JPH04289139A - Silver-oxide type electrical contact material - Google Patents

Silver-oxide type electrical contact material

Info

Publication number
JPH04289139A
JPH04289139A JP3077140A JP7714091A JPH04289139A JP H04289139 A JPH04289139 A JP H04289139A JP 3077140 A JP3077140 A JP 3077140A JP 7714091 A JP7714091 A JP 7714091A JP H04289139 A JPH04289139 A JP H04289139A
Authority
JP
Japan
Prior art keywords
oxide
oxides
silver
contact
electrical contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3077140A
Other languages
Japanese (ja)
Inventor
Yasuhiro Sagara
相良 康博
Sadao Sato
貞夫 佐藤
Yoshitaka Kajiyama
梶山 佳孝
Takashi Nara
奈良 喬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuriki Honten Co Ltd
Original Assignee
Tokuriki Honten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuriki Honten Co Ltd filed Critical Tokuriki Honten Co Ltd
Priority to JP3077140A priority Critical patent/JPH04289139A/en
Publication of JPH04289139A publication Critical patent/JPH04289139A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the amt. of Cd used in an electrical contact material made of an Ag-CdO alloy in consideration of pollution control. CONSTITUTION:In order to reduce the amt. of Cd used in an electrical contact material made of an Ag-CdO alloy, 0.1-6.2wt.% (expressed in terms of Sb) Sb oxide, 0.1-20.0wt.% (expressed in terms of Cd) Cd oxide, 0.05-4.3wt.% (expressed in terms of Sn, In and Zn) oxides of Sn, In and Zn and 0.01-2.0wt.% (expressed in terms of Te and Li) oxides of Te and Li are dispersed in Ag as a base.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、銀ー酸化物系の電気接
点材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to silver-oxide electrical contact materials.

【0002】0002

【従来の技術】従来から電気接点材料は種々のものが用
いられているが、特に銀ー酸化カドミウム系接点は電気
接点として要求される耐溶着性、耐消耗性、低接触抵抗
などの諸電気特性にすぐれているためにその需要も多く
、材料の改良も重ねられており、学術的研究も多く、い
わばこの系の材料、製造技術は極限にまで達していると
言える。しかし、この銀ー酸化カドミウム系の電気接点
材料は、既知のようにその製造上、溶解、熱間加工、高
圧酸化、分析および回収などカドミウムを系外に排出し
易い工程を多数含んでいるために当然その排出防止に努
めなければならず、その結果、特に生産設備の拡大に伴
って公害防止設備が必要となり、そのための多大な費用
、設備が要求され、これがエネルギー資源問題にまで発
展しようとしている。このため、銀ー酸化カドミウム系
の電気接点材料を製造する業者は、これに対して充分な
対策を講じているが、その対策が充分であるからという
だけではもはや公害に対する社会情勢に対応していけず
、このような接点だけでは膨大な設備投資により生産価
格に影響がでてくることになる。さらに、Ag中に酸化
カドミウムを分散させることは、接点表面の清浄作用、
溶着力の低減等の電気的特性を改善するものとして確か
に効果的ではあるが、このような効果を充分に果たして
きたのは特に交流回路においてであり、極性の変化しな
い直流回路において当該接点材料を使用したときは、比
較的耐溶着性に乏しく接点の開閉による接触抵抗の増加
にも著しい難点がある。その原因は当該接点のアノード
側からカソード側に向かってアノード成分が転移し、カ
ソードの接続部に接点母材と異なる一種の変質層を形成
するためと提唱されており、この欠点は酸化カドミウム
の解消できない宿命といえる。
[Prior Art] Various electrical contact materials have been used in the past, but silver-cadmium oxide contacts in particular have the characteristics required for electrical contacts, such as welding resistance, abrasion resistance, and low contact resistance. Due to its excellent properties, there is a lot of demand for it, and the material has been repeatedly improved and there is a lot of academic research, so it can be said that this type of material and manufacturing technology have reached their limit. However, as is known, this silver-cadmium oxide electrical contact material involves many steps in its manufacturing process, such as melting, hot processing, high-pressure oxidation, analysis, and recovery, which easily discharge cadmium from the system. Naturally, efforts must be made to prevent emissions, and as a result, pollution prevention equipment becomes necessary, especially as production equipment expands, which requires a large amount of cost and equipment, and this is likely to develop into an energy resource problem. There is. For this reason, manufacturers of silver-cadmium oxide electrical contact materials have taken sufficient measures to prevent this problem, but just because these measures are sufficient does not mean that they are responding to the social situation regarding pollution. Unfortunately, just such a point of contact would have an impact on production prices due to huge capital investment. Furthermore, dispersing cadmium oxide in Ag has a cleaning effect on the contact surface,
Although it is certainly effective in improving electrical characteristics such as reducing welding force, this effect has been particularly effective in AC circuits, and in DC circuits where the polarity does not change, the contact material When used, there is a significant problem in that the welding resistance is relatively poor and the contact resistance increases due to the opening and closing of the contacts. The cause of this is proposed to be that anode components migrate from the anode side to the cathode side of the contact, forming a type of altered layer at the cathode connection section that is different from the contact base material.This defect is due to the fact that cadmium oxide It can be said that it is a fate that cannot be resolved.

