JPH0428886A - Heat exchanger excellent in corrosion resistance and its production - Google Patents

Heat exchanger excellent in corrosion resistance and its production

Info

Publication number
JPH0428886A
JPH0428886A JP13473690A JP13473690A JPH0428886A JP H0428886 A JPH0428886 A JP H0428886A JP 13473690 A JP13473690 A JP 13473690A JP 13473690 A JP13473690 A JP 13473690A JP H0428886 A JPH0428886 A JP H0428886A
Authority
JP
Japan
Prior art keywords
heat exchanger
film
fin
thickness
znxoy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13473690A
Other languages
Japanese (ja)
Other versions
JP2726549B2 (en
Inventor
Kenichi Komata
小又 憲一
Kadomasa Sato
佐藤 矩正
Minoru Igarashi
稔 五十嵐
Katsuhiko Takada
高田 勝彦
Kishichi Nakamura
中村 喜七
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Denso Corp
Original Assignee
Furukawa Electric Co Ltd
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, NipponDenso Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP13473690A priority Critical patent/JP2726549B2/en
Publication of JPH0428886A publication Critical patent/JPH0428886A/en
Application granted granted Critical
Publication of JP2726549B2 publication Critical patent/JP2726549B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To produce an economical heat exchanger having high properties, capable of meeting the recent demand for lightening weight, and excellent in corrosion resistance by forming a Cu oxide (CuxOy) film at least on one surface of a heat exchanger fin, further forming a Zn oxide (ZnxOy) film on the above, and also regulating respective thicknesses of these films so that the thickness of the ZnxOy film is larger than that of the CuxOy film. CONSTITUTION:As illustrated in figure in the assembling stage of a heat exchanger where an alloy layer (7) containing >=1wt.% Zn is formed at least on one surface of a fin composed of Cu or Cu alloy (6) to undergo diffusion treatment and then this fin is combined with a tube, a Cu oxide (CuxOy) film (8) is formed on the fin surface and further a Zn oxide (ZnxOy) film (9) is formed on the above, and these films are formed so that the thickness of the ZnxOy film is larger than that of the CuxOy film and also the total thickness of these films is regulated to 50-1000Angstrom . By using the material prepared by forming the alloy layer containing >=1wt.% Zn on the fin and exerting diffusion treatment, deterioration in the heat radiation of the fin can be prevented, and further, by carrying out core baking in an oxidizing atmosphere in the heat exchanger assembling stage, an oxide film composed essentially of ZnxOy and CuxOy and having two-layer structure can easily be formed on the surface.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は耐食性の優れた熱交換器とその製造方法に関す
るもので、特にフィンの耐食性を改善し、熱交換器の軽
量化及び高性能化を可能にするものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a heat exchanger with excellent corrosion resistance and a method for manufacturing the same. In particular, the present invention relates to a heat exchanger with excellent corrosion resistance and a method for manufacturing the same. This is what makes it possible.

〔従来の技術〕[Conventional technology]

熱交換器、例えば自動車用ラジェーターはエンジンの冷
却用熱交換媒体を空気流により冷却するもので、通常第
1図に示すように多数の偏平チューブ(1)間に放熱面
積を飛躍的に拡大するフィン(2)を設け、治具等によ
り固定して高温炉に装入し、はんだ付けにより接合(コ
ア焼)してコア(3)を形成し、該コア(3)の一端又
は両端(図は両端の場合を示す)に座板(4)、  (
4’)をはんだ付けにより取付け、これにタンク(5)
、  (5’)を装着したものである。
A heat exchanger, such as an automobile radiator, cools the heat exchange medium for engine cooling using airflow, and usually dramatically expands the heat dissipation area between a large number of flat tubes (1) as shown in Figure 1. A fin (2) is provided, fixed with a jig or the like, charged into a high-temperature furnace, joined by soldering (core baking) to form a core (3), and one or both ends of the core (3) (Fig. (shows the case of both ends), seat plate (4), (
4') by soldering, and attach the tank (5) to this.
, (5') is attached.

一般にチューブには黄銅なとのCu合金を用い、フィン
に高伝熱性のCu又はCu−3n。
Generally, the tube is made of brass or a Cu alloy, and the fins are made of highly heat conductive Cu or Cu-3n.

