JPH0428889B2 - - Google Patents

Info

Publication number
JPH0428889B2
JPH0428889B2 JP57008800A JP880082A JPH0428889B2 JP H0428889 B2 JPH0428889 B2 JP H0428889B2 JP 57008800 A JP57008800 A JP 57008800A JP 880082 A JP880082 A JP 880082A JP H0428889 B2 JPH0428889 B2 JP H0428889B2
Authority
JP
Japan
Prior art keywords
valve
intake
engine
speed
intake passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57008800A
Other languages
Japanese (ja)
Other versions
JPS58126422A (en
Inventor
Makoto Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP57008800A priority Critical patent/JPS58126422A/en
Publication of JPS58126422A publication Critical patent/JPS58126422A/en
Publication of JPH0428889B2 publication Critical patent/JPH0428889B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10242Devices or means connected to or integrated into air intakes; Air intakes combined with other engine or vehicle parts
    • F02M35/10255Arrangements of valves; Multi-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0205Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the charging effect
    • F02B27/0215Oscillating pipe charging, i.e. variable intake pipe length charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0268Valves
    • F02B27/0273Flap valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0289Intake runners having multiple intake valves per cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0294Actuators or controllers therefor; Diagnosis; Calibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10209Fluid connections to the air intake system; their arrangement of pipes, valves or the like
    • F02M35/10229Fluid connections to the air intake system; their arrangement of pipes, valves or the like the intake system acting as a vacuum or overpressure source for auxiliary devices, e.g. brake systems; Vacuum chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/108Intake manifolds with primary and secondary intake passages
    • F02M35/1085Intake manifolds with primary and secondary intake passages the combustion chamber having multiple intake valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/112Intake manifolds for engines with cylinders all in one line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10209Fluid connections to the air intake system; their arrangement of pipes, valves or the like
    • F02M35/10216Fuel injectors; Fuel pipes or rails; Fuel pumps or pressure regulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

【発明の詳細な説明】 本発明は内燃機関の吸気装置に関する。[Detailed description of the invention] The present invention relates to an intake system for an internal combustion engine.

内燃機関では吸気慣性効果が出力トルクに大き
な影響を与え、どのような機関の運転状態、例え
ば機関回転数で吸気慣性効果が最も高くなるかは
吸気管の長さおよび断面積でほぼ定まる。従つて
機関回転数が低いときに最も高い吸気慣性効果が
得られるように吸気管の長さおよび断面積を定め
ると機関回転数が高いときに出力トルクが低下
し、一方機関回転数が高いときに最も高い吸気慣
性効果が得られるように吸気管の長さおよび断面
積を定めると機関回転数が低いときに出力トルク
が低下してしまう。ところが通常吸気管の長さお
よび断面積は一定であるので出力トルクが低下し
てしまう機関回転数が存在し、斯くして機関の全
運転領域に亘つて高い出力トルクを得ることがで
きないという問題がある。
In an internal combustion engine, the intake inertia effect has a large effect on the output torque, and the length and cross-sectional area of the intake pipe approximately determines under what operating conditions of the engine, for example, at which engine speed the intake inertia effect is highest. Therefore, if the length and cross-sectional area of the intake pipe are determined so as to obtain the highest intake inertia effect when the engine speed is low, the output torque will decrease when the engine speed is high; If the length and cross-sectional area of the intake pipe are determined so as to obtain the highest intake inertia effect, the output torque will decrease when the engine speed is low. However, since the length and cross-sectional area of the intake pipe are usually constant, there is a certain engine rotational speed at which the output torque decreases, resulting in the problem that high output torque cannot be obtained over the entire operating range of the engine. There is.

本発明は機関の広い運転領域に亘つて高い出力
トルクを得られるようにした内燃機関の吸気装置
を提供することにある。
An object of the present invention is to provide an intake system for an internal combustion engine that can obtain high output torque over a wide operating range of the engine.