【0003】0003

【発明が解決しようとする課題】解決しようとする問題
点は、Cdによる公害問題を解消し、しかもAg−Cd
O系の電気接点材料に匹敵する新しい材質の開発が注目
され、例えば銀中にlaの酸化物を分散させるような技
術も発表されている。このような開発の論理的根拠はA
gに分散すべき酸化物の揮発し易さを尺度とし、一般に
は酸化カドミウムよりも蒸気圧の低い酸化物の方が電気
接点としての開閉時に生じるアークにより接点表面から
散逸した成分を、拡散により接点内部から補う割合が少
なくなるので、Agに対する酸化物の添加量が少なくて
も効果があるとされていることによる。
[Problems to be solved by the invention] The problem to be solved is to solve the problem of pollution caused by Cd, and to
The development of new materials comparable to O-based electrical contact materials is attracting attention, and for example, techniques have been announced that involve dispersing La oxide in silver. The rationale for such a development is A.
Generally speaking, oxides with a lower vapor pressure than cadmium oxide are more effective at dissipating components dissipated from the contact surface due to arcs generated when opening and closing electrical contacts than cadmium oxide. This is because it is said that even if the amount of oxide added to Ag is small, it is effective because the amount of supplementation from inside the contact is reduced.

【0004】0004

【課題を解決するための手段】そこで本発明者は、上記
の諸点に鑑み、カドミウムを含まない酸化物の接点特性
に寄与する役割について再検討を行い、既成概念を排し
て研究を重ね、その結果、電気接点の表面における清浄
化作用やアークに対する諸現象、例えば消弧作用などが
添加する酸化物の物性、特にその蒸気圧の温度特性に最
も関係が深いという結論に達した。このような考えを基
盤として約500〜1500℃の温度範囲で酸化カドミ
ウムの蒸気圧よりも高い酸化物に着目し、この中で毒性
の少ないSb酸化物をAg中に含有させることにより、
Ag−CdO系のものと同等以上の接点表面清浄化作用
を発揮させ得る事が確認できた。さらにこのような観点
からSb以外の金属酸化物もAg中に分散させることに
より、これらの相乗的効果が発揮され得ることについて
も各種の提案を発表している。本発明は、以上の研究過
程に基づいてなされたものであり、Ag中に上記Sb酸
化物だけでなく、約1500〜4000℃の温度範囲で
CdO より高い蒸気圧をもつSn酸化物と、約500
〜4000℃の温度範囲でCdO より低い蒸気圧をも
つIn、Znの酸化物をも分散させることにより、これ
ら金属酸化物の組み合わせにより、より一層CdO の
合成蒸気圧の挙動に近似させ、その相乗作用が優れた接
点特性を発揮し得るようにした。
[Means for Solving the Problems] Therefore, in view of the above points, the present inventors reexamined the role of cadmium-free oxides in contributing to contact characteristics, rejected preconceived notions, and conducted repeated research. As a result, they came to the conclusion that the cleaning effect on the surface of electrical contacts and various phenomena against arcs, such as arc-extinguishing effects, are most closely related to the physical properties of the added oxide, especially the temperature characteristics of its vapor pressure. Based on this idea, we focused on oxides with a higher vapor pressure than cadmium oxide in the temperature range of about 500 to 1500°C, and by incorporating less toxic Sb oxide into Ag,
It was confirmed that the contact surface cleaning effect was equivalent to or better than that of the Ag-CdO type. Furthermore, from this point of view, various proposals have been made regarding the possibility that synergistic effects can be exhibited by dispersing metal oxides other than Sb in Ag. The present invention was made based on the above research process, and contains not only the above-mentioned Sb oxide in Ag, but also Sn oxide, which has a vapor pressure higher than that of CdO in the temperature range of about 1500 to 4000°C, and about 500
By dispersing In and Zn oxides, which have lower vapor pressures than CdO in the temperature range of ~4000°C, the combination of these metal oxides can more closely approximate the behavior of the synthetic vapor pressure of CdO, and their synergistic effects This allows for excellent contact characteristics to be exhibited.

