同時に測定することができる。測長原理には
種々の方式があるが、例えば、ヘテロダイン干渉を用い
たものについて説明すると次の通りである。
In this laser length measuring device, a laser beam 2 emitted from a laser oscillator 1 is divided into two by a beam splitter 3, and further divided into two by a beam splitter in the Y-axis direction. Then, the interferometers 41.4g and 43 on each axis cause the reflected light from the stage movable part 5 to interfere with the reference light reflected inside the interferometer, and the receivers 6, . The amount of movement of each axis is measured by converting it into an electric signal in 6□ and 63 and further electrically processing it. In this example, since two laser beams are used in the Y-axis direction, the yawing of the stage movable section 5 can also be measured at the same time. There are various length measurement principles, and for example, one using heterodyne interference will be explained as follows.

第5図において、11はλ/4板12及びレトロリフレ
クタ13.14を備えた干渉計、15はレシーバである
。測定に際しては、第5図に示すように、直交する偏向
面を持ち僅かに周波数の異なる2つの波長を持つフレー
ザ(これを以下fl。
In FIG. 5, 11 is an interferometer equipped with a λ/4 plate 12 and retroreflectors 13 and 14, and 15 is a receiver. During the measurement, as shown in FIG. 5, a laser beam (hereinafter referred to as "fl") having two wavelengths with orthogonal polarization planes and slightly different frequencies is used.

f2と呼ぶ)を干渉計11で2つに分離し、いずれか一
方、例えばflを被測定対象物に照射する。
f2) is separated into two by the interferometer 11, and one of them, for example fl, is irradiated onto the object to be measured.

もし、被測定対象物に取り付けられた反射鏡16が移動
していれば、ドツプラー効果によりflの反射光の周波
数はΔf1だけ変化し、fl±Δf1となる。第5図の
ように平面鏡用の干渉計を使用した場合は、レーザビー
ムは鏡との間を2往復するので、最終的には、反射光の
周波数はfl±2・Δr1となる。そして、flの反射
光ともう一方の基準となるf2を干渉計11で干渉させ
てレシーバ15により電気信号に変換して、被測定対象
物の変位量を得ることができる。
If the reflecting mirror 16 attached to the object to be measured is moving, the frequency of the reflected light fl changes by Δf1 due to the Doppler effect, and becomes fl±Δf1. When an interferometer for a plane mirror is used as shown in FIG. 5, the laser beam makes two round trips between the mirror and the mirror, so the frequency of the reflected light ultimately becomes fl±2·Δr1. Then, the reflected light of fl and the other reference f2 are caused to interfere with each other by an interferometer 11 and converted into an electrical signal by a receiver 15, thereby obtaining the displacement amount of the object to be measured.

〔発明が解決しようとする課題] このように、レーザ測長装置では、干渉計と、被測定対
象物に取り付けられた反射鏡(あるいはレトロリフレク
タ)との間の距離を測定しているが、レーザによって干
渉計等の光学素子が徐々に熱を持つと、該光学素子が熱
変形を起こし、測長値に誤差が生じる。特に、熱変形に
起因するドリフトは、0.1μ−オーダと、レーザの測
長分解能の10倍以上に達することがある。
[Problems to be Solved by the Invention] As described above, the laser length measurement device measures the distance between the interferometer and the reflector (or retroreflector) attached to the object to be measured. When an optical element such as an interferometer is gradually heated by the laser, the optical element is thermally deformed, causing an error in the measured length value. In particular, the drift caused by thermal deformation can reach 0.1 μ-order, which is more than 10 times the length measurement resolution of the laser.

従って、レーザ測長装置では、短時間の測長においては
0.O1μ−の高い測長精度が実現できても、長時間の
測長では、その測長結果がドリフトし、高精度の測定が
できないという問題点があった。
Therefore, with a laser length measuring device, 0.0. Even if a high length measurement accuracy of O1μ- can be achieved, there is a problem in that the length measurement result drifts during length measurement over a long period of time, making it impossible to perform highly accurate measurement.

本発明は、ステージ等の被測定対象物の移動量を高精度
で測定してその位置決め精度を向上させることのできる
レーザ測長装置を提供することを目的としている。
SUMMARY OF THE INVENTION An object of the present invention is to provide a laser length measuring device that can measure the amount of movement of an object to be measured, such as a stage, with high precision and improve its positioning accuracy.