以下、添附図面を参照して本発明を詳細に説明
する。
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第1図を参照すると、1は機関本体、2はシリ
ンダ、3は吸気ポート、4は吸気弁、5は排気ポ
ート、6は排気弁、7はシリンダ2内に設けられ
た点火栓、8はサージタンク、9は各吸気ポート
3とサージタンク8とを連結する枝管を夫々示
す。サージタンク8は図示しないスロツトル弁を
介してエアクリーナに接続される。第1図に示さ
れるように各枝管9の内部は隔壁10により2分
割され、それによつて各枝管9内にほぼ断面積の
等しい一対の吸気通路、即ち、第1吸気通路11
と第2吸気通路12とが形成される。第1図から
わかるようにこれらの第1吸気通路11並びに第
2吸気通路12はほぼ同一の長さを有する。各枝
管9には隔壁10の上方に夫々燃料噴射弁13が
取付けられ、各燃料噴射弁13から夫々対応する
吸気ポート3に向けて燃料が噴射される、各枝管
9の第1吸気通路11内には夫々第1開閉弁14
と第2開閉弁15とが直列に配置され、第1開閉
弁14の弁軸16にはアーム17が、第2開閉弁
15の弁軸18にはアーム19が夫々固着され
る。第1開閉弁14の弁軸16に固着された各ア
ーム17の先端部は連結ロツド20を介して負圧
ダイアフラム装置21のダイアフラム22に連結
される。負圧ダイアフラム装置21はダイアフラ
ム22によつて大気から隔離された負圧室23
と、負圧室23内に設けられたダイアフラム押圧
用圧縮ばね24とを有し、この負圧室23は負圧
導管25並びに大気に連通可能な電磁切換弁26
を介して負圧蓄積タンク40に連結される。この
負圧蓄積タンク40は逆止弁41を介してサージ
タンク8内に連結され、斯くして負圧蓄積タンク
40内はサージタンク8内のピーク負圧に維持さ
れる。電磁切換弁26のソレノイド27は電子制
御回路42に接続され、この電子制御回路42に
は例えば機関回転数に応動する回転数スイツチ2
8が接続される。機関回転数が予め定められた第
一設定回転数よりも低いとき負圧室23は負圧蓄
積タンク40内に連結される。従つてこのとき負
圧室23内には負圧が導びかれるためにダイアフ
ラム22が圧縮ばね24に抗して右方に移動し、
その結果第1開閉弁14が第1吸気通路11を閉
鎖する。一方、機関回転数が第一設定回転数より
も高くなると負圧室23は電磁切換弁26の切換
作用によつて大気に連通せしめられる。その結果
ダイアフラム22は圧縮ばね24により左方に移
動し、第1図に示すように第1開閉弁14が第1
吸気通路11を全開する。
Referring to FIG. 1, 1 is the engine body, 2 is the cylinder, 3 is the intake port, 4 is the intake valve, 5 is the exhaust port, 6 is the exhaust valve, 7 is the spark plug provided in the cylinder 2, and 8 is the The surge tank 9 indicates a branch pipe connecting each intake port 3 and the surge tank 8, respectively. The surge tank 8 is connected to an air cleaner via a throttle valve (not shown). As shown in FIG. 1, the inside of each branch pipe 9 is divided into two parts by a partition wall 10, so that each branch pipe 9 has a pair of intake passages having approximately the same cross-sectional area, that is, a first intake passage 11.
and a second intake passage 12 are formed. As can be seen from FIG. 1, the first intake passage 11 and the second intake passage 12 have approximately the same length. A fuel injection valve 13 is attached to each branch pipe 9 above the partition wall 10, and fuel is injected from each fuel injection valve 13 toward the corresponding intake port 3.A first intake passage of each branch pipe 9. 11 includes first on-off valves 14, respectively.
and the second on-off valve 15 are arranged in series, and an arm 17 is fixed to the valve shaft 16 of the first on-off valve 14 and an arm 19 is fixed to the valve shaft 18 of the second on-off valve 15, respectively. The tip of each arm 17 fixed to the valve shaft 16 of the first on-off valve 14 is connected to a diaphragm 22 of a negative pressure diaphragm device 21 via a connecting rod 20. The negative pressure diaphragm device 21 includes a negative pressure chamber 23 isolated from the atmosphere by a diaphragm 22.
and a compression spring 24 for pressing a diaphragm provided in a negative pressure chamber 23, and this negative pressure chamber 23 has a negative pressure conduit 25 and an electromagnetic switching valve 26 that can communicate with the atmosphere.
It is connected to the negative pressure storage tank 40 via. This negative pressure storage tank 40 is connected to the inside of the surge tank 8 via the check valve 41, and thus the inside of the negative pressure storage tank 40 is maintained at the peak negative pressure inside the surge tank 8. The solenoid 27 of the electromagnetic switching valve 26 is connected to an electronic control circuit 42, and the electronic control circuit 42 includes, for example, a rotation speed switch 2 that responds to the engine rotation speed.
8 is connected. When the engine speed is lower than a predetermined first set speed, the negative pressure chamber 23 is connected to the negative pressure storage tank 40 . Therefore, at this time, since negative pressure is introduced into the negative pressure chamber 23, the diaphragm 22 moves to the right against the compression spring 24.
As a result, the first on-off valve 14 closes the first intake passage 11. On the other hand, when the engine speed becomes higher than the first set speed, the negative pressure chamber 23 is communicated with the atmosphere by the switching action of the electromagnetic switching valve 26. As a result, the diaphragm 22 is moved to the left by the compression spring 24, and as shown in FIG.
Fully open the intake passage 11.

