JPH04288509A - Optical fiber terminal with microlens and its manufacture - Google Patents

Optical fiber terminal with microlens and its manufacture

Info

Publication number
JPH04288509A
JPH04288509A JP2416547A JP41654790A JPH04288509A JP H04288509 A JPH04288509 A JP H04288509A JP 2416547 A JP2416547 A JP 2416547A JP 41654790 A JP41654790 A JP 41654790A JP H04288509 A JPH04288509 A JP H04288509A
Authority
JP
Japan
Prior art keywords
optical fiber
tip
optical
fiber
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2416547A
Other languages
Japanese (ja)
Other versions
JP2560148B2 (en
Inventor
Masato Tadenuma
蓼沼 正人
Yoshihiro Konno
良博 今野
Hiroshi Kume
久米 浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namiki Precision Jewel Co Ltd
Original Assignee
Namiki Precision Jewel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namiki Precision Jewel Co Ltd filed Critical Namiki Precision Jewel Co Ltd
Priority to JP2416547A priority Critical patent/JP2560148B2/en
Publication of JPH04288509A publication Critical patent/JPH04288509A/en
Application granted granted Critical
Publication of JP2560148B2 publication Critical patent/JP2560148B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To omit optical axis adjustment and realize high coupling efficiency with small reflection loss by fusing a fiber lens directly to an optical fiber at its terminal and improving the sphericity of the lens. CONSTITUTION:An optical fiber 1 which has a spherical single-refractive-index lens 10 having length and a radius required for beam diffusion by Gaussian diffusion and also has the same external diameter is united by fusion with the tip of the optical fiber 8. The spherical part is formed by a thermal fusing method and the tip part of the optical fiber is put in the thermally fused part to form the spherical lens which has a target diameter at the tip of the optical fiber.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、光スイッチ,光合分波
器,光アイソレータ等各種光学部品用の微小レンズ付光
ファイバ端末の構造とその製造方法に関するものである
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of an optical fiber terminal with a microlens for use in various optical components such as an optical switch, an optical multiplexer/demultiplexer, and an optical isolator, and a method for manufacturing the same.

【0002】0002

【従来の技術】光通信の発達に伴って利用されている光
デバイス,光学部品の小型化が望まれる。特に光アイソ
レータ,光サーキュレータ,光合分波器等においては、
光ファイバと結合した状態で小型化や構造の簡素化が要
求されている。また、近年光通信の高速システムに狭い
スペクトル幅を持つ分布帰還型レーザを用いているが、
後方反射に対して敏感であるため、光ファイバの終端が
高反射減衰量を有することも要求されるようになってき
た。
2. Description of the Related Art With the development of optical communications, it is desired that optical devices and optical components used be miniaturized. Especially in optical isolators, optical circulators, optical multiplexers/demultiplexers, etc.
There is a demand for miniaturization and simplification of structure when coupled with optical fiber. In recent years, distributed feedback lasers with a narrow spectral width have been used in high-speed optical communication systems.
Sensitivity to back reflections has also created a requirement for optical fiber terminations to have high return loss.

【0003】一般に、光ファイバを伴うピッグテール化
された光アイソレータ等では図2に示すように光ファイ
バ1から出射された光は球レンズ2あるいは屈折率分布
型レンズ3で平行光として光学デバイス4へ入射させ、
出射させた光を再び同様にして光ファイバ1へ集光する
ことにより結合している。
Generally, in a pigtailed optical isolator with an optical fiber, as shown in FIG. 2, light emitted from an optical fiber 1 is converted into parallel light by a ball lens 2 or a gradient index lens 3 and sent to an optical device 4. incident,
The emitted light is similarly condensed onto the optical fiber 1 and coupled.

