JPH04288991A - Welding method - Google Patents

Welding method

Info

Publication number
JPH04288991A
JPH04288991A JP3713391A JP3713391A JPH04288991A JP H04288991 A JPH04288991 A JP H04288991A JP 3713391 A JP3713391 A JP 3713391A JP 3713391 A JP3713391 A JP 3713391A JP H04288991 A JPH04288991 A JP H04288991A
Authority
JP
Japan
Prior art keywords
welding
cooling
steel base
base material
welding method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3713391A
Other languages
Japanese (ja)
Inventor
Hisahiro Onoe
尾上 久浩
Masami Matsumoto
正巳 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomoe Corp
Original Assignee
Tomoe Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoe Corp filed Critical Tomoe Corp
Priority to JP3713391A priority Critical patent/JPH04288991A/en
Publication of JPH04288991A publication Critical patent/JPH04288991A/en
Pending legal-status Critical Current

Links

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

PURPOSE:To execute the welding work with high efficiency, and to prevent the deterioration of toughness of a welding zone and a welding metal and the generation of a microcracking. CONSTITUTION:At the time of welding a steel base material, the cooling time DELTAT800-500 is shortened by injecting a low temperature refrigerant of liquefied gas of liquid nitrogen, liquid argon, etc., to a high temperature bead part in the vicinity of a molten pool and cooling forcibly and quickly the bean part by following a movement of a welding position.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は鉄骨、橋梁、造船その
他の鋼構造物の溶接方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for welding steel frames, bridges, shipbuilding and other steel structures.

【0002】0002

【従来の技術とこの発明が解決しようとする課題】アー
ク溶接の溶接作業を高能率化するためには、溶融速度(
単位時間当りの溶融量)を大とする必要がある。そのた
めには溶接線単位長さ当り、インプットされる溶接アー
ク熱エネルギーを大としなければならない。このエネル
ギーは
[Prior art and problems to be solved by this invention] In order to improve the efficiency of arc welding work, it is necessary to
It is necessary to increase the amount of melting per unit time. To achieve this, it is necessary to increase the input welding arc thermal energy per unit length of welding line. This energy

【0003】0003

【数1】[Math 1]

【0004】で示される。It is shown as 0004.

【0005】ところが、一般にこの入熱量が大きくなる
と、鋼の溶接金属および溶接熱影響部のじん性が低下す
る傾向がある。
[0005] Generally, however, as this heat input increases, the toughness of the weld metal and weld heat affected zone of steel tends to decrease.

【0006】すなわち、図7の溶接部溶接熱サイクル図
に示すごとく、800℃から500℃に冷却される過程
の冷却時間ΔT800−500 がじん性を左右するこ
とが多くの研究で明らかになっている。そして図7およ
び図8の入熱量と冷却時間の相関グラフのごとく、入熱
量が大となるとΔT800−500 も大きくなる。ま
た、図9の冷却時間とじん性との相関グラフに示すごと
く高張力鋼では大入熱によるじん性劣化の傾向が著しい
。そこで、例えばHT−60鋼では50Kjoule/
cm、HT−80鋼では45Kjoule/cm以下の
入熱量制限が工作標準とされている。つまり、それだけ
溶接作業の能率化が押えられている。
[0006] In other words, as shown in the welding thermal cycle diagram of the welded part in Figure 7, many studies have revealed that the cooling time ΔT800-500 during the process of cooling from 800°C to 500°C affects the toughness. There is. As shown in the correlation graphs of heat input and cooling time in FIGS. 7 and 8, as the heat input increases, ΔT800-500 also increases. Furthermore, as shown in the correlation graph between cooling time and toughness in FIG. 9, high-strength steel has a remarkable tendency for toughness to deteriorate due to large heat input. Therefore, for example, HT-60 steel requires 50Kjoule/
cm, and for HT-80 steel, a heat input limit of 45Kjoule/cm or less is considered the manufacturing standard. In other words, the efficiency of welding work has been reduced accordingly.

【0007】また、ΔT800−500 の冷却時間が
長い溶接は溶接金属の結晶粒界に微細な溶接割れ(拡散
性水素による割れ)を誘発し易くなるので、これを避け
るためにも冷却時間の短縮が望まれていた。
[0007] In addition, welding with a long cooling time of ΔT800-500 tends to induce fine weld cracks (cracks caused by diffusible hydrogen) at the grain boundaries of the weld metal, so to avoid this, it is necessary to shorten the cooling time. was desired.