【0005】さらに重要な要素として、上記金属酸化物
の分散に加えて、Te、Liの酸化物も分散させること
により、CdO による従来接点の重大な欠陥を改善す
るものである。すなわち既知の如く機器の煩雑な運転に
伴い、その開閉を司るスイッチにあって、その接点表面
はアーク熱やジュール熱によって溶融する程の高温に熱
せられることになり、これが夜間等の運転休止時には室
温にまで降温することになるので、高温と室温の熱サイ
クルが繰り返されることになる。ところで、当該接点は
Cu、Cu−Zn 等による台材に、銀ろう等によって
同接点の非酸化面(Ag面)が固着されることになるが
、Agや上記台材、接点材(Ag−CdO)の熱膨張率
には差があり、このため上記の如き煩雑な熱サイクルに
よる膨張、収縮が繰り返されると、AgとAg−CdO
との境界にあって、接点がその表面を凹曲するように弓
状に湾曲変形するという現象が生じ、これにより接点が
台材から剥離し、剥離部分の接点が欠落消耗へと発展す
る。本発明は、上記のTeとLiを添加することによっ
て、上記Sb、Sn、In、ZnがAgマトリックス中
に層状酸化物となって出現しようとする際に、当該酸化
物を均一に分散させるようにし、上記のような熱サイク
ルによる接点の湾曲が生じようとするとき、当該熱応力
に対し、上記の均一に分散された酸化物が核となってア
ーク熱やジュール熱を受けた接点内部に微細なクラック
を発生せしめ、これが上記の如き加熱、冷却の熱サイク
ルによる膨張、収縮で生じる引張、圧縮応力(熱歪)を
各所で吸収させるようにし、これにより接点の上記剥離
消耗現象を防止しようとするものである。
A more important element is that in addition to dispersing the metal oxides mentioned above, oxides of Te and Li are also dispersed to improve the serious defects of the conventional contacts caused by CdO. In other words, as is known, with the complicated operation of equipment, the contact surfaces of the switches that control the opening and closing of the equipment are heated to a high enough temperature that they melt due to arc heat and Joule heat. Since the temperature will drop to room temperature, a thermal cycle between high temperature and room temperature will be repeated. Incidentally, the non-oxidized surface (Ag surface) of the contact is fixed to a base material made of Cu, Cu-Zn, etc. with silver solder or the like. There is a difference in the coefficient of thermal expansion of Ag and Ag-CdO.
A phenomenon occurs in which the surface of the contact deforms into an arched shape at the boundary between the two, causing the contact to peel off from the base material, and the contact in the peeled portion develops into loss and wear. In the present invention, by adding the above-mentioned Te and Li, when the above-mentioned Sb, Sn, In, and Zn are about to appear as layered oxides in the Ag matrix, the oxides are uniformly dispersed. When the contact is about to curve due to the thermal cycle described above, the uniformly dispersed oxide acts as a core in response to the thermal stress, and the inside of the contact receives arc heat or Joule heat. By generating minute cracks, these will absorb the tensile and compressive stress (thermal strain) caused by expansion and contraction due to the thermal cycle of heating and cooling in various places, thereby preventing the peeling and wear and tear phenomenon of the contacts. That is.