一方、第2開閉弁15の弁軸18に固着された
各アーム19の先端部は連結ロツド30を介して
負圧ダイアフラム装置31のダイアフラム32に
連結される。負圧ダイアフラム装置31はダイア
フラム32によつて大気から隔離された負圧室3
3と、負圧室33内に設けられたダイアフラム押
圧用圧縮ばね34とを有し、この負圧室33は負
圧導管35並びに大気に連通可能な電磁切換弁3
6を介して負圧蓄積タンク40に連結される。電
磁切換弁36のソレノイド37は電子制御回路4
2に接続され、機関回転数が予め定められた第二
設定回転数よりも低いとき負圧室33は負圧蓄積
タンク40内に連結される。従つてこのとき負圧
室33内には負圧が導びかれるためにダイアフラ
ム32が圧縮ばね34に抗して右方に移動し、そ
の結果第1図に示すように第2開閉弁15が第1
吸気通路11を閉鎖する。一方、機関回転数が第
二設定回転数よりも高くなると負圧室33は電磁
切換弁36の切換作用によつて大気に連通せしめ
られる。その結果ダイアフラム32は圧縮ばね3
4によつて左方に移動し、斯くして第2開閉弁1
5が第1吸気通路11を全開する。第2図は全負
荷運転時における機関出力トルクTと機関回転数
Nとの関係を示している。第2図において縦軸T
は出力トルクを示し、横軸Nは機関回転数を示
す。第2図の曲線は第1図の第1開閉弁14並び
に第2開閉弁15を共に全閉にした状態で機関回
転数Nを変化させた場合、又は第1開閉弁14並
びに第2開閉弁15を共に全開にした状態で機関
回転数Nを変化させた場合の出力トルクTの変化
の傾向を示している。第2図から出力トルクTは
異なる機関回転数NaおよびNbにおいて最大とな
ることがわかる。
On the other hand, the tip of each arm 19 fixed to the valve shaft 18 of the second on-off valve 15 is connected to a diaphragm 32 of a negative pressure diaphragm device 31 via a connecting rod 30. The negative pressure diaphragm device 31 includes a negative pressure chamber 3 isolated from the atmosphere by a diaphragm 32.
3, and a compression spring 34 for pressing a diaphragm provided in a negative pressure chamber 33, and this negative pressure chamber 33 has a negative pressure conduit 35 and an electromagnetic switching valve 3 that can communicate with the atmosphere.
6 to a negative pressure storage tank 40. The solenoid 37 of the electromagnetic switching valve 36 is connected to the electronic control circuit 4
2, and when the engine speed is lower than a predetermined second setting speed, the negative pressure chamber 33 is connected to the negative pressure storage tank 40. Therefore, at this time, since negative pressure is introduced into the negative pressure chamber 33, the diaphragm 32 moves to the right against the compression spring 34, and as a result, the second on-off valve 15 opens as shown in FIG. 1st
The intake passage 11 is closed. On the other hand, when the engine speed becomes higher than the second set speed, the negative pressure chamber 33 is communicated with the atmosphere by the switching action of the electromagnetic switching valve 36. As a result, the diaphragm 32 is compressed by the compression spring 3
4 to the left, and thus the second on-off valve 1
5 fully opens the first intake passage 11. FIG. 2 shows the relationship between engine output torque T and engine speed N during full load operation. In Figure 2, the vertical axis T
indicates the output torque, and the horizontal axis N indicates the engine speed. The curve in FIG. 2 shows the case where the engine speed N is changed with both the first on-off valve 14 and the second on-off valve 15 in FIG. 1 fully closed, or when the first on-off valve 14 and the second on-off valve 15 in FIG. It shows the tendency of change in output torque T when the engine speed N is changed with both No. 15 fully open. It can be seen from FIG. 2 that the output torque T becomes maximum at different engine speeds Na and Nb.