【0008】本願出願人は上記冷時間の短縮を図る手段
として、溶接母材に溶接部に沿い冷却箱を添設し、この
冷却箱に冷却水を供給して溶接母材を直接強制冷却する
方法を、さきに提案した(特願平2−156934号)
[0008] As a means of shortening the cooling time, the applicant of the present application attached a cooling box to the weld base material along the welded part, and supplied cooling water to this cooling box to directly forcedly cool the weld base material. We have previously proposed a method (Patent Application No. 156934/1999)
.

【0009】この発明は前記の溶接母材を冷却する手段
に比べ、冷却効果が直接的であって、一層冷却時間を短
縮し、溶接作業の高能率化を図るとともに、溶接部およ
び溶接金属のじん性の劣化や、ミクロ割れ発生の防止を
図り得る溶接方法を提案するにある。
The present invention has a more direct cooling effect than the above-mentioned means for cooling the weld base metal, further shortens the cooling time, improves the efficiency of welding work, and improves the welding area and weld metal. The purpose of the present invention is to propose a welding method that can prevent the deterioration of toughness and the occurrence of microcracks.

【0010】0010

【課題を解決するための手段】(1) の溶接方法は、
鋼母材を溶接するに際し、溶接位置の移動に追従して移
動し、溶融池近傍の高温ビード部に低温冷媒剤を噴射し
強制冷却することを特徴とする。
[Means for solving the problem] (1) The welding method is as follows:
When welding steel base metals, it moves following the movement of the welding position and injects a low-temperature refrigerant into the high-temperature bead near the molten pool to forcibly cool it.

【0011】他の一つの発明になる(2) の溶接方法
は高温ビード部に低温冷却剤を噴射し強制冷却するとと
もに、鋼母材に冷却箱を溶接部に沿い添設し、この冷却
箱に冷却水を供給して鋼母材を直接強制冷却することを
特徴とする。
[0011] In the welding method (2), which is another invention, a low-temperature coolant is injected into the high-temperature bead part to forcibly cool it, and a cooling box is attached to the steel base material along the welded part. The steel base material is directly forcedly cooled by supplying cooling water to the steel base material.

【0012】0012

【作用】この溶接方法は、溶融池近傍の溶着直後の高温
ビード部に反応しない極低温の液化ガス、例えば液体窒
素、液体ヘリウム、液体空気あるいは液体炭酸ガス等の
低温冷媒剤を噴射し、その気化熱および低温ガスの比熱
に見合う吸熱により、ビード部を短時間に急速強制冷却
する。
[Operation] This welding method involves injecting a low-temperature refrigerant such as non-reactive liquefied gas such as liquid nitrogen, liquid helium, liquid air, or liquid carbon dioxide into the high-temperature bead immediately after welding near the molten pool. The bead section is rapidly forcedly cooled in a short period of time by heat absorption commensurate with the heat of vaporization and the specific heat of the low-temperature gas.

【0013】試験結果の一例を示せば、入熱量42,0
00Joule/cm、(溶接電流700A、アーク電
圧35V、溶接速度35cm/min)の場合、ΔT8
00−500 =53秒(空冷)であったが、液体窒素
を高温ビード部に噴射することにより、22秒に短縮す
ることができた。なお、この結果は後述の実施例におい
て得られたものである。
[0013] To give an example of the test results, the heat input is 42.0
00 Joule/cm, (welding current 700A, arc voltage 35V, welding speed 35cm/min), ΔT8
00-500 = 53 seconds (air cooling), but by injecting liquid nitrogen into the high temperature bead part, it was possible to shorten it to 22 seconds. Note that this result was obtained in an example described later.

【0014】(2) の発明になる溶接方法は、ビード
部の急速強制冷却と同時に、鋼母材を冷却水で直接強制
冷却するので、一層冷却時間の短縮を図る事ができる。
In the welding method according to the invention (2), the steel base metal is directly forcedly cooled with cooling water at the same time as the bead portion is rapidly forcedly cooled, so that the cooling time can be further shortened.

【0015】[0015]