【0006】そこで、本発明は、Agを主成分とし、こ
れにSbが0.1〜6.2Wt% となるSbの酸化物
と、Cdが0.1〜20.0Wt% となるCdの酸化
物ならびにSn、In、Znが0.05〜4.2Wt%
 となるSn、In、Znの各酸化物と、Te、Liが
0.01〜2.0Wt% となるTe、Liの酸化物と
が分散されていることを特徴とし、既知のような焼結法
(粉末冶金法)によっても内部酸化法(溶製法)によっ
ても製造することができ、生産コスト上からは後者が適
当である。この内部酸化法の場合には、AgにSb、C
d、Sn、In、ZnそしてTeとLiの双方を固溶さ
せた銀合金を作り、これを酸化雰囲気中で高温に保持さ
せることにより、その表面から酸素を侵入させ、上記金
属を選択的に酸化してその酸化物である微細粒をAgマ
トリックス中に生成させながら、長時間当該酸化を続け
ることにより素材中に全面的に上記諸金属の酸化物を分
散させることになる。一方焼結法の場合にはAgの微粉
と上記金属の粉末を混合し、加圧成形後に焼結したもの
を酸化してから焼結したり、あるいはよく混合した上記
金属の酸化物粉を加圧焼成することによって当該酸化物
がAg中に分散した銀ー酸化物系の電気接点材料を製造
することができる。しかし上記何れの方法にせよ、Sb
の酸化物はその金属成分であるSbが0.1〜6.2W
t% でなくてはならない。ここで、AgへのSbの添
加量の上限を6.2Wt%とした理由は、Ag−Sb 
合金のα固溶体におけるSbの最大固溶限が300℃で
6.2Wt% であり、この添加量を超過するSbを添
加した場合には著しく冷間加工性を阻害することになり
、電気接点材料の量産が不能となるからである。また、
焼結法により製造した場合であっても、粒子間の結合力
が弱いためにアーク消耗量が多く、接点材料として望ま
しい特性が得られなくなる。一方、0.1Wt% 未満
の添加量であると、後述の如き添加効果が得られずその
目的が達成できない。
[0006] Therefore, the present invention consists of an oxide of Sb containing Ag as a main component and an oxide of Sb containing 0.1 to 6.2 Wt%, and an oxide of Cd containing 0.1 to 20.0 Wt% of Cd. 0.05 to 4.2 Wt% of Sn, In, and Zn
It is characterized by dispersing oxides of Sn, In, and Zn, and oxides of Te and Li with Te and Li content of 0.01 to 2.0 wt%. (powder metallurgy method) or internal oxidation method (melting method), and the latter is suitable from the viewpoint of production cost. In the case of this internal oxidation method, Ag has Sb, C
By making a silver alloy containing d, Sn, In, Zn, and both Te and Li as a solid solution and keeping it at high temperature in an oxidizing atmosphere, oxygen can enter from the surface and selectively remove the above metals. By continuing the oxidation for a long time while oxidizing and producing fine grains of the oxides in the Ag matrix, the oxides of the various metals mentioned above are dispersed throughout the material. On the other hand, in the case of the sintering method, fine powder of Ag and powder of the above metals are mixed, the sintered product is oxidized after pressure forming, and then sintered, or a well-mixed oxide powder of the above metals is processed. By pressure firing, a silver-oxide electrical contact material in which the oxide is dispersed in Ag can be manufactured. However, in any of the above methods, Sb
The oxide has a metal component Sb of 0.1 to 6.2W.
Must be t%. Here, the reason why the upper limit of the amount of Sb added to Ag was set at 6.2 Wt% is that Ag-Sb
The maximum solid solubility limit of Sb in the α solid solution of the alloy is 6.2 Wt% at 300°C, and if Sb is added in excess of this amount, cold workability will be significantly inhibited, making it difficult to use electrical contact materials. This is because mass production will become impossible. Also,
Even when manufactured by a sintering method, the bonding force between particles is weak, resulting in a large amount of arc consumption, making it impossible to obtain desirable properties as a contact material. On the other hand, if the amount added is less than 0.1 wt%, the effect of addition as described below cannot be obtained and the purpose cannot be achieved.