Cu−Cd、Cu−Zr、Cu−Ag等の合金薄板をコ
ルゲート加工やルーバー加工したものを用い、座板には
黄銅を用いている。またタンクには黄銅製を用いてはん
だ付けにより装着していたが、近年軽量化のために樹脂
製のタンクを用いて機械的かしめにより装着している。
A thin alloy plate of Cu-Cd, Cu-Zr, Cu-Ag or the like is corrugated or louvered, and the seat plate is made of brass. The tank used to be made of brass and was attached by soldering, but in recent years, to reduce weight, resin tanks have been used and attached by mechanical caulking.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

最近自動車の軽量化、高性能化の強い要請から自動車用
ラジェーターにおいても軽量化と高性能化が検討され、
フィンの薄肉化と高密度化が有効な手段とされている。
Recently, due to the strong demand for lighter cars and higher performance, weight reduction and higher performance are being considered for automobile radiators.
Reducing the thickness and increasing the density of the fins is considered an effective means.

フィンには上記高伝熱性のCu合金薄板(厚さ0.02
〜0.05m+n)が多量に使用されている。
The fins are made of the above-mentioned highly heat conductive Cu alloy thin plate (thickness 0.02
~0.05m+n) are used in large quantities.

CuやCu合金は本来耐食性が優れたものであるが、近
年融雪剤として塩化物が多量に使用されるようになり、
ラジェーターでは塩害による変色損耗か大きな問題とな
っている。即ち多量に散布される融雪剤がラジェーター
に付着し、フィンが異常な速度で腐食して有効な放熱面
積が減少し、ラジェーターの性能が短期間で大巾に低下
する。
Cu and Cu alloys originally have excellent corrosion resistance, but in recent years, large amounts of chloride have been used as snow melting agents.
A major problem with radiators is discoloration and wear due to salt damage. That is, a large amount of the snow melting agent sprayed adheres to the radiator, causing the fins to corrode at an abnormal rate, reducing the effective heat dissipation area, and significantly reducing the performance of the radiator in a short period of time.

これを防止するため種々の方法が検討されているが、何
れも不十分なものであった。例えば塗装によって防食す
るためには、厚さ0.01mm以上の塗膜が必要となり
、その結果重量増大やコストアップをまねくところから
実用性に劣るものである。またフィンの耐食性をより一
層向上させるため、耐食性Cu合金として知られている
C u −10wt%Ni合金でフィンを形成すると、
同じ板厚では放熱性が著しく低下する。即ちウィーブマ
ン−フランツの法則(WiedemannFrann 
s low )として知られている様に熱伝導率は導電
率と比例し、この導電率によって比較オヤ すると通常のフィン栴は90〜80%lAc5であるの
に対し、Cu −10w1%Ni合金では10%IAC
S以下となる。
Various methods have been studied to prevent this, but all have been insufficient. For example, in order to prevent corrosion by painting, a coating film with a thickness of 0.01 mm or more is required, which results in an increase in weight and cost, which is less practical. In addition, in order to further improve the corrosion resistance of the fins, if the fins are made of Cu-10wt%Ni alloy, which is known as a corrosion-resistant Cu alloy,
If the plate thickness is the same, heat dissipation will be significantly reduced. That is, the Wiedemann-Franz law (Wiedemann-Franz law)
Thermal conductivity is proportional to electrical conductivity, as is known as slow), and when compared using this electrical conductivity, normal fin conductivity is 90-80%lAc5, while Cu-10w1%Ni alloy has a 10%IAC
S or less.

熱交換器の製造工程における加熱において、熱交換器の
表面には酸化皮膜が形成される。即ちチューブとフィン
を接合するコア焼は300〜400℃に加熱され、座板
とコアのはんだ接合は局部加熱であるが、フィンの若干
の酸化は不可避である。また最終工程で黒色の防眩塗装
後の乾燥工程でも100〜200℃に加熱され酸化膜か
形成される。これ等の酸化皮膜は腐食を促進し、熱交換
器の寿命または信頼性を低下させる。
During heating in the manufacturing process of a heat exchanger, an oxide film is formed on the surface of the heat exchanger. That is, the core firing process that joins the tube and fins is heated to 300 to 400°C, and the soldering process between the seat plate and the core involves local heating, but some oxidation of the fins is unavoidable. Further, in the final step, the drying step after the black anti-glare coating is heated to 100 to 200° C. to form an oxide film. These oxide films promote corrosion and reduce the lifespan or reliability of the heat exchanger.