【実施例】図1、図2はこの溶接方法によりシールドガ
スアーク溶接で鋼母材1を溶接する実施例である。電極
ワイヤ2はシールドガスを噴射するガスノズル3で囲ま
れ、矢印方向(図面左方向)に移動し溶接する。この溶
接装置には、溶接方向反対側に衝立板4、液化窒素ガス
噴射管5、トンネル覆い6が順に取付けてある。この衝
立板4、噴射管5は溶接反対方向にやや傾き垂下し、そ
の先端は鋼母材1上のビード部7高さ近くに達している
。トンネル覆い6は長さ50−100mm程度で、断面
略円弧形をなし、両端が開口し両側縁は鋼母材1表面に
近接し、ビード部7上部を覆い、一端は噴射管5先端に
近接し、噴射方向に沿う整流板8が取付けてある。
Embodiment FIGS. 1 and 2 show an embodiment in which a steel base material 1 is welded by shielded gas arc welding using this welding method. The electrode wire 2 is surrounded by a gas nozzle 3 that injects shielding gas, and moves in the direction of the arrow (leftward in the drawing) to perform welding. This welding apparatus has a screen plate 4, a liquefied nitrogen gas injection pipe 5, and a tunnel cover 6 installed in this order on the opposite side in the welding direction. The screen plate 4 and the injection pipe 5 hang down with a slight inclination in the direction opposite to welding, and their tips reach nearly the height of the bead portion 7 on the steel base material 1. The tunnel cover 6 has a length of about 50-100 mm, has a substantially arcuate cross section, is open at both ends, has both edges close to the surface of the steel base material 1, covers the upper part of the bead portion 7, and has one end at the tip of the injection pipe 5. A rectifying plate 8 is attached adjacent to the spray plate and extending along the injection direction.

【0016】この溶接方法で溶接するにはガスノズル3
からシールドガスを噴出させつつ、鋼母材1と電極ワイ
ヤ2間にアーク9を発生させて移動して溶接する。同時
に噴射管5先端から液化窒素ガスを噴射する。図1で1
0は電極ワイヤ3直下の溶融池、およびその周縁の溶融
金属であり、噴射管5先端は溶融池10に近接する高温
ビード部7’上に位置する。溶接反対方向に傾いた噴射
管5から、高温ビード部7’上に噴射された液化窒素ガ
ス(LN2 )はビード部7から熱を奪い気化し、ビー
ド部を冷却し、トンネル覆い6内を溶接反対方向に流れ
、更にビード部7に接触、吸熱昇温してビード部7を強
制冷却した後、トンネル覆い6の開口端から放出される
[0016] To weld with this welding method, the gas nozzle 3
While blowing out shielding gas, an arc 9 is generated between the steel base material 1 and the electrode wire 2, and the welding is performed by moving. At the same time, liquefied nitrogen gas is injected from the tip of the injection pipe 5. 1 in Figure 1
0 is the molten pool directly below the electrode wire 3 and the molten metal at its periphery, and the tip of the injection pipe 5 is located on the high-temperature bead portion 7' close to the molten pool 10. Liquefied nitrogen gas (LN2) is injected onto the high-temperature bead portion 7' from the injection pipe 5 tilted in the opposite direction to welding, absorbs heat from the bead portion 7, vaporizes it, cools the bead portion, and welds the inside of the tunnel cover 6. It flows in the opposite direction, further comes into contact with the bead portion 7, absorbs heat and heats up, forcibly cools the bead portion 7, and then is discharged from the open end of the tunnel cover 6.

【0017】図3は前記実施例の溶接方法による溶接部
の冷却時間ΔT800−500 を示すものであり、従
来の空冷による冷却時間ΔT800−500 に比べ著
しく、短縮することができた。なお、この冷却時間は図
3(b) のごとく、鋼母材1のビード部7直下に穿孔
した孔に熱電対11を挿入し測定した温度−時間を基礎
とした。
FIG. 3 shows the cooling time ΔT800-500 of the welded part by the welding method of the above embodiment, which was significantly shorter than the cooling time ΔT800-500 by conventional air cooling. Note that this cooling time was based on the temperature-time measured by inserting a thermocouple 11 into a hole drilled directly below the bead portion 7 of the steel base material 1, as shown in FIG. 3(b).

【0018】また、図1において、電極ワイヤ2と噴射
管5先端の距離をSとした場合、Sと冷却時間減少効果
との相関は図4の通りであり、溶融池に近接する高温ビ
ード部に冷媒剤を噴射すると効果が大である。通常S=
20〜40mm程度であり、これ以上とすると冷却効果
は低減する。
Furthermore, in FIG. 1, when the distance between the electrode wire 2 and the tip of the injection tube 5 is S, the correlation between S and the cooling time reduction effect is as shown in FIG. It is highly effective to inject refrigerant into the area. Usually S=
It is about 20 to 40 mm, and if it is longer than this, the cooling effect will be reduced.

【0019】冷媒剤は溶融金属内に混入するとブローホ
ールなどの溶接欠陥ができるので、これを防止する工夫
が必要である。実施例の衝立板4は混入防止に効果があ
る。
[0019] If the refrigerant mixes into the molten metal, welding defects such as blowholes will occur, so it is necessary to take measures to prevent this. The screen plate 4 of the embodiment is effective in preventing contamination.