そこでまず初めに異なる機関回転数Na,Nbに
おいて出力トルクが最大となる理由について説明
する。吸気弁4が開弁すると吸気弁4周りの空気
が急激にシリンダ2内に吸入されるので吸気ポー
ト3内には負圧が発生し、この負圧は負圧波とな
つて上流に向け伝播する。このとき第1開閉弁1
4並びに第2開閉弁15が共に開弁していればこ
の負圧波は第1吸気通路11並びに第2吸気通路
12内を上流に向け伝播し、このとき第1開閉弁
14並びに第2開閉弁15を共に閉弁していれば
負圧波は第2吸気通路12内を上流に向け伝播す
る。次いでこの負圧波は開放端、即ちサージタン
ク8内で反射し、この反射波は今度は正圧波とな
つて吸気弁4に向けて伝播する。
First, we will explain why the output torque is maximum at different engine speeds Na and Nb. When the intake valve 4 opens, the air around the intake valve 4 is rapidly sucked into the cylinder 2, creating negative pressure within the intake port 3, and this negative pressure becomes a negative pressure wave and propagates upstream. . At this time, the first on-off valve 1
4 and the second on-off valve 15 are both open, this negative pressure wave propagates upstream in the first intake passage 11 and the second intake passage 12, and at this time, the first on-off valve 14 and the second on-off valve 15 are opened. If both valves 15 are closed, the negative pressure wave propagates upstream within the second intake passage 12. This negative pressure wave is then reflected at the open end, that is, within the surge tank 8, and this reflected wave now becomes a positive pressure wave and propagates toward the intake valve 4.

次いでこの正圧波が吸気ポート3内に達すると
吸気ポート3内とシリンダ2内の圧力差が大きく
なるために多量の空気がシリンダ2内に送り込ま
れ、斯くしてこのとき吸気弁4が閉弁すると充填
効率が高くなつて機関出力トルクが高くなる。こ
れが吸気慣性効果と称される。
Next, when this positive pressure wave reaches the intake port 3, the pressure difference between the intake port 3 and the cylinder 2 increases, so a large amount of air is sent into the cylinder 2, and the intake valve 4 closes at this time. Then, the charging efficiency becomes higher and the engine output torque becomes higher. This is called the intake inertia effect.

一方、正圧波が吸気ポート3内に達したときに
依然として吸気弁4が大きく開弁していたとする
とこの正圧波は開放端、即ちシリンダ2内で反射
し、この反射波は今度は負圧波の形で上流側に向
けて伝播する。この負圧波は再びサージタンク8
内で反射して正圧波の形で吸気弁4に向かつて伝
播する。この正圧波が吸気ポート3内に達したと
きに吸気弁4が閉弁しても充填効率が高くなり、
斯くして機関出力トルクが高くなる。
On the other hand, if the intake valve 4 is still wide open when the positive pressure wave reaches the intake port 3, this positive pressure wave will be reflected at the open end, that is, within the cylinder 2, and this reflected wave will then become a negative pressure wave. propagates upstream in the form of This negative pressure wave returns to the surge tank 8.
It is reflected within and propagated toward the intake valve 4 in the form of a positive pressure wave. Even if the intake valve 4 closes when this positive pressure wave reaches the inside of the intake port 3, the filling efficiency increases,
In this way, the engine output torque increases.