【0004】0004

【発明が解決しようとする課題】これまでのコリメート
系は、光ファイバとレンズの光軸位置調整が問題であり
、組立装置等に費用がかかり、光ファイバコリメート製
品として高価になっていた。また従来方式の場合、図3
に示すように有機物質による屈折率整合剤5を用いて反
射防止を行っている。従って耐候的,耐熱的な課題があ
る。また図3における光の入出射面6では反射防止膜を
形成するために、光ファイバコードが付属した状態で実
施されることから、通常の蒸着のように約300℃程度
に加熱されるハードコートが光ファイバ被覆部の耐熱性
やガス発生のため用いられず、イオンアシスト等を用い
たコートが採用され、均一性および低価格を妨げる要因
になっていた。
[Problems to be Solved by the Invention] Conventional collimating systems have had the problem of adjusting the optical axis position of the optical fiber and lens, and the cost of assembly equipment and the like has been high, making the optical fiber collimating product expensive. In addition, in the case of the conventional method, Figure 3
As shown in the figure, a refractive index matching agent 5 made of an organic substance is used to prevent reflection. Therefore, there are issues with weather resistance and heat resistance. Furthermore, in order to form an anti-reflection film on the light entrance/exit surface 6 in FIG. 3, an optical fiber cord is attached to the hard coating, which is heated to about 300 degrees Celsius like normal vapor deposition. However, due to the heat resistance of the optical fiber coating and gas generation, coatings using ion assist or the like were used, which hindered uniformity and low cost.

【0005】さらに光デバイスの小型化の面から十分に
光束の細い(例えば200μm以下)ファイバコリメー
タ光が必要とされているが、従来の光ファイバコリメー
タでは細くとも300μmまでしか得られなかった。ま
た、従来のファイバコリメータの構造では反射減衰量が
−27dB程度しか得られなかったが、ファイバ先端に
角度を付けてレンズ系とカップリングしたり、カップリ
ング構造自体複雑にしなければならなかった。
Furthermore, from the standpoint of miniaturization of optical devices, fiber collimator light with a sufficiently narrow luminous flux (for example, 200 μm or less) is required, but conventional optical fiber collimators have been able to obtain a light beam of at least 300 μm. Furthermore, with the conventional fiber collimator structure, a return loss of only about -27 dB was obtained, but the fiber tip had to be coupled to a lens system at an angle, or the coupling structure itself had to be complicated.

【0006】近年微小コリメータ光を形成する試みがな
されている。Journal of Lightwav
eTechnology Vol. LT−5 No.
9 (1987)には、William L. Emk
ey等によりシングルモードファイバ(以下SMFとい
う)にマルチモード屈折率分布ファイバ(以下MMGI
Fという)を融着し、約40μmまでの微小コリメータ
光の結合を提案している。ここでは約3mmまでの距離
を0.1〜1.6dBの結合損失でカップリングを行っ
ている。しかしMMGIFを用いる構造では、光束の拡
大が約40μm程度であり、3mm以上の距離では結合
損失が大幅に劣化するためコリメート距離の自由度がな
く、製造工程において屈折率分布ファイバ部の分布状態
や波長ピッチの調整を個々に測定しながら行わなければ
ならず、量産に不適当であり価格的にも高価となる欠点
があった。
In recent years, attempts have been made to form microscopic collimated light. Journal of Lightwave
eTechnology Vol. LT-5 No.
9 (1987), William L. Emk
ey et al., single mode fiber (hereinafter referred to as SMF) and multimode graded index fiber (hereinafter referred to as MMGI)
We are proposing the coupling of micro-collimated light of up to about 40 μm by fusion bonding (referred to as F). Here, coupling is performed over a distance of about 3 mm with a coupling loss of 0.1 to 1.6 dB. However, in the structure using MMGIF, the expansion of the luminous flux is about 40 μm, and the coupling loss deteriorates significantly at a distance of 3 mm or more, so there is no flexibility in the collimation distance, and the distribution state of the gradient index fiber part is changed during the manufacturing process. Adjustment of the wavelength pitch must be performed while individually measuring, which has the drawback of being unsuitable for mass production and being expensive.

【0007】[0007]

【課題を解決するための手段】本発明は上記の欠点を解
決する手段として中央部に導波構造をなす光ファイバ先
端に、SiO2もしくはSiO2を主成分とした単一屈
折率からなり、ガウス拡散によるビーム拡大に必要な長
さと半径をもつ球状のレンズを形成した同一外径のファ
イバレンズを融着により一体化した構造である。
[Means for Solving the Problems] As a means for solving the above-mentioned drawbacks, the present invention provides a structure in which the tip of an optical fiber having a waveguide structure in the center is made of SiO2 or a single refractive index mainly composed of SiO2, and has Gaussian diffusion. It has a structure in which fiber lenses with the same outer diameter are integrated by fusion to form a spherical lens with the length and radius necessary for beam expansion.