本発明者等はこれらについて種々検討の結果、特開昭6
2−38761号公報及び特開昭60−177955号
公報により、その改善法を提案した。ところがこれらの
方法は非酸化性雰囲気ではんだ接合を行なうとか、はん
だ接合後酸化皮膜を溶解、還元などの手段を利用して適
正範囲に制御する付加工程を必要とし、製造コスト高と
なる欠点があった。
As a result of various studies on these matters, the inventors of the present invention discovered that
An improvement method was proposed in JP-A No. 2-38761 and JP-A-60-177955. However, these methods require additional steps such as soldering in a non-oxidizing atmosphere and controlling the oxide film within an appropriate range by melting or reducing the oxide film after soldering, resulting in high manufacturing costs. there were.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はこれに鑑み種々検討の結果、塩害損耗に耐えて
高い性能を保持し、軽量化の要請に応じることかできる
経済的で耐食性の優れた熱交換器とその製造方法を開発
したものである。
In view of this, as a result of various studies, the present invention has developed an economical and corrosion-resistant heat exchanger that can withstand salt damage, maintain high performance, and meet demands for weight reduction, and a method for manufacturing the same. be.

即ち本発明熱交換器は、Cu又はCu合金からなるフィ
ンとチューブを接合(コア焼)したコアの一端又は両端
に、座板を設けてタンクを取付けた熱交換器において、
フィンの少なくとも片側表面に、Cuの酸化皮膜(Cu
xOy)とその上にZnの酸化皮膜(ZnxOy)を形
成し、そ(Dqサカznxoy>CuxOy テ合計5
0〜lfl[lDλ形成したことを特徴とするものであ
る。
That is, the heat exchanger of the present invention is a heat exchanger in which a seat plate is provided at one end or both ends of a core made by joining (core firing) fins and tubes made of Cu or Cu alloy, and a tank is attached.
A Cu oxide film (Cu
xOy) and a Zn oxide film (ZnxOy) is formed thereon.
0 to lfl[lDλ.

また本発明製造方法は、Cu又はCu合金からなるフィ
ンとチューブを接合(コア焼)したコアの一端又は両端
に、座板を設けてタンクを取付けた熱交換器の製造にお
いて、フィンの少なくとも片側表面にZnを1wt%以
上含む合金層を形成して拡散処理し、このフィンとチュ
ーブの接合(コア焼)を酸化性雰囲気下で行なうことに
より、フィンの少なくとも片側表面にCu酸化皮膜(C
1,1XOF)とその上にZnの酸化皮膜(ZnxOy
)を形成し、その厚さがZnxOy >CuxOyで合
計50〜1000人形成することを特徴とするものであ
る。
Furthermore, the manufacturing method of the present invention provides a method for manufacturing a heat exchanger in which a seat plate is provided at one or both ends of a core in which fins and tubes made of Cu or Cu alloy are bonded (core fired), and a tank is attached to at least one side of the fins. By forming an alloy layer containing 1 wt% or more of Zn on the surface and performing a diffusion treatment, and then joining the fin and tube (core firing) in an oxidizing atmosphere, a Cu oxide film (C) is formed on at least one surface of the fin.
1,1XOF) and a Zn oxide film (ZnxOy
), the thickness of which is ZnxOy>CuxOy, and a total of 50 to 1000 people are formed.

〔作 用〕[For production]