〔課題を解決するための手段〕[Means to solve the problem]

第1図は本発明の原理説明図で、21は被測定対象物(
ステージ可動部)、22はレーザビームである。
FIG. 1 is an explanatory diagram of the principle of the present invention, and 21 is an object to be measured (
22 is a laser beam.

レーザ測長装置は、レーザビームを被測定対象物と基準
物に照射し、それぞれの反射光同士の干渉を利用して前
記被測定対象物の変位を測定するもので、前記被測定対
象物の変位測定方向の2箇所に、同軸上に配置された前
記レーザビームをそれぞれ照射し、2箇所で同時に変位
測定が行われるようにした構成を有している。
A laser length measurement device irradiates a laser beam onto an object to be measured and a reference object, and measures the displacement of the object by utilizing the interference between the respective reflected lights. It has a configuration in which two locations in the displacement measurement direction are irradiated with the laser beams arranged coaxially, respectively, so that displacement measurement is performed at the two locations simultaneously.

本図では、被測定対象物21の変位測定方向の対向面2
1a、21bに反射鏡23..23.を取り付け、該反
射鏡23.,23zに同軸上のレーザビーム22を照射
する例を示している。この場合、レーザビーム22は5
0%ビームスプリンタ24により2つに分けられ、一方
は干渉計25゜を経て反射鏡231を照射し、他方ビー
ムベンダ26、干渉計25□を経て反射鏡23□を照射
する。
In this figure, the opposing surface 2 of the object to be measured 21 in the displacement measurement direction is shown.
Reflecting mirrors 23.1a and 21b. .. 23. Attach the reflecting mirror 23. , 23z is irradiated with the coaxial laser beam 22. In this case, the laser beam 22 is
The beam is divided into two parts by a 0% beam splinter 24, and one beam passes through an interferometer 25° and irradiates a reflecting mirror 231, while the other beam passes through a beam bender 26 and an interferometer 25□ and irradiates a reflecting mirror 23□.

〔作 用〕[For production]

このように、被測定対象物21の移動方向(変位測定方
向)の2箇所に同軸上のレーザビーム22が照射され、
該2箇所で同時に被測定対象物21の移動量が測定され
る。これにより、干渉計やレトロリフレクタ等のレーザ
が通過9反射される光学系や被測定対象物21に熱変形
があっても、レーザ測長による誤差を最少にすることが
できる。
In this way, the coaxial laser beam 22 is irradiated to two locations in the moving direction (displacement measurement direction) of the object to be measured 21,
The amount of movement of the object to be measured 21 is measured at the two locations simultaneously. Thereby, even if there is thermal deformation in the optical system through which the laser passes through or is reflected, such as an interferometer or retroreflector, or in the object to be measured 21, errors caused by laser length measurement can be minimized.

このことを第1図に例示したものについて詳細に説明す
る。すなわち、干渉計25、に対する反射鏡23.の相
対変位(前部対向面21aの測長値)をAとし、干渉計
25□に対する反射鏡23□の相対変位(後部対向面2
1bの測長値)をBとすると、各測長値A、Bには光学
素子の熱変形によるドリフトや誤差が含まれるが、その
誤差値は、A、Bとも同程度であると考えられるので、
測定値の差A−Bにおいては、測長値におけるドリフト
や誤差分が相刹されて小さ(なると考えられる。
This will be explained in detail with reference to the example shown in FIG. That is, the interferometer 25, the reflecting mirror 23. The relative displacement of the reflecting mirror 23□ with respect to the interferometer 25□ (the measured length of the front facing surface 21a) is A, and the relative displacement of the reflecting mirror 23□ with respect to the interferometer 25□ (the measured length of the front facing surface 21a) is
1b) is B, each length measurement value A and B includes drift and error due to thermal deformation of the optical element, but the error value is considered to be the same for both A and B. So,
It is thought that the difference A-B between the measured values is small due to the drift and error in the measured length values.

このことを第2図に基づいてさらに具体的に説明すると
次のようになる。
This will be explained in more detail based on FIG. 2 as follows.