【0020】また、図示しないが、溶接方向を昇り勾配
となるように鋼母材を傾け配置して溶接すると、低温の
冷媒剤液、ガスはトンネル覆い内を下方向に流れ、溶融
池と混合することがなく、冷却の効率を高める上で効果
がある。
Although not shown, when welding is performed by tilting the steel base material so that the welding direction is upwardly sloped, the low-temperature refrigerant liquid and gas flow downward within the tunnel cover and mix with the molten pool. This is effective in increasing cooling efficiency.

【0021】図5はかど溶接する鋼母材1,1の一方の
側面にL型開先の溶接継手に沿い一面が開口した冷却箱
12を添設し、この冷却箱12内に給水管13,排水管
14を連結して冷却水を供給し、冷却水を直接鋼母材1
に接触させて強制冷却する装置である。図6はの冷却装
置で鋼母材を強制冷却するとともに、シールド・ガスア
ーク溶接した高温ビード部に噴射管5から液化窒素ガス
を噴射して急速強制冷却する(2) の溶接方法の実施
例を示す。
FIG. 5 A cooling box 12 with one side open along the welded joint with an L-shaped groove is attached to one side of the steel base materials 1, 1 to be edge welded, and a water supply pipe 13 is installed in the cooling box 12. , the drain pipe 14 is connected to supply cooling water, and the cooling water is directly supplied to the steel base material 1.
This is a device that forcibly cools the air by bringing it into contact with the air. Figure 6 shows an example of the welding method (2) in which the steel base metal is forcibly cooled using the cooling device shown in Fig. 6, and liquefied nitrogen gas is injected from the injection pipe 5 to the high-temperature bead part that has been welded by shield gas arc welding to rapidly cool it. show.

【0022】[0022]

【発明の効果】(1) の溶接方法は、溶接直後の高温
ビード部を急冷し、冷却時間ΔT800−500 を著
しく短縮することができ、溶接作業の能率向上および溶
接部のじん性劣化やミクロ割れを防止する効果を奏する
。(2) の溶接方法は高温ビード部の急冷と同時に、
鋼母材も強制冷却するので一層冷却時間の短縮を図り、
効果を高めることができる。
Effects of the Invention: The welding method (1) rapidly cools the high-temperature bead immediately after welding and can significantly shorten the cooling time ΔT800-500, improving welding efficiency and reducing the deterioration of the welded part's toughness and microscopic welding. It has the effect of preventing cracking. The welding method (2) involves rapid cooling of the high-temperature bead and, at the same time,
The steel base material is also forcedly cooled, further reducing cooling time.
The effect can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】溶接方法の実施例の断面で示す説明図である。FIG. 1 is an explanatory diagram showing a cross section of an embodiment of a welding method.

【図2】図1のA−A断面図である。FIG. 2 is a sectional view taken along line AA in FIG. 1;

【図3】(a) は実施例の溶接部の冷却曲線である。 (b) は溶接部温度の測定手段を示す説明図である。FIG. 3(a) is a cooling curve of a welded part in an example. (b) is an explanatory diagram showing means for measuring the temperature of the welded part.

【図4】電極ワイヤと噴射管先端との距離Sと冷却時間
の減少効果との相関グラフである。
FIG. 4 is a correlation graph between the distance S between the electrode wire and the tip of the injection tube and the cooling time reduction effect.

【図5】鋼母材の冷却装置の一部断面で示す斜視図であ
る。
FIG. 5 is a partially sectional perspective view of a cooling device for a steel base material.

【図6】(2) の溶接方法の実施例の説明図である。FIG. 6 is an explanatory diagram of an embodiment of the welding method (2).

【図7】入熱量を異にする溶接部の冷却曲線である。FIG. 7 shows cooling curves of welds with different amounts of heat input.

【図8】入熱量と冷却時間の相関グラフである。FIG. 8 is a correlation graph between heat input amount and cooling time.

【図9】冷却時間と溶接部じん性との相関グラフである
FIG. 9 is a correlation graph between cooling time and weld zone toughness.