【0007】また、Cdの酸化物をCdが0.1〜20
.0Wt% と限定した理由は、0.1Wt%未満では
Ag−Cd 合金特有の鋳造性を維持することができず
、さらに接点開閉時に発生するアークによる清浄効果が
期待できず、効果発揮の最低限であり、20.0Wt%
 を上限とした理由は、それを超える添加量とした場合
、酸化物が凝縮して粗大化し、アークによる消耗飛散量
がむしろ増加するためである。さらに本発明ではSnの
酸化物を、Snが0.05〜4.2Wt% の範囲で分
散させる必要がある。このような上限、下限に限定した
理由は、Snを添加した合金につき、これを内部酸化す
ると当該酸化物は針状を呈するが、5.0Wt% を超
過した添加では当該酸化物が内部で凝集し、以後の内部
酸化処理が困難となり、酸化後も脆化が大きくなるため
である。また、0.01Wt% 未満の場合にはSnを
添加した効果があらわれないからである。 つぎに、Inは上記Snと同様Inを含んだ合金を内部
酸化すると、針状の酸化物となるが、Sbその他の元素
と組み合わせた合金にあってはInが5.0Wt%を超
過して添加されると、内部酸化時に表面に緻密な酸化被
膜を形成し、これが酸素の侵入を困難にすることになる
ため、上限を4.2Wt% としなければならず、また
、0.05Wt% 未満の添加では添加の効果があらわ
れないためである。つぎに、Znを添加すると、Zn酸
化物は1500℃以下でSb酸化物より低い蒸気圧を有
し、Inと共にSb酸化物の発揮を抑制する特性を有し
、これら酸化物のアーク等による揮発損耗を抑制する効
果がある。そしてZnの添加上限を4.2Wt% とし
た理由は、それを超過する添加量とした場合、内部酸化
処理時にあって、酸化物が凝集し、以後の内部酸化が困
難となるだけでなく、非常に脆くなってしまうからであ
り、また、0.05Wt% 未満の場合にはZnを添加
した効果があらわれないからである。このように、Sb
だけでなくCd、Sn、In、Znを複合添加すること
により、単体添加では得られない相乗効果が得られるこ
とになり、互いの揮発損耗に対する抑制効果を発揮する
ことができる。
[0007] Furthermore, Cd oxides with Cd of 0.1 to 20
.. The reason for limiting it to 0 Wt% is that if it is less than 0.1 Wt%, it will not be possible to maintain the castability characteristic of Ag-Cd alloys, and furthermore, the cleaning effect due to the arc generated when opening and closing the contacts cannot be expected. and 20.0 Wt%
The reason why this is set as the upper limit is that if the amount added exceeds this amount, the oxide will condense and become coarse, and the amount of consumption and scattering caused by the arc will increase. Furthermore, in the present invention, it is necessary to disperse the Sn oxide in a range of 0.05 to 4.2 wt% Sn. The reason for setting these upper and lower limits is that when Sn is added to an alloy, when it is internally oxidized, the oxide takes on a acicular shape, but when it is added in excess of 5.0 Wt%, the oxide aggregates internally. However, this is because subsequent internal oxidation treatment becomes difficult and embrittlement increases even after oxidation. Furthermore, if the content is less than 0.01 Wt%, the effect of adding Sn will not be apparent. Next, as with Sn above, when an alloy containing In is internally oxidized, In becomes an acicular oxide, but in alloys that are combined with Sb and other elements, In exceeds 5.0 Wt%. When added, a dense oxide film is formed on the surface during internal oxidation, making it difficult for oxygen to penetrate, so the upper limit must be 4.2 Wt% and less than 0.05 Wt%. This is because the effect of addition does not appear when . Next, when Zn is added, Zn oxide has a lower vapor pressure than Sb oxide at temperatures below 1500°C, and together with In, it has the property of suppressing the performance of Sb oxide, and the volatilization of these oxides due to arcing etc. It has the effect of suppressing wear and tear. The reason why the upper limit of Zn addition was set at 4.2 Wt% is that if the amount added exceeds this, the oxide will aggregate during internal oxidation treatment, which will not only make subsequent internal oxidation difficult. This is because the Zn becomes extremely brittle, and if the Zn content is less than 0.05 Wt%, the effect of adding Zn will not be apparent. In this way, Sb
In addition, by adding Cd, Sn, In, and Zn in combination, a synergistic effect that cannot be obtained by adding them alone can be obtained, and each can exert an effect of suppressing volatilization loss.