第2図において、いま、被測定対象物21の前部の移動
量をレーザビーム22で測長した値をXlとし、後部移
動量をレーザビーム22で測長した値をxzとし、実際
に高い精度で位置決めしたい場所、例えば被測定対象物
の中央部26の実際の移動量をX3とすると、 X3−(Xi−X2)/2   ・・・ (1)(但し
、移動量が小さくなる方向に被測定対象物21が移動す
るときは、XI、X2は負になる。) ここで、Xi、X2には、光学素子の熱変形による測長
値のドリフトΔX 101 ΔX znや被測定対象物
21の熱変形による測長誤差ΔX I S + ΔXZ
Sを含む。これらの誤差を除いた被測定対象物前後部の
移動量をX lr、  X2rとすると、X1=X、、
+ΔXID+ΔXl5−(2)X2=X2.+Δχ2.
+ΔXZS−(3)同一の出力を持つフレーザ発振器を
使用し、測定環境もステージの前後で大差がないとすれ
ば、光学素子や被測定対象物の熱変形は被測定対象物の
前後でほぼ同一の値になると考えられるので、ΔX 1
0’−Δx、、        −(4)ΔX +s′
iΔXZS        ・・・ (5)(2)、(
3)、(4)、(5)式を(1)式に代入して、 X3= (x、r−xz、)/2−(6)これらの式よ
り明らかなように、1つの被測定対象物に対して、同軸
上で対向面21a、21bにレーザビームを照射して同
時測長を行うことにより、レーザの出力や光学素子の不
安定性、被測定対象物の変形による誤差を排除すること
ができ、正確な移動量測定が可能になる。
In FIG. 2, the amount of movement of the front part of the object to be measured 21 measured by the laser beam 22 is represented by Xl, the amount of movement of the rear part of the object to be measured by the laser beam 22 is represented by xz, and it is assumed that the actual If the actual amount of movement of a place to be accurately positioned, for example, the center part 26 of the object to be measured, is X3, then When the object to be measured 21 moves, XI and X2 become negative.) Here, Xi and X2 include the drift of the length measurement value due to thermal deformation of the optical element ΔX 101 ΔX zn and the object to be measured 21 Length measurement error ΔX I S + ΔXZ due to thermal deformation of
Contains S. If the amount of movement of the front and rear parts of the object to be measured excluding these errors is Xlr, X2r, then X1=X,
+ΔXID+ΔXl5−(2)X2=X2. +Δχ2.
+ΔXZS- (3) If a laser oscillator with the same output is used and the measurement environment is not significantly different before and after the stage, the thermal deformation of the optical element and the object to be measured will be almost the same before and after the object to be measured. Therefore, ΔX 1
0'-Δx, -(4)ΔX +s'
iΔXZS ... (5) (2), (
3), (4), and (5) into equation (1), X3= (x, r-xz,)/2-(6) As is clear from these equations, one measured object By irradiating the object with a laser beam on the opposing surfaces 21a and 21b coaxially and performing simultaneous length measurements, errors due to laser output, instability of optical elements, and deformation of the object to be measured are eliminated. This makes it possible to accurately measure the amount of movement.

〔実施例〕〔Example〕

以下、第3図及び第4図に関連して本発明の詳細な説明
する。
The invention will now be described in detail with reference to FIGS. 3 and 4.

第3図は本例のレーザ測長装置の構造を示す斜視図で、
図中、253,25.はY軸方向変位測定用の干渉計、
31は直動ステージ機構である。
FIG. 3 is a perspective view showing the structure of the laser length measuring device of this example.
In the figure, 253, 25. is an interferometer for measuring displacement in the Y-axis direction,
31 is a linear motion stage mechanism.

なお、第1図と同様の構成部材には同符号を用いている
Note that the same reference numerals are used for the same components as in FIG. 1.

直動ステージ機構31は、ステージX軸可動部32とス
テージY軸可動部33とを備えた2段重ね構成のもので
ある。ステージX軸可動部32は、X軸方向に延びるガ
イドバー34に案内されるリニアガイド35を備え、X
軸方向に移動可能である。ステージY軸可動部33は、
ステージX軸回動部32上に設けられてY軸方向に延び
るガイドバー36に案内されるリニアガイド37を備え
、Y軸方向に移動可能である。このステージY軸可動部
33は第1図の被測定対象Th21に相当するものであ
る。
The linear motion stage mechanism 31 has a two-tiered structure including a stage X-axis movable section 32 and a stage Y-axis movable section 33. The stage X-axis movable section 32 includes a linear guide 35 guided by a guide bar 34 extending in the X-axis direction.
It is movable in the axial direction. The stage Y-axis movable part 33 is
A linear guide 37 is provided on the stage X-axis rotating section 32 and guided by a guide bar 36 extending in the Y-axis direction, and is movable in the Y-axis direction. This stage Y-axis movable section 33 corresponds to the object to be measured Th21 in FIG.