【符号の説明】[Explanation of symbols]

1…鋼母材、2…電極ワイヤ、3…ガスノズル、4…衝
立板、5…液化窒素ガス噴射管、6…トンネル覆い、7
…ビード部、8…整流板、9…アーク、10…溶融池、
11…熱電対、12…冷却箱、13…給水管、14…排
水管。
DESCRIPTION OF SYMBOLS 1... Steel base material, 2... Electrode wire, 3... Gas nozzle, 4... Screen plate, 5... Liquefied nitrogen gas injection pipe, 6... Tunnel cover, 7
...bead part, 8...straightening plate, 9...arc, 10...molten pool,
11... Thermocouple, 12... Cooling box, 13... Water supply pipe, 14... Drain pipe.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  鋼母材を溶接するに際し、溶接位置の
移動に追従して移動し、溶融池近傍の高温ビード部に低
温冷媒剤を噴射し強制冷却することを特徴とする溶接方
法。
1. A welding method characterized in that, when welding steel base metals, the welding position is moved to follow the movement of the welding position, and a low-temperature refrigerant is injected into the high-temperature bead near the molten pool for forced cooling.
【請求項2】  鋼母材に冷却箱を溶接部に沿い添設し
、この冷却箱に冷却水を供給して鋼母材を直接強制冷却
する請求項1記載の溶接方法。
2. The welding method according to claim 1, wherein a cooling box is attached to the steel base material along the welded part, and cooling water is supplied to the cooling box to directly forcibly cool the steel base material.
JP3713391A 1991-03-04 1991-03-04 Welding method Pending JPH04288991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3713391A JPH04288991A (en) 1991-03-04 1991-03-04 Welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3713391A JPH04288991A (en) 1991-03-04 1991-03-04 Welding method

Publications (1)

Publication Number Publication Date
JPH04288991A true JPH04288991A (en) 1992-10-14

Family

ID=12489118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3713391A Pending JPH04288991A (en) 1991-03-04 1991-03-04 Welding method

Country Status (1)

Country Link
JP (1) JPH04288991A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1151820A2 (en) * 2000-05-03 2001-11-07 The BOC Group plc Improvements in thermal welding
JP2009034721A (en) * 2007-08-03 2009-02-19 Nippon Steel Corp Manufacturing method of welded joint excellent in fatigue resistance and its manufacturing apparatus
US20170320173A1 (en) * 2016-04-18 2017-11-09 Liquidmetal Coatings, Llc Apparatus and method for cooling a hard metal applied to the surface of a metal alloy substrate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1151820A2 (en) * 2000-05-03 2001-11-07 The BOC Group plc Improvements in thermal welding
EP1151820A3 (en) * 2000-05-03 2003-07-02 The BOC Group plc Improvements in thermal welding
JP2009034721A (en) * 2007-08-03 2009-02-19 Nippon Steel Corp Manufacturing method of welded joint excellent in fatigue resistance and its manufacturing apparatus
US20170320173A1 (en) * 2016-04-18 2017-11-09 Liquidmetal Coatings, Llc Apparatus and method for cooling a hard metal applied to the surface of a metal alloy substrate
US10589389B2 (en) * 2016-04-18 2020-03-17 Liquidmetal Coatings, Llc Apparatus and method for cooling a hard metal applied to the surface of a metal alloy substrate

Similar Documents

Publication Publication Date Title
CN101367157B (en) High-strength or ultra-high strong steel laser-electrical arc composite heat source welding method
Zhang et al. Behavior of the plasma characteristic and droplet transfer in CO 2 laser–GMAW-P hybrid welding
Li et al. Wetting behavior of melt and its effect on lack of fusion in arc oscillating NG-GTAW
WO2024066322A1 (en) Arc welding device having adjustable welding gun angle position, and welding method
Gao et al. Effects of process parameters on weld bead defects in oscillating laser-GMA hybrid welding of lap joints
US2583665A (en) Gas blanketed arc welding
US3293400A (en) Submerged arc welding process
JPH04288991A (en) Welding method
US5750955A (en) High efficiency, variable position plasma welding process
CN108356401A (en) Gas auxiliary resistance spot welding device and its cool and heat method
US2900487A (en) Process and device to retain in position the liquid metal in automatic visible arc welding in 3 o'clock butt joints
JP2003285193A (en) Welding device and welding method
US3660629A (en) Method and device for welding high tensile strength steel of higher strength
CN100460120C (en) Technique of welding connection ring for empty inner-cooled turbogenerator
KR200384956Y1 (en) Water cooled copper backing for 2 electrod eledtro gas welding
JP3829674B2 (en) Welding method
JPS60121069A (en) Method and device for welding
US2788429A (en) Process and gas for inert gas shielded arc welding
JP2002336965A (en) Arc welding method and device
JP3256089B2 (en) Non-consumable nozzle type electroslag welding method
KR20020016011A (en) Apparatus and method for arc brazing for pipe and sheet
CN209520503U (en) A kind of sample welding tooling of the nil-ductility temperature drop weight test of ferritic steel
JPH0866774A (en) Plasma key hole welding method
KR20110084607A (en) Ceramic backing material structure of easy slag dischaging for electro gas welding
KR200384955Y1 (en) Movement improved copper backing for platting 2-electrodes EGW