ところでこれら圧力波が往復する時間は一定で
あり、一方吸気弁4が開弁してから、即ち負圧波
が発生してから吸気弁4が閉弁するまでの時間は
機関回転数Nが低くなるほど長くなる。従つて機
関高回転時、例えば4000r.p.mのときの吸気弁4
の閉弁時に吸気ポート3内に1回目の正圧波が到
達したとすると機関低回転時、例えばほぼ2000r.
p.mのときの吸気弁4の閉弁時に吸気ポート3内
に2回目の正圧波が到達することになる。従つて
第2図に示されるように異なる機関回転数Na,
Nbにおいて出力トルクのピークが発生する。
By the way, the time for these pressure waves to travel back and forth is constant, and on the other hand, the time from when the intake valve 4 opens, that is, from when a negative pressure wave is generated until the intake valve 4 closes, decreases as the engine speed N decreases. become longer. Therefore, when the engine is at high speed, for example, 4000 rpm, the intake valve 4
If the first positive pressure wave reaches the intake port 3 when the valve is closed, then at low engine speed, for example around 2000r.
A second positive pressure wave will reach inside the intake port 3 when the intake valve 4 closes at pm. Therefore, as shown in Fig. 2, different engine speeds Na,
The output torque peak occurs at Nb.

出力トルクがピークになる機関回転数Nは主に
第1吸気通路11および第2吸気通路12の長さ
に依存しており、従つて本発明による実施例では
予め定められた設定高回転数Nbとこの設定高回
転数Nbのほぼ1/2である予め定められた設定低回
転数Naにおいて出力トルクがピークとなるよう
に、即ち最大の吸気慣性効果が得られるように第
1吸気通路11および第2吸気通路12の長さが
定められている。
The engine speed N at which the output torque peaks depends mainly on the lengths of the first intake passage 11 and the second intake passage 12, and therefore, in the embodiment according to the present invention, the engine speed Nb at which the output torque peaks is set at a predetermined high rotation speed Nb. The first intake passage 11 and The length of the second intake passage 12 is determined.

ところがこのような吸気慣性効果を利用しても
第2図に示されるように設定高回転数Nbと設定
低回転数Na間の中央に位置する中央回転数領域
(N1とN2の間の領域)では出力トルクが低下す
る。そこでこの中央回転数領域(N1からN2)に
おいて出力トルクが低下するのを阻止するために
機関回転数NがN1とN2の間になつたときには第
1開閉弁14を開弁し、第2開閉弁15を閉弁す
るようにしている。なお、このN1は前述した第
一設定回転数を示しており、N2は前述した第二
設定回転数を示している。
However, even if such an intake inertia effect is used, as shown in Fig. 2, the center rotation speed region located in the middle between the set high rotation speed Nb and the set low rotation speed Na (between N 1 and N 2) area), the output torque decreases. Therefore, in order to prevent the output torque from decreasing in this central rotational speed region (N 1 to N 2 ), the first on-off valve 14 is opened when the engine rotational speed N falls between N 1 and N 2 . , the second on-off valve 15 is closed. Note that N 1 indicates the first set rotation speed described above, and N 2 indicates the second set rotation speed described above.

第1開閉弁14が開弁し、第2開閉弁15が閉
弁していると第1吸気通路11は吸気ポート3内
に連通した空気溜まりになる。従つて吸気ポート
4が開弁して吸気ポート3内の圧力が低下すると
第2吸気ポート12から供給される吸入空気に加
えて第2吸気通路11内に溜まつている空気の一
部が吸気弁4を介してシリンダ2内に供給され
る。斯くしてその分だけ充填効率が上昇するので
第3図に示されるように中央回転数領域(N1
らN2)で出力トルクが大巾に低下するのを阻止
することができることになる。
When the first on-off valve 14 is open and the second on-off valve 15 is closed, the first intake passage 11 becomes an air pocket communicating with the intake port 3. Therefore, when the intake port 4 opens and the pressure inside the intake port 3 decreases, in addition to the intake air supplied from the second intake port 12, a part of the air accumulated in the second intake passage 11 is taken into the intake air. It is fed into the cylinder 2 via the valve 4. In this way, since the charging efficiency increases by that amount, it is possible to prevent the output torque from drastically decreasing in the central rotational speed region (N 1 to N 2 ) as shown in FIG.