【0008】さらに本発明では、TeとLiの双方を添
加するが、この添加による効果は上記の通り熱サイクル
による熱歪をこれらの酸化物により形成された微細クラ
ックにより吸収して接点の剥離、異常損耗を解消し得る
ことであり、その上限値を5.0Wt% とした理由は
、微細クラックが過多となることにより接点特性を劣化
させることがないようにするためであり、下限の0.0
1Wt% 未満の場合には添加した効果があらわれない
からである。 また、TeとLiの低融点金属を上記のように添加する
ことにより本願の多元系合金は、その鋳造性を高めるこ
とになる。さらに上記発明内容に加えて、金属成分が0
.01〜1.0Wt% となるNi、Feの一方または
その両方の酸化物を、主成分たるAg中に分散させるこ
とを特徴とする。ここで、NiとFeを添加する理由は
、結晶粒を微細化し、酸化物粒子を整えることにあり、
この際1.0Wt% を上限としたのはこれを超えて添
加したとしても溶融法では合金化がきわめて困難となる
からであり、また、下限の0.01Wt% は結晶粒微
細化の効果を発揮し得る最低限を意味している。
Furthermore, in the present invention, both Te and Li are added, and as mentioned above, the effect of this addition is that the thermal strain caused by thermal cycles is absorbed by the fine cracks formed by these oxides, resulting in contact separation and The reason why the upper limit was set at 5.0 Wt% was to prevent the contact characteristics from deteriorating due to excessive microcracks, and the lower limit of 0.0 Wt% was set. 0
This is because if the amount is less than 1 wt%, the effect of the addition will not appear. Further, by adding low melting point metals such as Te and Li as described above, the castability of the multi-component alloy of the present application is improved. Furthermore, in addition to the above invention contents, the metal component is 0.
.. It is characterized by dispersing oxides of one or both of Ni and Fe in an amount of 01 to 1.0 wt% in Ag, which is the main component. Here, the reason for adding Ni and Fe is to refine the crystal grains and arrange the oxide particles.
In this case, the upper limit of 1.0 Wt% was set because even if added in excess of this, alloying would be extremely difficult by the melting method, and the lower limit of 0.01 Wt% would reduce the effect of grain refinement. It means the minimum that can be achieved.