ステージY軸回動部33上には、該ステージY軸可動部
33のX、Y軸方向の変位を検出するための直交ミラー
38が搭載されている。この直交ミラー38は十分な剛
性を持った口字形状のもので、周面の4つの反射面38
a、38b、38c38dの全てが高い面精度を持つよ
うに高精度に仕上げられている。
An orthogonal mirror 38 is mounted on the stage Y-axis rotating section 33 to detect displacement of the stage Y-axis moving section 33 in the X and Y axis directions. This orthogonal mirror 38 has a square shape with sufficient rigidity, and has four reflective surfaces 38 on the circumference.
All of a, 38b, 38c and 38d are finished with high precision to have high surface accuracy.

測定用のレーザビーム22は、ビームスプリッタ24に
よりX、Y方向に分けられて50%ビームスプリッタ3
9,40に入る。ビームスプリンタ39に入ったレーザ
ビームは2方向に分れ、−方は干渉計25.に、他方は
ビームベンダ41゜42を経て干渉計254に、それぞ
れ入る。また、ビームスプリッタ40に入ったレーザビ
ームも2方向に分けられ、一方は干渉計253に、他方
はビームベンダ43.44を経て干渉計25□に、それ
ぞれ入る。
A laser beam 22 for measurement is divided into X and Y directions by a beam splitter 24, and a 50% beam splitter 3
Enter 9.40. The laser beam entering the beam splinter 39 is split into two directions, and the - side is sent to the interferometer 25. The other beam passes through beam benders 41 and 42 and enters the interferometer 254, respectively. Furthermore, the laser beam entering the beam splitter 40 is also split into two directions, one entering the interferometer 253 and the other entering the interferometer 25□ via beam benders 43 and 44, respectively.

このように、本装置では、同一のレーザ発振器から照射
されるレーザビームを同軸上で各干渉計に導(ようにな
っており、これにより、被測定対象物のX、X軸方向の
変位量を正確に測定することができる。すなわち、反射
面38a、38bに対向する干渉計25..25□によ
りX軸方向の変位が測定され、反射面38c、38dに
対向する干渉計253,254によりX軸方向の変位が
測定される。これらの各軸方向の変位測定では、対向す
る2箇所を同時に測定するため、第1図に関連して前述
したように、レーザの出力変動や光学素子の熱変形、被
測定対象物の変形による誤差を排除することができ、正
確な測定が可能になる。
In this way, in this device, the laser beam irradiated from the same laser oscillator is coaxially guided to each interferometer. That is, the displacement in the X-axis direction can be measured by the interferometers 25..25□ facing the reflective surfaces 38a and 38b, and the displacement in the X-axis direction can be measured by the interferometers 253 and 254 facing the reflective surfaces 38c and 38d. Displacement in the X-axis direction is measured.In these displacement measurements in each axis direction, two opposing locations are measured at the same time, so as mentioned above in connection with Fig. 1, fluctuations in laser output and optical element Errors caused by thermal deformation and deformation of the object to be measured can be eliminated, making accurate measurement possible.

いま、干渉計25.で測長した測長値をXl、干渉計2
5□で測長した測長値をX2、干渉計25゜で測長した
測長値をYl、−干渉計254で測長した測長値をY2
とすると、被測定対象物であるステージY軸可動部33
の中央部の位置は、X軸方向の位置= (XI−X2)
/2Y軸方向の位置= (Yl−Y2)/2により求め
ることができる。また、求めた位置を上式のように2で
割ることをしないと、2倍の分解能で被測定対象物を測
長することが可能になる。
Now, the interferometer 25. The length value measured with Xl, interferometer 2
The length value measured with 5□ is X2, the length value measured with interferometer 25° is Yl, - the length value measured with interferometer 254 is Y2
Then, the stage Y-axis movable part 33 which is the object to be measured
The position of the center of is the position in the X-axis direction = (XI-X2)
/2 Position in Y-axis direction = (Yl-Y2)/2. Furthermore, if the obtained position is not divided by 2 as in the above equation, it becomes possible to measure the length of the object to be measured with twice the resolution.