なお、機関回転数NがN1よりも低いときに第
1開閉弁14を閉弁するようにしたのは次の理由
による。即ち、機関回転数NがN2よりも低いと
きには第2開閉弁15が閉弁しており、従つて機
関回転数NがN1よりも低下したときに第1開閉
弁14を開弁しておくと吸気弁4の開弁時に発生
した負圧波が第2開閉弁15で反射する。この場
合、反射波は負圧波となり、第2吸気通路12の
開放端で反射した正圧波が吸気弁4の閉弁時に吸
気ポート3内に到達する頃に第2開閉弁15で反
射した負圧波も吸気ポート3内に到達することに
なる。従つてこの場合には正圧波と負圧波とが相
殺されることになり、斯くして第2図および第3
図の機関回転数Naにおいて第2図および第3図
に示すような出力トルクのピークが表れないこと
になる。従つてこのように第2開閉弁15で反射
した負圧波が正圧波を相殺しないように機関回転
数NがN1よりも低いときには第1開閉弁14を
閉弁するようにしている。
The reason why the first on-off valve 14 is closed when the engine speed N is lower than N1 is as follows. That is, when the engine speed N is lower than N2 , the second on-off valve 15 is closed, and when the engine speed N drops below N1 , the first on-off valve 14 is opened. If the intake valve 4 is opened, the negative pressure wave generated when the intake valve 4 is opened is reflected by the second opening/closing valve 15. In this case, the reflected wave becomes a negative pressure wave, and when the positive pressure wave reflected at the open end of the second intake passage 12 reaches the inside of the intake port 3 when the intake valve 4 is closed, the negative pressure wave is reflected at the second opening/closing valve 15. The air also reaches the inside of the intake port 3. Therefore, in this case, the positive pressure waves and negative pressure waves cancel each other out, and thus, as shown in FIGS.
At the engine speed Na shown in the figure, the peak of the output torque as shown in FIGS. 2 and 3 does not appear. Therefore, the first on-off valve 14 is closed when the engine speed N is lower than N1 so that the negative pressure wave reflected by the second on-off valve 15 does not offset the positive pressure wave.

このようにして本発明によれば機関の広い運転
領域に亘つて高い出力トルクを得ることができ
る。
In this way, according to the present invention, high output torque can be obtained over a wide operating range of the engine.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による内燃機関の一部断面平面
図、第2図および第3図は機関出力トルクと機関
回転数の関係を示す線図である。 3……吸気ポート、4……吸気弁、8……サー
ジタンク、9……枝管、11……第1吸気通路、
12……第2吸気通路、13……燃料噴射弁、1
4……第1開閉弁、15……第2開閉弁。
FIG. 1 is a partially sectional plan view of an internal combustion engine according to the present invention, and FIGS. 2 and 3 are diagrams showing the relationship between engine output torque and engine rotation speed. 3... Intake port, 4... Intake valve, 8... Surge tank, 9... Branch pipe, 11... First intake passage,
12...Second intake passage, 13...Fuel injection valve, 1
4...first on-off valve, 15...second on-off valve.