【0008】具体的には、第一の光ファイバと、この光
ファイバのコア部と等価な屈折率をもつ同一外径の第二
の光ファイバが接合され、第二の光ファイバの先端は球
状に形成され、光ビームの放射角度を制御する機能が付
与された微小レンズ付光ファイバ端末であり、第二の光
ファイバにおいて、光ビームが外周に接触しない範囲内
に長さを設定し、先端の球状レンズには使用波長帯域に
適合する反射防止膜を形成し、第一及び第二の光ファイ
バの外周部に光吸収剤、これらと等価あるいはそれ以上
の屈折率をもつ屈折率整合剤を被覆する。製造方法とし
ては、第二の光ファイバ先端の球状部を熱溶解法により
形成するもので、その先端部を熱溶解部中に送り入れる
ことにより先端に目的の半径をもつ球状レンズを形成す
る。
Specifically, a first optical fiber and a second optical fiber having the same outer diameter and a refractive index equivalent to that of the core of this optical fiber are joined, and the tip of the second optical fiber is spherical. It is an optical fiber terminal with a microlens that is formed into a microlens and has the function of controlling the radiation angle of the light beam.In the second optical fiber, the length is set within a range where the light beam does not touch the outer circumference, and The spherical lens is coated with an anti-reflection coating that matches the wavelength band in use, and a light absorber and a refractive index matching agent with a refractive index equal to or higher than these are coated on the outer periphery of the first and second optical fibers. Cover. The manufacturing method involves forming a spherical portion at the tip of the second optical fiber by a thermal melting method, and by feeding the tip into the thermal melting section, a spherical lens having a desired radius is formed at the tip.

【0009】[0009]

【実施例】本発明の光ファイバ端末先端部を図1(a)
の実施例に示すように作成した。先端SiO2ファイバ
レンズ7、ピッグテールファイバ本線8、先端部保護用
フェルール9,先端レンズ10から構成される。9は省
略することも可能である。図1(b)は光の透過状態を
示し、SMFの出射した光の収束点(ビームウエスト)
間での距離をzとすると、波長λにおけるSiO2の屈
折率をnとして、ファイバレンズ7中を伝播することに
よりガウシアンビームの広がり度合は数1で示される。
[Example] Figure 1(a) shows the tip of the optical fiber terminal of the present invention.
It was prepared as shown in the Example. It is composed of a tip SiO2 fiber lens 7, a main pigtail fiber 8, a ferrule 9 for protecting the tip, and a tip lens 10. 9 can also be omitted. Figure 1(b) shows the state of light transmission, and shows the convergence point (beam waist) of the light emitted from the SMF.
The degree of spread of the Gaussian beam as it propagates through the fiber lens 7 is expressed by Equation 1, where the distance between them is z, and the refractive index of SiO2 at the wavelength λ is n.

【数1】 すなわちLを制御することにより光ファイバ径近傍もし
くはそれ以上に拡大することができる。
##EQU00001## That is, by controlling L, it is possible to enlarge the optical fiber to near or beyond the diameter of the optical fiber.

【0010】コア径10μm,外径125μm,コア屈
折率約1.47のSMF本線と同じ外径125μmのS
iO2ファイバを使用する。1.31μmの波長ではL
の最大長は数1からLmax=約1.1mm以下である
ならばよい。図1(b)においてSMFからビームウエ
ストへ経る光の光線行列は、SiO2ファイバの先端レ
ンズの曲率をRとすると、数2の関係がある。
[0010] S with an outer diameter of 125 μm, which is the same as the SMF main line with a core diameter of 10 μm, an outer diameter of 125 μm, and a core refractive index of about 1.47.
Use iO2 fiber. At a wavelength of 1.31 μm, L
According to equation 1, the maximum length of Lmax should be approximately 1.1 mm or less. In FIG. 1(b), the ray matrix of light passing from the SMF to the beam waist has the relationship shown in equation 2, where R is the curvature of the tip lens of the SiO2 fiber.

【数2】 さらにガウシアンビームの光線式から数3となりビーム
ウエストまでの距離zが得られる。
[Equation 2] Furthermore, from the ray equation of the Gaussian beam, the distance z to the beam waist can be obtained from Equation 3.

【数3】 ただしa=λ/πnw02 である。[Math 3] However, a=λ/πnw02.