【0009】[0009]

【実施例】以下に本発明の実施例を説明する。表1に実
施例を示す。99.5Wt% 以上の純度を有する金属
材料を原料とし、これを非酸化性雰囲気中で溶解するこ
とにより、実施例(1)〜(10)のような合金組成の
鋳塊を製造し、この鋳塊の表層を面削後、その一面に薄
い純銀板を熱圧着して、ろう付け用の銀層を形成する。 つぎに、当該素材を冷間圧延して厚さ2mmの板にした
後、プレス機により直径5mmの円板状に打ち抜き、こ
れを内部酸化炉に入れ、酸素を炉内に導入しながら70
0℃で180時間加熱し、Sb、Cd、Sn、In、Z
n、Te、Liを選択的に酸化して本発明合金を製造し
た。
[Examples] Examples of the present invention will be described below. Examples are shown in Table 1. A metal material having a purity of 99.5 Wt% or more is used as a raw material and is melted in a non-oxidizing atmosphere to produce an ingot having an alloy composition as shown in Examples (1) to (10). After cutting the surface of the ingot, a thin pure silver plate is thermocompression bonded to one surface to form a silver layer for brazing. Next, the material is cold-rolled into a plate with a thickness of 2 mm, then punched into a disk shape with a diameter of 5 mm using a press machine, and placed in an internal oxidation furnace for 70 minutes while introducing oxygen into the furnace.
Heating at 0°C for 180 hours, Sb, Cd, Sn, In, Z
The alloy of the present invention was produced by selectively oxidizing n, Te, and Li.

【0010】0010

【表1】[Table 1]

【0011】そして上記実施例(1)〜(10)につき
接点試験用として当該合金の裏側に形成された銀層と接
点保持用の台座とを銀ろう付けして試料とし、接点試験
にはASTM接点試験機(AC100V,20A)、ア
ーク消耗試験機(AC200V,10A)を用い、従来
多用されている代表的な電気接点材料と比較しながら表
2にあげた各項毎に試験条件を選定し、各接点材とも同
一条件下で試験を行った。
[0011] For the above-mentioned Examples (1) to (10), the silver layer formed on the back side of the alloy and the pedestal for holding the contact were soldered with silver to prepare a sample for the contact test. Using a contact tester (AC100V, 20A) and an arc consumption tester (AC200V, 10A), we selected test conditions for each item listed in Table 2 while comparing with typical electrical contact materials that are commonly used in the past. , each contact material was tested under the same conditions.

【0012】0012

【表2】[Table 2]

【0013】[0013]

【発明の効果】以上詳細に説明した本発明によると、表
2に示す如く、Sb、Cd、Sn、In、ZnさらにT
e、Liの酸化物を所定範囲内の添加量だけAg中に分
散させることにより、Ag−CdO系合金と略同程度の
特性を持ち、その消耗量ではこれをかなり低減すること
ができ、しかも溶着回数を大幅に低下させることが可能
となる。また、上記した熱サイクルによる剥離消耗の点
でも改善効果が得られ、公害対策としてCdの添加量を
削減することが可能となり、さらにNiとFeの酸化物
を添加することにより、酸化物粒子を整え、溶着回数に
ついての改善を促進させることが可能となった。
According to the present invention described in detail above, as shown in Table 2, Sb, Cd, Sn, In, Zn, and T
By dispersing Li oxide in Ag in an amount within a predetermined range, it has properties that are approximately the same as those of Ag-CdO alloys, and the amount of consumption can be significantly reduced. It becomes possible to significantly reduce the number of times of welding. In addition, an improvement effect was obtained in terms of exfoliation wear and tear caused by the above-mentioned thermal cycle, and it became possible to reduce the amount of Cd added as a pollution control measure.Furthermore, by adding Ni and Fe oxides, oxide particles could be reduced. This made it possible to promote improvements in the number of welds.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  Agを主成分とし、これに金属成分が
0.1〜6.2Wt% となるSbの酸化物と、金属成
分が0.1〜20.0Wt% となるCdの酸化物なら
びに金属成分が0.05〜4.2Wt% となるSn、
In、Znの各酸化物と、金属成分が0.01〜2.0
Wt% となるTe、Liの酸化物とが分散されている
ことを特徴とする銀ー酸化物系の電気接点材料。
Claim 1: An oxide of Sb containing Ag as a main component, with a metal content of 0.1 to 6.2 Wt%, an oxide of Cd containing 0.1 to 20.0 Wt% of a metal content, and Sn with a metal component of 0.05 to 4.2 Wt%,
Each oxide of In and Zn and the metal component are 0.01 to 2.0
A silver-oxide electrical contact material characterized by dispersing Te and Li oxides in an amount of Wt%.
【請求項2】  Agを主成分とし、これに金属成分が
0.1〜6.2Wt% となるSbの酸化物と、金属成
分が0.1〜20.0Wt% となるCdの酸化物なら
びに金属成分が0.05〜4.2Wt% となるSn、
In、Znの各酸化物と、金属成分が0.01〜2.0
Wt% となるTe、Liの酸化物と、金属成分が0.
01〜1.0Wt% となるNi、Feの一方または双
方の酸化物とが分散されていることを特徴とする銀ー酸
化物系の電気接点材料。
[Claim 2] An oxide of Sb containing Ag as a main component and having a metal content of 0.1 to 6.2 Wt%, an oxide of Cd having a metal content of 0.1 to 20.0 Wt%, and Sn with a metal component of 0.05 to 4.2 Wt%,
Each oxide of In and Zn and the metal component are 0.01 to 2.0
Wt% of Te and Li oxides and metal components of 0.
A silver-oxide electrical contact material characterized in that 01 to 1.0 Wt% of oxides of one or both of Ni and Fe are dispersed therein.
JP3077140A 1991-03-18 1991-03-18 Silver-oxide type electrical contact material Pending JPH04289139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3077140A JPH04289139A (en) 1991-03-18 1991-03-18 Silver-oxide type electrical contact material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3077140A JPH04289139A (en) 1991-03-18 1991-03-18 Silver-oxide type electrical contact material