Claims (1)

【特許請求の範囲】[Claims] 1 シリンダヘツド内に形成された一つの吸気ポ
ートをほぼ同じ長さを有する第1吸気通路および
第2吸気通路を介してサージタンクに連結すると
共に該第1吸気通路および第2吸気通路の長さを
予め定められた設定高回転数および予め定められ
た設定低回転数の双方において最大の吸気慣性効
果が得られる長さとし、第1吸気通路の下流端に
機関回転数に応動する第1開閉弁を配置すると共
に該第1開閉弁上流の第1吸気通路内に機関回転
数に応動する第2開閉弁を配置し、全負荷運転時
において機関回転数が上記設定高回転数および設
定低回転数間の中央に位置する中央回転数領域内
にあるときには第1開閉弁を開弁すると共に第2
開閉弁を閉弁し、全負荷運転時において機関回転
数が該中央回転数領域よりも低回転側であるとき
には第1開閉弁および第2開閉弁を共に閉弁し、
全負荷運転時において機関回転数が該中央回転数
領域よりも高回転側であるときには第1開閉弁お
よび第2開閉弁を共に開弁する開閉弁制御装置を
具備した内燃機関の吸気装置。
1 One intake port formed in the cylinder head is connected to the surge tank via a first intake passage and a second intake passage that have approximately the same length, and the lengths of the first intake passage and the second intake passage has a length that provides the maximum intake inertia effect at both a predetermined high rotation speed and a predetermined low rotation speed, and a first opening/closing valve that responds to the engine rotation speed is provided at the downstream end of the first intake passage. At the same time, a second on-off valve that responds to the engine speed is arranged in the first intake passage upstream of the first on-off valve, so that the engine speed is the set high speed and the set low speed during full load operation. When the rotational speed is within the center rotational speed region located in the center between
closing the on-off valve, and closing both the first on-off valve and the second on-off valve when the engine speed is lower than the center rotation speed region during full load operation;
An intake system for an internal combustion engine, comprising an on-off valve control device that opens both a first on-off valve and a second on-off valve when the engine speed is higher than the center rotation speed region during full load operation.
JP57008800A 1982-01-25 1982-01-25 Intake device of internal-combustion engine Granted JPS58126422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57008800A JPS58126422A (en) 1982-01-25 1982-01-25 Intake device of internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57008800A JPS58126422A (en) 1982-01-25 1982-01-25 Intake device of internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS58126422A JPS58126422A (en) 1983-07-27
JPH0428889B2 true JPH0428889B2 (en) 1992-05-15

Family

ID=11702926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57008800A Granted JPS58126422A (en) 1982-01-25 1982-01-25 Intake device of internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS58126422A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58206822A (en) * 1982-05-26 1983-12-02 Yamaha Motor Co Ltd Methods of driving double suction valve type internal- combustion engine
JPH0696976B2 (en) * 1985-04-08 1994-11-30 トヨタ自動車株式会社 Diaphragm mechanism drive for internal combustion engine
JPH0737768B2 (en) * 1985-07-15 1995-04-26 ヤマハ発動機株式会社 Intake device for 4-cycle multi-cylinder engine
JP4640314B2 (en) * 2006-10-25 2011-03-02 日産自動車株式会社 Operation control device for engine variable intake valve

Also Published As

Publication number Publication date
JPS58126422A (en) 1983-07-27

Similar Documents

Publication Publication Date Title
EP0370515B1 (en) V-type multi-cylinder engine air intake system
US4671217A (en) Intake system for internal combustion engine
JPS6014169B2 (en) Intake system for multi-cylinder engines
US4771740A (en) Intake system for internal combustion engine
US4408576A (en) Intake system of an internal combustion engine
JPH0259290B2 (en)
JPS5848712A (en) Air inlet device of internal-combustion engine
JPH0583737B2 (en)
JPH0361005B2 (en)
JPH0428889B2 (en)
JPS60164618A (en) Suction device for internal-combustion engine
JPH0319892B2 (en)
JPS58119919A (en) Suction device for internal-combustion engine
JPS6256325B2 (en)
JPS6291623A (en) Intake-air device of engine
JPH0823292B2 (en) Engine intake system
JPS608117Y2 (en) engine intake system
JPH0320497Y2 (en)
JP3051194B2 (en) Engine intake system
JPS6267271A (en) Exhaust gas reflux device for engine
JPS61200328A (en) Suction device for internal-combustion engine
JP2507971Y2 (en) Engine intake system
JPH0380966B2 (en)
JPS61157716A (en) Air intake device of multicylinder engine
JPH0568612B2 (en)