本発明は前記欠点を排除し、≠妾#雫会t≠耐食性の優
れた高性能熱交換器および該熱交換器を容易に安定して
製造する方法を提供するものであり、熱交換媒体を流す
複数のチューブ外側にはんだ接合(コア焼)によりフィ
ンを取り付けて銅製コアを形成し、このコアの一端又は
両端にはんだ接合により座板を取り付けてタンクを装着
する熱交換器とその製造方法を改善しからなるフィンの
少なくとも片側表面に1w1%以上のZnを含む合金層
(7)を形成して拡散処理し、これをチューブと組み合
せる熱交換器の組み立て工程において、フィンの表面に
Cuの酸化皮膜(CuxOy) (8)とその上にZn
の酸化皮膜(ZnxOy) (9)を形成し、その厚さ
がZnxOy > CuxOyで合計50〜1000人
形成するものである。フィンに1w1%以上のZnを含
む合金層を形成して拡散処理した材料を使用することに
より、フィンの放熱性を損なうことなく、熱交換器の組
み立て工程において酸化性雰囲気中でコア焼を行うこと
により、容易に表面に2nx07.1!:Cux07を
主成分とする2層構造の酸化皮膜が形成される。しかし
てZnを含む合金層のZn濃度がIWI%未満では十分
な2nx07の皮膜の形成が困難である。
The present invention eliminates the above-mentioned drawbacks and provides a high-performance heat exchanger with excellent corrosion resistance and a method for easily and stably manufacturing the heat exchanger. A heat exchanger in which a copper core is formed by attaching fins to the outside of a plurality of flowing tubes by soldering (core baking), a seat plate is attached to one or both ends of this core by soldering, and a tank is attached to the heat exchanger, and its manufacturing method. An alloy layer (7) containing 1w1% or more of Zn is formed and diffused on at least one surface of the fin made of copper, and in the process of assembling the heat exchanger, this is combined with the tube. Oxide film (CuxOy) (8) and Zn on it
An oxide film (ZnxOy) (9) with a thickness of ZnxOy>CuxOy is formed for a total of 50 to 1000 times. By forming an alloy layer containing 1w1% or more of Zn on the fins and using a diffusion-treated material, core firing can be performed in an oxidizing atmosphere during the heat exchanger assembly process without impairing the heat dissipation properties of the fins. This makes it easy to attach 2nx07.1 to the surface! : An oxide film with a two-layer structure containing Cux07 as a main component is formed. However, if the Zn concentration of the alloy layer containing Zn is less than IWI%, it is difficult to form a sufficient 2nx07 film.

本発明における酸化皮膜は化成処理又は形成された皮膜
の化学的溶解、還元などの公知の方法でも形成できるが
、特殊な処理をすることなく酸化性雰囲気、例えば大気
中のコア焼で容易に形成することができる。しかしてZ
nの酸化皮膜の厚さをCuの酸化皮膜の厚さより厚くし
たのは、相対的に厚いZnの酸化物により、酸化皮膜の
強度が改善され腐食の発生源となる欠陥の形成を減少さ
せるためである。また酸化皮膜の合計の厚さを50〜1
000人としたのは、50人未満ではZnの酸化皮膜の
厚さかCuの酸化皮膜の厚さ以上でも耐食性の改善効果
が少なく、1000人を越えて酸化皮膜を増殖させると
Cuの酸化皮膜の成長か優先し、耐食性の改善効果が飽
和するか逆に低下してしまうためである。
The oxide film in the present invention can be formed by known methods such as chemical conversion treatment or chemical dissolution or reduction of the formed film, but it can be easily formed by core burning in an oxidizing atmosphere, for example, in the air, without special treatment. can do. But Z
The reason why the thickness of the n oxide film is made thicker than that of the Cu oxide film is that the relatively thick Zn oxide improves the strength of the oxide film and reduces the formation of defects that are a source of corrosion. It is. Also, the total thickness of the oxide film is 50 to 1
000 people is because if the number of people is less than 50 people, the effect of improving corrosion resistance will be small even if the thickness of the Zn oxide film or the thickness of the Cu oxide film is exceeded, and if the oxide film is grown with more than 1000 people, the Cu oxide film will become thicker. This is because priority is given to growth, and the effect of improving corrosion resistance is saturated or conversely deteriorates.

〔実施例〕〔Example〕

以下本発明を実施例について説明する。 The present invention will be described below with reference to Examples.

厚さ0.07mmの耐熱銅合金条(SnO,Iw1%P
 O,01w1%Cu残部)に第1表に示すZn又はZ
n合金被覆を施し、これに拡散処理を施した後、冷間圧
延により厚さ0.038mmとした。これをコルゲート
加工してから黄銅製チューブと組合せ、コア焼成形時の
雰囲気及びコア組立後の化成処理等組立条件を変えてラ
ジェーターを製造した。ラジェーターの製造条件を第1
表に示す。尚第1表に示すZn又はZn合金の被覆には
下記メツキ浴を用いて電気メツキ又は溶融メツキを用い
た。
Heat-resistant copper alloy strip (SnO, Iw1%P) with a thickness of 0.07 mm
Zn or Z shown in Table 1 in O, 01w1%Cu balance)
After applying an n-alloy coating and subjecting it to a diffusion treatment, it was cold rolled to a thickness of 0.038 mm. This was corrugated and then combined with a brass tube, and a radiator was manufactured by changing assembly conditions such as the atmosphere during core firing and molding and chemical conversion treatment after core assembly. The manufacturing conditions for the radiator are the first
Shown in the table. For coating the Zn or Zn alloy shown in Table 1, electroplating or hot-dip plating was used using the following plating bath.