Publications (1)

Publication Number Publication Date
JPH04289139A true JPH04289139A (en) 1992-10-14

Family

ID=13625501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3077140A Pending JPH04289139A (en) 1991-03-18 1991-03-18 Silver-oxide type electrical contact material

Country Status (1)

Country Link
JP (1) JPH04289139A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102931001A (en) * 2012-11-07 2013-02-13 福达合金材料股份有限公司 Electric contact material of silver nickel oxide iron oxide and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102931001A (en) * 2012-11-07 2013-02-13 福达合金材料股份有限公司 Electric contact material of silver nickel oxide iron oxide and preparation method thereof

Similar Documents

Publication Publication Date Title
KR101648645B1 (en) Electrode material for thermal fuses, manufacturing process therefor and thermal fuses using said electrode material
JPS647144B2 (en)
CN109500391A (en) A kind of preparation method of high ductility silver zinc oxide contact material
JPH0135914B2 (en)
US4115325A (en) Electrical contact material
CN109593981A (en) A kind of preparation method for the sliver oxidized tin contactor materials improving ingot blank agglutinating property
JPH04289139A (en) Silver-oxide type electrical contact material
JPH04289140A (en) Silver-oxide type electrical contact material
JPH04289141A (en) Silver-oxide type electrical contact material
JP6530267B2 (en) Electrode material for thermal fuse
JPH04235234A (en) Electrical contact material of silver-oxide series
JPH04235235A (en) Electrical contact material of silver-oxide series
JPS5925018B2 (en) Silver monoxide-based electrical contact materials
JPH04235236A (en) Electrical contact material of silver-oxide series
JPS5925017B2 (en) Silver monoxide-based electrical contact materials
JPH04235237A (en) Electrical contact material of silver-oxide series
JPH04235238A (en) Electrical contact material of silver-oxide series
JPH04235239A (en) Electrical contact material of silver-oxide series
JPH0120216B2 (en)
JPH0480100B2 (en)
CN109500392A (en) A kind of preparation method for the silver zinc oxide contact material improving ingot blank agglutinating property
JPS58144446A (en) Silver-oxide for contact material
CN109609794A (en) A kind of preparation method of high ductility sliver oxidized tin contactor materials
JPS6367536B2 (en)
JPH10177821A (en) Electric contact and its manufacture