本例では、上述のように、被測定対象物の位置測定用に
口字形の直交ミラーを用いているが、この形状のミラー
は、十分な剛性を有しており、加工時や直交する反射面
の蒸着時、あるいは直交ミラーの実際の取り付は時にミ
ラーに加わる力が異なっても、反射面に生ずる歪を小さ
く抑えることができる。このようなミラー構造は、第6
図に示す従来の2軸方向変位測定方式のレーザ測長装置
にも適用可能である。第6図において、17.はX軸方
向変位測長用干渉計、17□はX軸方向変位測長用干渉
計、18は直動ステージ機構のステージ可動部(被測定
対象物)、19はL型直交ミラーである。各軸方向の測
長は、ステージ可動部18上に取り付けられたL型直交
ミラー19の反射面19a、19bに対向する干渉計1
7.。
In this example, as mentioned above, a mouth-shaped orthogonal mirror is used to measure the position of the object to be measured, but this mirror shape has sufficient rigidity and is suitable for use during processing and for orthogonal reflections. Even when the forces applied to the mirror differ during the vapor deposition of the surface or the actual installation of the orthogonal mirror, the distortion occurring on the reflective surface can be kept to a small level. Such a mirror structure is the sixth
The present invention can also be applied to a conventional laser length measuring device using a biaxial displacement measuring method as shown in the figure. In FIG. 6, 17. 17 is an interferometer for measuring displacement in the X-axis direction, 18 is a stage movable part (object to be measured) of a linear motion stage mechanism, and 19 is an L-shaped orthogonal mirror. The length measurement in each axial direction is carried out by an interferometer 1 facing the reflecting surfaces 19a and 19b of an L-shaped orthogonal mirror 19 mounted on the stage movable section 18.
7. .

172からのレーザビーム照射によって行われる。This is performed by laser beam irradiation from 172.

この従来装置で使用されているL型直交ミラー19は、
第7図(a)のA方向に加えると点線で示すように容易
に変形するが、この代わりに第3図の口字形状の反射ミ
ラー38を使用すると、第7図ら)に示すように、同じ
力Aが加わっても歪はかなり小さくなる。従って、より
高い面精度を持つミラーの製作が可能となり、これを直
動ステージ機構に搭載して使用すれば、より高い精度で
被測定対象物を位置決めすることが可能になる。
The L-shaped orthogonal mirror 19 used in this conventional device is
If it is applied in the A direction in FIG. 7(a), it will easily deform as shown by the dotted line, but if the mouth-shaped reflecting mirror 38 in FIG. 3 is used instead, as shown in FIG. 7 et al. Even if the same force A is applied, the distortion will be considerably smaller. Therefore, it is possible to manufacture a mirror with higher surface precision, and by mounting this mirror on a linear motion stage mechanism, it becomes possible to position the object to be measured with higher precision.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、被測定対象物の位
置を同軸上の2箇所で測定することにより、測定値から
、レーザ自身の出力の不安定性やビームパスを構成する
光学素子の熱変形、被測定対象物の変形等の影響を排除
することができるため、より高い精度で被測定対象物の
移動量を計測することができ、被測定対象物の位置決め
精度向上に寄与するところ大である。
As described above, according to the present invention, by measuring the position of the object to be measured at two coaxial locations, it is possible to determine from the measured values the instability of the output of the laser itself and the heat of the optical elements making up the beam path. Since the effects of deformation and deformation of the object to be measured can be eliminated, the amount of movement of the object to be measured can be measured with higher accuracy, which greatly contributes to improving the positioning accuracy of the object to be measured. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理説明図、 第2図は本発明のレーザ測長装置の作用説明図、第3図
は本発明の実施例のレーザ測長装置の構造を示す斜視図
、 第4図は従来のレーザ測長装置の構造を示す斜視図、 第5図はレーザ測長装置の測長原理説明図、第6図は従
来の2軸方向変位測定方式のレーザ測長装置の構造を示
す斜視図、 第7図(a)、 (b)は従来のL型反射ミラーの問題
点比較説明図で、 図中、 21は被測定対象物、 22はレーザビームである。 従来のレ ザ測長装璽の構造を示す斜視図 第4図 レーザ測長装置の測長原理説明図 従来の2@方向変位測定方式のレーザ測長装置の構造を
示す斜視図績 r M
FIG. 1 is an explanatory diagram of the principle of the present invention, FIG. 2 is an explanatory diagram of the operation of the laser length measuring device of the present invention, FIG. 3 is a perspective view showing the structure of the laser length measuring device of the embodiment of the present invention, and FIG. The figure is a perspective view showing the structure of a conventional laser length measuring device, Figure 5 is a diagram explaining the length measurement principle of the laser length measuring device, and Figure 6 is a diagram showing the structure of a conventional laser length measuring device using a two-axis displacement measuring method. The perspective views shown in FIGS. 7(a) and 7(b) are comparative illustrations of problems of conventional L-type reflecting mirrors. In the figures, 21 is an object to be measured, and 22 is a laser beam. Figure 4: A perspective view showing the structure of a conventional laser length measurement device.A diagram explaining the length measurement principle of a laser length measurement device.A perspective view showing the structure of a conventional laser length measurement device using the 2@direction displacement measurement method.r M