NaI  Znメツキ浴(電気メツキ)\aCN   
  40g/l  浴温   25°C2n(い) 2
  60 g /’ 1  電流密度 2.5A/dr
d\aOH80g/I N(12Zn−10WI%Cdメツキ浴(電気メツキ)
lt (CN) 2  75 g / 1  浴温  
 35℃CdO3g/l  電流密度 2^/dイNa
C\    40g/l Na0)I     90g/j! Nα3  Zn−5w1%N1合金メツキ浴(電気メツ
キ) 2nS0.   75 g / j!  浴温   4
5℃NiSO460g / 1  電流密度 75^/
drdCH3COONa  20 g / 1)13B
0.  15g/i p H3g / I Nα4  Zn−15w1%Snメツキ浴(溶融メツキ
)Z n    85v1%  浴温   550℃S
 n    15wf%  浸漬時間  1 sec&
5Zn−20wt%Cuメツキ浴(電気メツキ)CuC
N    40 g / 1  浴温   45°C2
+1(CN)2   I2g/l  電流密度 0,5
^/drdNaCN     50 g / 1 このようにして組立てたラジェーターについてフィンの
導電率を測定すると共に、断面をX線マイクロアナライ
ザーで測定することにより表面Zn濃度と表面下5μm
の深さにおけるZn濃度を分析した。また各組立条件に
おけるフィン表面の酸化皮膜の厚さをオージェ分子分光
によりCuの酸化皮膜(CuxOy)とZnの酸化皮膜
(ZnxOy)について分析測定した。更にラジエータ
ーニツイテ、塩水噴霧(IISz2371 )を1時間
と、相対湿度95%、温度60℃の恒温恒湿槽内に23
時間保持することを30回繰返した後、熱交機能として
80℃の温水を還流させながら一定の風速の風洞内に保
持し、温水が60℃に下がるまでの時間を比較すると共
に、フィン部の強度を測定した。これらの結果を従来の
ラジェーターの初期の値を100として評価した。これ
等の結果を第2表に示す。
NaI Zn plating bath (electroplating) \aCN
40g/l Bath temperature 25°C2n(i) 2
60 g/' 1 Current density 2.5A/dr
d\aOH80g/IN(12Zn-10WI%Cd plating bath (electroplating)
lt (CN) 2 75 g / 1 Bath temperature
35℃CdO3g/l Current density 2^/d-Na
C\ 40g/l Na0)I 90g/j! Nα3 Zn-5w1%N1 alloy plating bath (electroplating) 2nS0. 75 g/j! Bath temperature 4
5℃NiSO460g/1 Current density 75^/
drdCH3COONa 20 g/1) 13B
0. 15g/ip H3g/I Nα4 Zn-15w1%Sn plating bath (molten plating) Zn 85v1% Bath temperature 550℃S
n 15wf% Soaking time 1 sec &
5Zn-20wt%Cu plating bath (electroplating) CuC
N 40 g/1 Bath temperature 45°C2
+1(CN)2 I2g/l Current density 0.5
^/drdNaCN 50 g / 1 The electrical conductivity of the fins of the radiator assembled in this way was measured, and the cross section was measured with an X-ray microanalyzer to determine the surface Zn concentration and the Zn concentration 5 μm below the surface.
The Zn concentration at the depth was analyzed. Further, the thickness of the oxide film on the fin surface under each assembly condition was analyzed and measured using Auger molecular spectroscopy for the Cu oxide film (CuxOy) and the Zn oxide film (ZnxOy). Furthermore, the radiator was exposed to salt water spray (IISz2371) for 1 hour, and then placed in a constant temperature and humidity chamber at a relative humidity of 95% and a temperature of 60°C for 23 hours.
After repeating this for 30 times, we held it in a wind tunnel with a constant wind speed while circulating hot water at 80°C as a heat exchange function, and compared the time it took for the hot water to drop to 60°C. The strength was measured. These results were evaluated assuming that the initial value of the conventional radiator was 100. These results are shown in Table 2.