【0011】数2,数3およびガウシアンビームの光線
式から、
From equations 2 and 3 and the Gaussian beam ray formula,

【数4】 となり、数1から拡大ビーム径が80μmになるように
算出し、L=0.7mmを選定した。この場合前記従来
の提案によるビーム径40μmの2倍の直径となる。S
iO2ファイバの先球レンズの曲率Rはビームウエスト
位置zや、ビーム径2Wzに大きく作用する。表1にそ
の関係を示す。
[Equation 4] Therefore, the expanded beam diameter was calculated from Equation 1 to be 80 μm, and L=0.7 mm was selected. In this case, the beam diameter will be twice the beam diameter of 40 μm according to the conventional proposal. S
The curvature R of the spherical lens of the iO2 fiber has a large effect on the beam waist position z and the beam diameter 2Wz. Table 1 shows the relationship.

【0012】0012

【表1】[Table 1]

【0013】したがって曲率R=200μmでは、ビー
ムウエスト位置約1.8mm、ビーム径88μmとなり
、ビームウエストを対称中心とし、その対向位置に同一
光学系を測定したところレンズ−レンズ間距離3.6m
mで結合損失は0.5dBであった。反射減衰量は、図
1(c)に示すような反射防止膜11と屈折率整合剤5
を施して−45dBが達成できた。
Therefore, when the curvature R=200 μm, the beam waist position is approximately 1.8 mm and the beam diameter is 88 μm. When the beam waist is the center of symmetry and the same optical system is measured at the opposite position, the lens-to-lens distance is 3.6 m.
The coupling loss was 0.5 dB at m. The amount of reflection loss is determined by the antireflection film 11 and the refractive index matching agent 5 as shown in FIG. 1(c).
We were able to achieve -45dB.

【0014】先球製作は、図5に示すようにアーク放電
熱溶解部13に石英ファイバ7を溶解部頭上から送り入
れ曲率R=200μmを形成した。石英ファイバの送り
長さhの体積(円柱)が先球の体積になるように、数5
からhを求めた。
To manufacture the tip, as shown in FIG. 5, a quartz fiber 7 was fed into the arc discharge thermal melting section 13 from above the melting section to form a curvature R=200 μm. In order to make the volume (cylinder) of the quartz fiber feed length h equal to the volume of the tip sphere, use the formula 5.
h was calculated from

【数5】 その結果、送り長さh=2.73mmで曲率R=200
μmが得られた。
[Equation 5] As a result, the feed length h = 2.73 mm and the curvature R = 200
μm was obtained.

【0015】[0015]

【発明の効果】本発明により、ファイバレンズが光ファ
イバに直接融着できるので、接着方式とは異なり信頼性
の高い光学部品となり、界面がないために反射損失が少
なく高い結合効率が実現できる。そして従来のファイバ
コリメータのように、レンズ系との高い公差で調整する
ことなく、ピッグテール部も含む光ファイバ端末系とし
て低価格で供給できる利点がある。
According to the present invention, since the fiber lens can be directly fused to the optical fiber, it becomes a highly reliable optical component unlike the adhesive method, and since there is no interface, it is possible to realize high coupling efficiency with little reflection loss. Unlike conventional fiber collimators, it has the advantage of being able to be supplied at a low price as an optical fiber terminal system that also includes a pigtail portion, without having to be adjusted to a high tolerance with a lens system.

【0016】先球ファイバ製作時においては、熱溶解法
により石英ファイバの送り長さの体積と球の体積を一致
させる制御が容易であり、表面張力を利用して球を形成
するため、同芯度が劣化しないで真球度の良いものがで
き、研磨法における、研磨キズや加工変質層等の問題が
なく、時間の浪費が解消できる。また構造上高反射減衰
量であるため、従来のファイバコリメータのように内部
構成の変更や光軸調整などの必要がない。これらのこと
により特に光アイソレータ,光スイッチ,光合分波器等
さらに曲率を調整することにより、光ファイバアレイ結
合部として広範囲な用途に応用できる。
When producing a spherical fiber, it is easy to control the volume of the quartz fiber at the length of the quartz fiber to match the volume of the sphere using the thermal melting method, and since the sphere is formed using surface tension, concentric A product with good sphericity can be produced without deterioration of the sphericity, and there are no problems such as polishing scratches or damaged layers during polishing, and time wasted can be eliminated. Furthermore, since the fiber collimator has a high return loss due to its structure, there is no need to change the internal configuration or adjust the optical axis, unlike conventional fiber collimators. Due to these features, it can be applied to a wide range of applications, especially as optical isolators, optical switches, optical multiplexers/demultiplexers, etc. By further adjusting the curvature, it can be used as an optical fiber array coupling part.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の光ファイバ端末を示す断面図。FIG. 1 is a sectional view showing an optical fiber terminal of the present invention.