Claims (1)

【特許請求の範囲】  レーザビーム(22)を被測定対象物(21)と基準
物に照射し、それぞれ反射光同士の干渉を利用して前記
被測定対象物(21)の変位を測定するレーザ測長装置
において、 前記被測定対象物(21)の変位測定方向の2箇所に、
同軸上で前記レーザビーム(22)をそれぞれ照射し、
2箇所で同時に変位測定が行われるようにしたことを特
徴とするレーザ測長装置。
[Scope of Claims] A laser that irradiates a laser beam (22) onto an object to be measured (21) and a reference object, and measures the displacement of the object to be measured (21) by utilizing interference between respective reflected lights. In the length measuring device, at two locations in the displacement measurement direction of the object to be measured (21),
irradiating the laser beams (22) on the same axis,
A laser length measuring device characterized in that displacement measurement is performed at two locations simultaneously.
JP2133891A 1990-05-25 1990-05-25 Laser length measuring instrument Pending JPH0429003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2133891A JPH0429003A (en) 1990-05-25 1990-05-25 Laser length measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2133891A JPH0429003A (en) 1990-05-25 1990-05-25 Laser length measuring instrument

Publications (1)

Publication Number Publication Date
JPH0429003A true JPH0429003A (en) 1992-01-31

Family

ID=15115520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2133891A Pending JPH0429003A (en) 1990-05-25 1990-05-25 Laser length measuring instrument

Country Status (1)

Country Link
JP (1) JPH0429003A (en)

Similar Documents

Publication Publication Date Title
US6757066B2 (en) Multiple degree of freedom interferometer
US6271923B1 (en) Interferometry system having a dynamic beam steering assembly for measuring angle and distance
US4883357A (en) Dual high stability interferometer
US6819434B2 (en) Multi-axis interferometer
WO2018103268A1 (en) Laser measurement system for measuring geometric error in six degrees of freedom of rotating shaft, and method therefor
US6912054B2 (en) Interferometric stage system
WO2003064968A1 (en) Multiple-pass interferometry
US20070041022A1 (en) Interferometer for measuring perpendicular translations
JPS60219744A (en) Projection exposure device
EP0244275B1 (en) Angle measuring interferometer
EP1583934A1 (en) In-process correction of stage mirror deformations during a photolithography exposure cycle
US6791693B2 (en) Multiple-pass interferometry
CN108955565B (en) Self-adaptive zero compensator space distance self-calibration method in free-form surface interferometer
US7139080B2 (en) Interferometry systems involving a dynamic beam-steering assembly
US7057739B2 (en) Separated beam multiple degree of freedom interferometer
US7009711B2 (en) Retroreflector coating for an interferometer
JP2023171867A (en) Multiaxis laser interference length measurer
CN112697052B (en) Device and method for measuring thickness distribution of gas condensation film of slowing-down assembly
CN113483726B (en) Method and system for measuring three-dimensional angle motion error in miniaturized and high-precision manner
JPH0429003A (en) Laser length measuring instrument
JPH04351905A (en) Xy stage possessing laser length measuring device
JPH0233962B2 (en)
US20040150833A1 (en) Interferometric plural-dimensional displacement measuring system
CN116952142A (en) Laser interference displacement measuring device and method capable of compensating angle
JP2694045B2 (en) Positioning device using diffraction grating