第2表から明らかなように拡散処理を施していないZn
メツキのみのNα12及び無処理フィン(従来フィン)
Nα13は強度減少率か著しく大きく、はとんとぼろぼ
ろの状態になったのに対し、本発明例Nα1〜8におけ
るラジェーターでは強度減少率が小さく、耐食性の改善
が著しいことが判る。
As is clear from Table 2, Zn without diffusion treatment
Nα12 with only plating and untreated fins (conventional fins)
It can be seen that the strength reduction rate of Nα13 was extremely large and the radiator became crumbly, whereas the radiators of Examples Nα1 to 8 of the present invention had a small strength reduction rate and the corrosion resistance was significantly improved.

これに対し本発明の条件から外れる比較例Nα9〜11
、特にNα9では非酸化性コア焼のため酸化皮膜の増殖
が少なく、酸化膜の厚さがZnx07> CuxOyと
なっているが、2nxOyが薄いために耐食性の改善作
用が不十分であり、Nα10ではその酸化皮膜の厚さが
ZnxOy< CuxOyとなっており、合計が厚いた
め耐食性の改善が十分でない。
On the other hand, comparative examples Nα9 to 11 that deviate from the conditions of the present invention
In particular, with Nα9, the growth of the oxide film is small due to the non-oxidizing core firing, and the thickness of the oxide film is Znx07>CuxOy, but since 2nxOy is thin, the corrosion resistance improvement effect is insufficient, and with Nα10 The thickness of the oxide film satisfies ZnxOy<CuxOy, and since the total thickness is thick, the corrosion resistance is not sufficiently improved.

更にN(Lllでは酸化皮膜の厚さが2nx07< C
uxOYとなっているため耐食性の改善が不十分である
Furthermore, the thickness of the oxide film in N(Lll is 2nx07<C
Since it is uxOY, the improvement in corrosion resistance is insufficient.

〔発明の効果〕〔Effect of the invention〕

このように本発明によれば、熱交換器は優れた耐食性と
伝熱性を有し、過酷な環境においても長期間フィンの機
能を失うことなく、薄肉軽量化を可能にし、耐用年数を
向上する等工業上顕著な効果を奏するものである。
As described above, according to the present invention, the heat exchanger has excellent corrosion resistance and heat conductivity, and the fins do not lose their functionality for a long period of time even in harsh environments, making it possible to reduce the thickness and weight, thereby improving the service life. It has remarkable industrial effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は自動車用ラジェーターの一例を示す正面図、第
2図は本発明によるフィンの一例を示す断面図である。 1・・・・・・・・・チューブ 2・・・・・・・・・フィン 3・・・・・・・・コア 4.4′・・・座 板 5.5・・・タンク 6・・・・・・・・銅又は銅合金 7・・・・・・・・・Zn合金層 8・・・・・・・・・CuxOy 9・・・・・・ZnxOy 第1図 第2図
FIG. 1 is a front view showing an example of a radiator for an automobile, and FIG. 2 is a sectional view showing an example of a fin according to the present invention. 1...Tube 2...Fin 3...Core 4.4'...Seat Plate 5.5...Tank 6 ......Copper or copper alloy 7...Zn alloy layer 8...CuxOy 9...ZnxOy Fig. 1 Fig. 2

Claims (2)