【図2】光ファイバ光学系の概略図。FIG. 2 is a schematic diagram of an optical fiber optical system.

【図3】従来の光ファイバコリメータの断面図。FIG. 3 is a cross-sectional view of a conventional optical fiber collimator.

【図4】本発明によるアーク放電熱溶解を示す概略図。FIG. 4 is a schematic diagram showing arc discharge thermal melting according to the present invention.

【符号の説明】[Explanation of symbols]

1  光ファイバ 2  球レンズ 3  屈折率分布型レンズ 4  光学デバイス 5  屈折率整合剤 7  SiO2ファイバレンズ 8  ピッグテールファイバ本線 9  先端部保護用フェルール 10  先端レンズ 11  反射防止膜 12  アーク放電部 1 Optical fiber 2. Ball lens 3. Gradient index lens 4. Optical device 5 Refractive index matching agent 7 SiO2 fiber lens 8 Pigtail fiber main line 9 Ferrule for tip protection 10 Tip lens 11 Anti-reflection film 12 Arc discharge part

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】  第一の光ファイバと、この光ファイバ
のコア部と等価で単一な屈折率をもつ同一外径の第二の
光ファイバが接合され、第二の光ファイバの先端を球状
に形成することにより、光ビームの放射角度を制御する
ことを特徴とした微小レンズ付光ファイバ端末。
Claim 1: A first optical fiber and a second optical fiber having the same outer diameter and a single refractive index equivalent to the core of this optical fiber are joined, and the tip of the second optical fiber is shaped into a spherical shape. An optical fiber terminal with a microlens that controls the radiation angle of a light beam by forming a microlens.
【請求項2】  第二の光ファイバにおいて、光ビーム
が光ファイバ外周に接触しない範囲内に光ファイバの長
さを設定した請求項1の微小レンズ付光ファイバ端末。
2. The optical fiber terminal with a microlens according to claim 1, wherein the length of the second optical fiber is set within a range in which the light beam does not come into contact with the outer periphery of the optical fiber.
【請求項3】  第二の光ファイバ先端の球状部に反射
防止膜を形成した請求項1の微小レンズ付光ファイバ端
末。
3. The optical fiber terminal with a microlens according to claim 1, wherein an antireflection film is formed on the spherical portion of the tip of the second optical fiber.
【請求項4】  第一及び第二の光ファイバの外周部に
光吸収剤、またはこれらと等価あるいはそれ以上の屈折
率をもつ屈折率整合剤を被覆した請求項1の微小レンズ
付光ファイバ端末。
4. The optical fiber terminal with a microlens according to claim 1, wherein the outer peripheries of the first and second optical fibers are coated with a light absorbing agent or a refractive index matching agent having a refractive index equivalent to or higher than these. .
【請求項5】  第二の光ファイバ先端の球状部を熱溶
解法により形成した請求項1の微小レンズの製造方法。
5. The method for manufacturing a microlens according to claim 1, wherein the spherical portion at the tip of the second optical fiber is formed by a thermal melting method.
【請求項6】  第二の光ファイバ先端部を、熱溶解部
中に送り入れることにより、その先端に目的の半径をも
つ球状レンズを形成した請求項5の微小レンズの製造方
法。
6. The method of manufacturing a microlens according to claim 5, wherein a spherical lens having a desired radius is formed at the tip of the second optical fiber by feeding the tip into the thermal melting section.
JP2416547A 1990-12-28 1990-12-28 Optical fiber terminal with microlens and manufacturing method thereof Expired - Fee Related JP2560148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2416547A JP2560148B2 (en) 1990-12-28 1990-12-28 Optical fiber terminal with microlens and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2416547A JP2560148B2 (en) 1990-12-28 1990-12-28 Optical fiber terminal with microlens and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH04288509A true JPH04288509A (en) 1992-10-13
JP2560148B2 JP2560148B2 (en) 1996-12-04

Family

ID=18524768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2416547A Expired - Fee Related JP2560148B2 (en) 1990-12-28 1990-12-28 Optical fiber terminal with microlens and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2560148B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6552298B1 (en) 2001-09-28 2003-04-22 Corning Incorporated Apparatus and method for making a lens on the end of an optical waveguide fiber
JP2003528347A (en) * 2000-03-17 2003-09-24 コーニング インコーポレイテッド Optical waveguide lens and fabrication method
JP2006303352A (en) * 2005-03-10 2006-11-02 Nichia Chem Ind Ltd Light emitting device
WO2016136484A1 (en) * 2015-02-24 2016-09-01 株式会社フジクラ Ferrule with optical fiber and method for manufacturing ferrule with optical fiber
CN111650689A (en) * 2020-05-10 2020-09-11 桂林电子科技大学 Fiber integrated micro lens set