【特許請求の範囲】[Claims] (1)Cu又はCu合金からなるフィンとチューブを接
合(コア焼)したコアの一端又は両端に、座板を設けて
タンクを取付けた熱交換器において、フィンの少なくと
も片側表面に、Cuの酸化被膜(Cu_xO_y)とそ
の上にZnの酸化被膜(Zn_xO_y)を形成し、そ
の厚さがZn_xO_y>Cu_xO_yで合計50〜
1000Å形成したことを特徴とする耐食性の優れた熱
交換器。
(1) In a heat exchanger in which a seat plate is provided and a tank is attached to one or both ends of a core made by bonding (core firing) fins and tubes made of Cu or Cu alloy, Cu oxidation occurs on at least one surface of the fins. A film (Cu_xO_y) and a Zn oxide film (Zn_xO_y) are formed on it, and the thickness thereof is Zn_xO_y>Cu_xO_y, and the total thickness is 50~
A heat exchanger with excellent corrosion resistance characterized by a thickness of 1000 Å.
(2)Cu又はCu合金からなるフィンとチューブを接
合(コア焼)したコアの一端又は両端に、座板を設けて
タンクを取付けた熱交換器の製造において、フィンの少
なくとも片側表面にZnを1wt%以上含む合金層を形
成して拡散処理し、このフィンとチューブの接合(コア
焼)を酸化性雰囲気下で行なうことにより、フィンの少
なくとも片側表面にCuの酸化被膜(Cu_xO_y)
とその上にZnの酸化被膜(Zn_xO_y)を形成し
、その厚さがZn_xO_y>Cu_xO_yで合計5
0〜1000Å形成することを特徴とする耐食性の優れ
た熱交換器の製造方法。
(2) In manufacturing a heat exchanger in which a seat plate is provided and a tank is attached to one or both ends of a core made by bonding (core firing) fins and tubes made of Cu or Cu alloy, Zn is applied to at least one surface of the fins. By forming an alloy layer containing 1wt% or more and performing a diffusion treatment, and then joining the fin and tube (core firing) in an oxidizing atmosphere, a Cu oxide film (Cu_xO_y) is formed on at least one surface of the fin.
and a Zn oxide film (Zn_xO_y) is formed thereon, and its thickness is Zn_xO_y>Cu_xO_y, and the total thickness is 5.
A method for producing a heat exchanger with excellent corrosion resistance, characterized by forming a heat exchanger having a thickness of 0 to 1000 Å.
JP13473690A 1990-05-24 1990-05-24 Heat exchanger with excellent corrosion resistance and method of manufacturing the same Expired - Lifetime JP2726549B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13473690A JP2726549B2 (en) 1990-05-24 1990-05-24 Heat exchanger with excellent corrosion resistance and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13473690A JP2726549B2 (en) 1990-05-24 1990-05-24 Heat exchanger with excellent corrosion resistance and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0428886A true JPH0428886A (en) 1992-01-31
JP2726549B2 JP2726549B2 (en) 1998-03-11

Family

ID=15135390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13473690A Expired - Lifetime JP2726549B2 (en) 1990-05-24 1990-05-24 Heat exchanger with excellent corrosion resistance and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2726549B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018142487A1 (en) * 2017-01-31 2018-08-09 Ykk株式会社 Article having metallic surface, tone-treatment method therefor, and gas phase oxidation device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014210211A1 (en) * 2014-05-28 2015-12-03 Mahle International Gmbh Evaporator device for an air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018142487A1 (en) * 2017-01-31 2018-08-09 Ykk株式会社 Article having metallic surface, tone-treatment method therefor, and gas phase oxidation device

Also Published As

Publication number Publication date
JP2726549B2 (en) 1998-03-11

Similar Documents

Publication Publication Date Title
JPH0428886A (en) Heat exchanger excellent in corrosion resistance and its production
EP0254779B1 (en) Fin of heat exchanger and method of making it
JP2001502757A (en) Advanced electrolytic corrosion protection
US4775004A (en) Copper radiator for motor cars excellent in corrosion resistance and method of manufacturing
JPS60194062A (en) Surface treatment of copper and copper alloy
JPS60194296A (en) Material for heat exchanger, which is prominent in anticorrosion
JPS60122896A (en) Radiator fin
JPS61172690A (en) Heat exchanger fin material and its production
US4898318A (en) Copper radiator for motor cars excellent in corrosion resistance and method of manufacturing the same
JPS60121264A (en) Manufacture of radiator having fin with superior corrosion resistance
JPS5939491B2 (en) Corrosion-resistant copper alloy and heat exchanger using it
KR910006779B1 (en) Fin of heat exchanger and method of making it
JPH03255895A (en) Manufacture of heat exchanger for vehicle
US4519980A (en) Fin materials for automobile radiators
JPS63127096A (en) Automotive heat exchanger and its fin material and manufacture thereof
JP6518804B2 (en) Method of manufacturing aluminum alloy pipe for heat exchanger
JPS62218796A (en) Heat exchanger
JPH0472160B2 (en)
JPH03254360A (en) Production of heat exchanger
JPS63213797A (en) Heat exchanger for automobile
JP3153874B2 (en) Manufacturing method of corrosion resistant heat exchanger
CA1284923C (en) Fin of heat exchanger and method of making it
JPS5852453A (en) Copper alloy for fin of radiator for car
JPH04121598A (en) Automobile heat exchanger
JPS6015065A (en) Manufacture of heat exchanger