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821209A (en) * 1981-07-31 1983-02-08 Sumitomo Electric Ind Ltd Image transmission line
JPS60154907U (en) * 1984-03-26 1985-10-16 富士通株式会社 optical coupler
JPS6271604U (en) * 1985-10-24 1987-05-07
JPH01304404A (en) * 1988-06-02 1989-12-08 Fujitsu Ltd Optical communication equipment and its manufacture
JPH02216109A (en) * 1989-02-17 1990-08-29 Nec Corp Semiconductor laser module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821209A (en) * 1981-07-31 1983-02-08 Sumitomo Electric Ind Ltd Image transmission line
JPS60154907U (en) * 1984-03-26 1985-10-16 富士通株式会社 optical coupler
JPS6271604U (en) * 1985-10-24 1987-05-07
JPH01304404A (en) * 1988-06-02 1989-12-08 Fujitsu Ltd Optical communication equipment and its manufacture
JPH02216109A (en) * 1989-02-17 1990-08-29 Nec Corp Semiconductor laser module

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003528347A (en) * 2000-03-17 2003-09-24 コーニング インコーポレイテッド Optical waveguide lens and fabrication method
US7228033B2 (en) 2000-03-17 2007-06-05 Corning Incorporated Optical waveguide lens and method of fabrication
US6552298B1 (en) 2001-09-28 2003-04-22 Corning Incorporated Apparatus and method for making a lens on the end of an optical waveguide fiber
JP2006303352A (en) * 2005-03-10 2006-11-02 Nichia Chem Ind Ltd Light emitting device
WO2016136484A1 (en) * 2015-02-24 2016-09-01 株式会社フジクラ Ferrule with optical fiber and method for manufacturing ferrule with optical fiber
JPWO2016136484A1 (en) * 2015-02-24 2017-11-30 株式会社フジクラ Ferrule with optical fiber and manufacturing method of ferrule with optical fiber
US10605997B2 (en) 2015-02-24 2020-03-31 Fujikura Ltd. Optical-fiber-attached ferrule with an upper opening and a lower ventilation hole and method of manufacturing the same
CN111650689A (en) * 2020-05-10 2020-09-11 桂林电子科技大学 Fiber integrated micro lens set

Also Published As

Publication number Publication date
JP2560148B2 (en) 1996-12-04

Similar Documents

Publication Publication Date Title
US5293438A (en) Microlensed optical terminals and optical system equipped therewith, and methods for their manufacture, especially an optical coupling method and optical coupler for use therewith
US7346236B2 (en) Collimator lens, fiber collimator and optical parts
US20030081897A1 (en) Aspherical rod lens and method of manufacturing aspherical rod lens
CN101004467A (en) Optical component for optical communication
JP2996602B2 (en) Optical branching coupler for constant polarization optical fiber
JP2004533004A (en) Apparatus and method for collimating and transferring beams
JPH04333808A (en) Photosemiconductor module
JP3677593B2 (en) Optical demultiplexer and alignment method thereof
US6535668B2 (en) Retro-reflective multi-port filter device with triple-fiber ferrule
EP3441805B1 (en) Lens-attached optical fiber and optical coupler
JPH04288509A (en) Optical fiber terminal with microlens and its manufacture
JP3274691B2 (en) Manufacturing method of optical fiber terminal with micro lens
US6798949B2 (en) Optical assembly with integrated lens protrusion
JPH0429104A (en) Fine optical fiber collimator
JPH07281054A (en) Optical fiber terminal
JP2992093B2 (en) Optical fiber terminal with micro lens
JP2003084168A (en) Lens with multilayer film and optical fiber collimator
Jiang et al. Ball-lens based optical add-drop multiplexers: design and implementation
JP2003121689A (en) Optical module and method for assembling the same
JPH1138262A (en) Optical multiplexing/demultiplexing device
JP2008152194A (en) Optical transceiver module
JPH05288956A (en) Optical fiber terminal optical device with microlens
JP2001044553A (en) Fiber stub optical device and optical module using the same
JP3335902B2 (en) Optical attenuator and manufacturing method thereof
JP2003139962A (en) Optical module

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960514

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees